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The electron-electron interaction corrections to the transport coefficients are calculated for a two-
dimensional disordered metal in a parallel magnetic field via the quantum kinetic equation approach. For the
thermal transport, three regimes (diffusive, quasiballistic, and truly ballistic) can be identified as the tempera-
ture increases. For the diffusive and quasiballistic regimes, the Lorentz number dependence on the temperature
and on the magnetic field is studied. The electron-electron interactions induce deviations from the Wiedemann-
Franz law, whose sign depend on the temperature: at low temperatures the long-range part of the Coulomb
interaction gives a positive correction, while at higher temperature the inelastic collisions dominate the nega-
tive correction. By applying a parallel field, the Lorentz number becomes a nonmonotonic function of field and
temperature for all values of the Fermi-liquid interaction parameter in the diffusive regime, while in the
quasiballistic case this is true only sufficiently far from the Stoner instability.
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I. INTRODUCTION

A standard result of the Drude-like theory of transport in
disordered metals is the Wiedemann-Franz law! relating the
(Drude) thermal (kp) and electrical (o)) conductivities via
the Lorentz number L:

-, (1.1)

where T is the temperature in energy units (kz=1) and e is
the electronic charge. “Drude-like theory” means that two
assumptions are made in order to calculate the transport co-
efficients: (1) the electrons do not interact with each other;
(2) the scattering of the electrons onto the impurities is
elastic.>® While it was shown long ago* that the interplay of
electron-electron interactions and disorder leads to logarith-
mically divergent, temperature-dependent corrections to the
electrical conductivity at low temperatures 7<<A/7 (7 is the
mean free time for the impurity scattering), it is only recently
that such effects have been correctly evaluated at higher
temperatures® and for the thermal transport.>~® In particular
early calculations®!? of the interaction corrections to the
thermal conductivity arrived at contradictory results, due to
technical difficulties in the proper construction of the energy
current density operator (both in the diagrammatic technique
and in the kinetic equation approach). This issue has been
resolved in Ref. 6, where the local form of the collision
integral for the kinetic equation is also presented.

In deriving the quantum kinetic equation, a proper de-
scription of the disordered Fermi-liquid is obtained by intro-
ducing bosonic soft modes (interacting electron-hole pairs)
which contribute to the energy transport but, being neutral,
not to the charge transport. For interaction in the triplet chan-
nel these bosons have a total spin L=1; this spin degree of
freedom is affected by the magnetic field: the description of
such effects is a central part of the present work. By extend-
ing the results of Ref. 6, I analyze in detail, for two-
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dimensional systems, the temperature and parallel magnetic
field H dependencies of the “generalized” Lorentz number L,
defined as

L(T,H) = «(T,H)/o(T,H)T, (1.2)

where, due to the electron-electron interaction corrections,
both conductivities are temperature- and field-dependent (a
similar analysis for zero-dimensional systems—open quan-
tum dots—is presented in Ref. 11; the parallel field depen-
dence of o is considered in Ref. 12). Because of difficulties
in accurately measuring the electronic thermal conductivity,
very few experiments have been performed in two-
dimensional systems with regard to the thermal transport—
for example, the Wiedemann-Franz law was found to hold!?
in a Si metal-oxide-semiconductor field-effect transistor
(MOSFET) sample within the experimental accuracy, and the
validity of this law was checked for the weak localization
correction.'* One of the difficulties in determining « is in
separating the electronic contribution to the total thermal
conductivity from the phonons’ contribution; however, by
measuring the thermal conductivity in the presence of a mag-
netic field it may be possible to extract the electronic field-
dependent part, as done, e.g., for cuprate superconductors.'
Since new methods for measuring the thermal conductivity
in thin films are being explored,'® the study of the field de-
pendence of L could be experimentally relevant.

The paper is organized as follows: in the next section I
examine the temperature dependence of the Lorentz number
L to identify different regimes as a function of the dimen-
sionless parameter 77/# and to discuss the various approxi-
mations involved. In Sec. III I present the results for the
dependence of L on the parallel magnetic field. The deriva-
tion of these results is given in Sec. IV. After the conclusions,
I briefly consider in Appendix A the field-dependent correc-
tion to the specific heat. Appendix B contains some math-
ematical details, and Appendix C a discussion of the electri-
cal magnetoconductivity in parallel field.
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II. TEMPERATURE DEPENDENCE OF THE LORENTZ
NUMBER

This section contains the result for the temperature depen-
dence of the Lorentz number L. It is convenient to separate L
into a “Wiedemann-Franz law” part L, [Eq. (1.1)] and a
“violation” part JL as follows:

L(T) = Lo+ 8L(T), 2.1)

and for the correction JL to distinguish the contributions due
to interactions in the singlet and in the triplet channels:

SL = 8L + AL (2.2)

For clarity, the two terms are considered separately. The re-
sults given below are derived in Sec. IV A within the quan-
tum kinetic equation approach—this is a perturbative ap-
proach with 1/g as the small parameter, where g
=0/(2¢*/h)> 1 is the dimensionless conductance; it assumes
the validity of the Fermi-liquid picture, which in turns re-
quires T<<Ep, with Ep the Fermi energy.

A. Singlet channel
The singlet correction dL* is, with logarithmic accuracy,
&S

L, mg

[gl(Z 7 T7/h)In(r,Eg/T)

1
- Zgz(ﬂTT’T/ﬁ)ln(l + (h27T7)%)

B l(ZTrTT (2.3)

2
p ) ln(EF/T)],

where the functions g, and g,, given in Egs. (4.4a) and
(4.4b), describe the crossover from the low-temperature dif-
fusive regime to the higher-temperature quasiballistic one,
and r, is the “gas parameter” characterizing the interaction
strength

—
Vrzez
ry=

ehvp

(2.4)

with vy the Fermi velocity and e the dielectric constant.
In the diffusive regime T<<#/27T, both g, and g, tend to
1 and Eq. (2.3) reduces to

oLy 1 (wﬁDkz)
—4=——1n ,

= (2.5)
Ly 2mg 2T
where D=1v7/2 is the diffusion constant and k=2mve?/e is
the two-dimensional (2D) inverse screening radius (where
v=m/m is the 2D density of states). Compared to the
Altshuler-Aronov interaction correction to the electrical
conductivity,* this logarithmic correction to the Lorentz
number has a completely different physical origin: it arises
from the energy transported over long distances by the neu-
tral bosonic soft modes of the interacting electron system.®
At low temperatures, this additional channel for the energy
transport (as compared to the charge transport) leads to an
increase in the thermal conductivity over the electrical con-
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FIG. 1. Relative correction to the Lorentz number as a function
of temperature in the diffusive regime. Solid lines are given by Eq.
(2.3), while dashed lines by the approximate expression (2.5). For
thick lines r,=0.1 and for thin ones r,=1; the conductances are for
each pair of curves (top to bottom): g=100, g=400, and g=1000.

ductivity and therefore to an enhancement of the “general-
ized” Lorentz number (1.2).

In Fig. 1 I plot the relative change of the Lorentz number
SL* /Ly, Eq. (2.3), as a function of 27T7/# for three conduc-
tances (g=100, 400, and 1000) and for two values of the
interaction strength (r,=0.1 and r,=1); for comparison the
curves obtained using the approximate expression (2.5) are
also shown. From the figure and the dependence on r, in Eq.
(2.3) it follows that the deviation from the Wiedemann-Franz
law grows with the interaction strength.?? For low conduc-
tances and temperatures the (positive) change in the Lorentz
number is of the order of a few percent; unfortunately the
uncertainty in measurements of the thermal conductivity in
metallic films'® is also of this magnitude, making a compari-
son with the present theory pointless.

As the temperature increases, the inelastic collisions be-
tween the electrons and the bosons tend to inhibit the energy
transport more efficiently. The quasiballistic regime is
reached in the temperature range

h2mT<T < Ty, (2.6)
where Ty, is the solution of
4 (TW\* E
—7Tg<—q-b> In —& = 1; (2.7)
for large conductances this gives
T3, ~ Epy| ——— (258)
® PN 27e In(2mrg)” '

In this regime, the dominant contribution to the singlet cor-
rection (2.3) is

8Ly L(Z’ITTT>21H<E_F>.

a # T

- 2.9

According to condition (2.6), this expression is applicable
if Tf]b>ﬁ/ 2rT; this can be satisfied only for large-enough
conductances. For example, at g=14 T find (numerically)
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FIG. 2. Relative correction to the Lorentz number as a function
of temperature in the quasiballistic regime. Solid lines are given by
Eq. (2.3) with r;=0.1, while dashed lines by the approximate ex-
pression (2.9). The conductances are (left to right): g=100, 400,
1000, 1600, and 2500. Thin dotted lines are calculated so that they
intersect the solid lines at 7= O.ITflb (top curve) and T= O.2Tf]b (bot-
tom curve).

Téb%O.HEF% 10A/27r, and at g=720, Té’lsz.OlEF
~50A/27T; in the latter case, and for larger conductances,
Eq. (2.9) can be expected to have a sufficiently large range of
validity, while in the former (and generally for small conduc-
tances) there is no quasiballistic regime. At temperatures of
the order of T;b the energy transport becomes truly ballistic
in nature, as the dominant processes responsible for the re-
laxation of the energy current are the inelastic electron-boson
collisions and not the electron-impurity collisions. Although
the high temperature regime 7= Téb is not considered here, it
can be treated within the kinetic equation approach.!®

Figure 2 shows the relative change of the Lorentz number
S6L*/L as a function of 27T7/#A for five different conduc-
tances (solid lines); for the lowest and highest conductances
considered, the approximate result (2.9) is also plotted
(dashed lines). In agreement with the above discussion, com-
parison of the dashed and solid lines shows that Eq. (2.9)
deviates significantly from the full expression (2.3) at low
conductance, while there is good agreement at high conduc-
tance. The intersections between the solid lines and the upper
thin dotted curve are at T=0.1T("lb; it is evident that the region
of validity of the quasiballistic approximation grows with the
conductance. For all conductances the (negative) correction
can be a few percent; in Ref. 13 the Lorentz number was
measured?! in a 2DEG and found to be slightly smaller than
Ly, in qualitative agreement with the predictions in the
present work. However, the uncertainties are of the same
order of the calculated effect and hence no quantitative com-
parison is possible.

B. Triplet channel
For the triplet channel interaction correction, I consider

separately, for simplicity, the diffusive and quasiballistic re-
gimes; in the former case the correction is
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SL, 3 1 1
e~ In(1+F)-—|1-—M(1+F) |,
L, 2ng e Fg

(2.10)

where the first term on the right-hand side is again due to the
bosonic energy transport, and the second one originates from
the interaction-induced energy dependence of the elastic
cross section. While the sign of this temperature-independent
correction is determined by the sign of the Landau Fermi-
liquid constant Fyj, its contribution to the total correction L
[Eq. (2.2)] is generally small*? and the overall positive sign
of 8L at low-enough temperatures is determined by oL}, I do
not plot separately the contribution (2.10) to SL, since its
effect is simply to shift upward (downward) the curves in
Fig. 1 for Fj>0 (F§<0).
In the quasiballistic regime the correction reads

F° 2
t =3&S ( 0 )
a® P\ 1+Fg

3 (2aT7\* [(E Fg \’
=——<7T—T) 1n<—F>(—°) @.11)
5mg\ *h T/\1+F;

with 6Ly, given in Eq. (2.9). As for the singlet channel, this
negative correction originates from the inelastic electron-
boson collision, and similarly to the singlet channel correc-
tion, the validity of this expression is limited at high tem-
peratures by Tf]b—the equation defining this quantity is ob-
tained by multiplying the left-hand side of Eq. (2.7) by
3(F§/1+Fg)% It is evident that, when the quasiballistic ap-
proximation is applicable, plotting the sum of Egs. (2.11) and
(2.9) would give Fig. 2 with a rescaled vertical axis; as for
any value of F{ the triplet channel contribution enhances the
singlet channel correction.

III. PARALLEL FIELD DEPENDENCE OF THE LORENTZ
NUMBER

In this section I present the results for the parallel mag-
netic field dependence of the Lorentz number. The parallel
field H affects the electrons by shifting the energy levels by
the Zeeman energy

(3.1)

where g; is the Lande g-factor and up the Bohr magneton.
The Lorentz number depends on H only through this energy
and the renormalized Zeeman energy E;:

Ez=g1mpH,

« Eg

= . 32
Y 32

As it is the case for other transport properties (e.g., the
magnetoconductivity), it is convenient to consider the devia-
tion AL of the Lorentz number from its zero-field value:

AL(T,H) = L(T,H) - L(T,0). (3.3)

Once again I address separately the diffusive and quasibal-
listic regimes; in both regimes the system is assumed to be
far from the full polarization, i.e., E;<< Er. The derivation of
the results can be found in Sec. IV B.
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A. Diffusive regime

For T<# /277, the field-induced change in the Lorentz
number is

AL, 1(1 3 E, E,
— e — =+ | = -1| =%
L, mg\Fj 2 2@ T 24T

_ L1 E [12< Ly )_12( Ey, )} (3.4)
g F§ 2wT 27T 27T
with the dimensionless functions I; and 7, defined in Eqgs.
(4.16) and (4.17). Similarly to Eq. (2.10), the terms with the
numerical prefactor 3/2 are due to the bosonic energy trans-
port, while the remaining ones, proportional to 1/Fg, origi-
nate from the energy dependence of the elastic cross section.
The structure of this expression as the difference of terms
which depend on different energy scales (i.e., E, and E;) can
be traced back to the structure of the quantum kinetic equa-
tion, in which the bosonic contributions to the collision inte-
gral always appear as differences between a soft mode part
and a “ghost” part.®
In the weak field limit E,, E,<2#T Eq. (3.4) becomes

AL 1 2
L—O" ~- W—ngFS)(f—;T) (3.5)
with
4+3
fax) = x—((l :x;) . (3.6)

In the opposite case E, E;> 27T the approximate formula is

1 2 1
—=——In(l1+F))+—|1-—In(1+F)) |,
Ly e 1 0 377g{ Fg n g)}

(3.7)

or equivalently,

ALdz—éb‘LZ, (3.8)
with 8L/, given in Eq. (2.10). This result can be explained as
follows.!? In the diffusive regime the correction is dominated
by processes with small energy and momentum exchange,
and in the strong field the bosonic modes with nonzero spin
projection become gapped with the gap given by the Zeeman
energy. Therefore the contributions due to these modes must
drop out from the total correction to the Lorentz number: this
is why the correction (3.7) partially cancels the one given in
Eq. (2.10), with the surviving contribution originating from
the modes with zero total spin projection.

In Fig. 3 the relative deviation AL,/L, multiplied by g,
is plotted as a function of E,/2#T for different values of the
parameter F{. At fields such that the Zeeman energy is larger
than temperature the deviation becomes quickly field inde-
pendent, but near E,~ 27T all the curves are nonmonotonic;
the presence of peaks is due to the above-discussed depen-
dence on the two different energies £, and E;, and through
the latter (and the 1/F{ prefactors) the peaks’ positions de-
pend on F{. The temperature dependence of the deviation at
fixed field can also be read from this graph by following the
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FIG. 3. Relative deviation 7wgAL,/L of the Lorentz number
from its zero-field value in the diffusive regime. Solid lines are
given by Eq. (3.4) with, from top to bottom: Fg=-0.7, -0.4, -0.2,
0.2, and 0.4. For Fj=—0.7 and 0.4 the approximate expressions
(3.5) (dashed lines) and (3.7) (dot-dashed) are also shown for
comparison.

curves from the right (low temperature) to the left (high tem-
perature): the deviation is temperature independent at low
temperatures T<<E,/2m and displays a power-law decay
(~T?) at high temperatures; again the nonmonotonic behav-
ior characterizes the intermediate regime.

B. Quasiballistic regime

Here I consider the quasiballistic regime #/27w7T<T
<Ty, with Ty, defined after Eq. (2.11). In this case I find

ALy, 3 (277T7->2< Fg )21<E;. FS )
L, 2mg\ h 1+F7) \2mT 1+ FS

(3.9

with I; given in Eq. (4.26). For E,,<2#T the result takes the
form

AL, 1 (TEZ>2
~_-—f (FO| —Z£ |, 3.10
L, ngqb(g) P (3.10)
where
f ()_( X )2{1+2x+4x2
N | (202
2:%(3 + 6x + 4x2) ‘ x H
. (311
(1+2x)3 1 1+x ( )

while with logarithmic accuracy the large field limit E;
>27T is

AL 2 (2#T7\*> [E FJ \?
_LLbz_< T 7) ln(—z>( 0 ) (3.12)
L, 5me\ % T)\1+F]

Comparison of Eq. (3.12) with Eq. (2.11) shows that the
partial cancelation that was found in the diffusive limit is
also realized in the quasiballistic one, but with an important
difference: the gapped modes still contribute to the total cor-
rection to the Lorentz number because the quasiballistic cor-
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FIG. 4. Relative deviation of the Lorentz number from its zero-
field value as a function of the Zeeman energy in the quasiballistic
regime (normalized as explained in the text) for different values of
the Fermi-liquid parameter, as labeled (the curve partially covered
by the inset corresponds to F=-0.7). Solid lines are given by Eq.
(3.9), while dashed lines by the approximate expression (3.12). The
inset shows details of the low-field regime, with the dashed curves
corresponding to Eq. (3.10).

rections are dominated by the inelastic scattering with large
momentum exchange. The gap therefore excludes the low-
energy (E<E,) contributions, but the higher-energy ones
(E;<E<E}p) are still relevant.

Figure 4 shows the field dependence of AL, Eq. (3.9),

by plotting
ALy, / 3 ( 277T7'>2
LO 2’7Tg h

as a function of E,/27T; for comparison the approximate
result (3.12) is also plotted.?® In the inset the low-field be-
havior of Eq. (3.9) is compared to Eq. (3.10); except for the
case Fj=-0.7, all curves are nonmonotonic. The threshold
value Fij above which AL, is a nonmonotonic function can
be found by requiring fq,(Fiy)=0; this gives Fi=-0.679.
Although the present results are not valid close to the Stoner
instability (see Ref. 22), they suggests that as Fj ——1 the
relationship between energy and charge transport properties
can be qualitatively altered compared to the weakly interact-
ing case. For completeness, I consider in Fig. 5 the tempera-
ture dependence of ALy, by plotting

ALy, / 3 ( E_ZT)2

L() 2’7Tg h
as a function of 2#wT/E, in the low- to intermediate-
temperature regime.

IV. DERIVATION

This section is devoted to the calculation of the interac-
tion corrections to the Lorentz number using the formalism
of Ref. 6. In the absence of the magnetic field, one can use
directly the results of that reference, while a generalization is
needed for the parallel field case, as discussed in Sec. IV B.
From now on, I set A=1.
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FIG. 5. Relative deviation of the Lorentz number from its zero-
field value as a function of the temperature in the quasiballistic
regime (normalized as explained in the text) for different values of
the Fermi-liquid parameter. Proceeding clockwise near the origin,
starting with the steepest curve, the parameters are Fj=-0.7, -0.5,
-0.3, -0.2, 0.4, and 0.2

A. Temperature dependence

The results presented in Sec. II are a straightforward con-
sequence of the findings of Ref. 6, where it is shown that for
two-dimensional systems the thermal conductivity can be
written as

K= Kwp + Ak. (4.1)

Here

KWF = LOO'T (42)

follows the Wiedemann-Franz law with L, defined in Eq.
(1.1) and the electrical conductivity o includes the interac-
tion corrections. The additional term Ak=Ax’+3A«’ is given
by the sum of the singlet and triplet channel corrections. The
former was calculated with logarithmic accuracy:?*

T K\ T 1
Ak, = gg(ZTrTT)lH(%) - Zgz(WTT)ln(l + (27TTT)2>
27 (E_>
- T(T7)* In T (4.3)

with the functions g; and g, given by
301, )
8§10 =73 29 -2 -2, (4.4a)

where ¢ is the derivative of the digamma function, and

26 8 5
= — 2 + — - .
g(x) 15x 381(15) 3
Note that g,(0)=g,(0)=1, and g,(x) =3/x for x<1
Using the definitions (1.2), (4.1), and (4.2) I find at first
order in 1/g

(4.4b)

— =1+ . (4.5)

Then from the definition (2.1)and Eq. (4.3) one arrives at Eq.
(2.3). The limiting expressions given in Egs. (2.5) and (2.9)
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are found by keeping the leading-order contributions to SL°
for small and large 7'z, respectively, by using the asymptotic
forms of the functions g, and g, given after Egs. (4.4a) and
(4.4b). The condition (2.7) is obtained by equating the (ab-
solute value of the) correction (2.9) to the noninteracting
Lorentz number L, [Eq. (1.1)]; the results are not valid at
temperatures higher than Tflb because in solving the kinetic
equation it was assumed that the impurity scattering is the
dominant process contributing to the energy relaxation
rate—see the discussion at the end of Sec. 6.2 of Ref. 6;
however, the kinetic equation itself is still valid.

For the triplet channel, the correction Ax’ was calculated
in the diffusive and quasiballistic regimes:

T 1 T
Aky=——|1-—=In(1 +F, — In(1+Fj) (4.6
Ky 18{ Fo n(l+ 8)}+]2 n(1+Fy) (4.6)

for Tt<<1/2m, and

o 2

ET(TT)Z 1n(E—F>(A> (4.7)
15 T/\1+F;

for T7>1/27r. Multiplying Egs. (4.6) and (4.7) by 3 and
using Eq. (4.5) and the definition (2.1) of AL, the results
(2.10) and (2.11) are obtained; the factor of 3 arises from the
summation over the three projections of the total spin, which
in the absence of magnetic field contribute equally to the
thermal conductivity.

ro_
Aqu——

B. Parallel field dependence

To obtain the results of Sec. III I give here an extension of
the calculations of Ref. 6. As in Eq. (4.1), I separate the
thermal conductivity in a part which follows the
Wiedemann-Franz law and a correction; both terms now de-
pend on the applied parallel magnetic field H, or more pre-
cisely on the Zeeman splitting, Eq. (3.1). The term wwg(T,H)
is straightforwardly calculated using the results of Ref. 12, so
one needs to consider only the correction Ax(T,H). As dis-
cussed in, e.g., Refs. 12 and 17, the singlet and the triplet
L,=0 contributions to « are not affected by the parallel field
(L, is the projection of the total spin along the field direc-
tion). The effect of the field on the remaining L.=+1 com-
ponents of the triplet channel correction is to shift the fre-
quency of the interaction propagators; in the langauge of
Ref. 6, the bosonic propagators L7(w,q;n,n,;L.) are

L(ny,ny;L.) = Qa8 ny) Lo(ny; L) + Lo(ny; L) Lo(ny;Ly)

FS 1
(— io——+ —)C(LZ)
I+F, 7

- , (4.8)
. Fy 1
C(L)-|-iw —+ =
1+F5 7
and the corresponding (triplet) “ghost” propagators

. ) 25
L8(w,q;n,,n,;L,) are
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L(n,ny;L,) = Q,8(n,m5) Lo(ny 5 L)

1
;C(LZ)
+Lo(ny ;L) Lo(ny;L)——, (4.9)
C(Lz) -
7.
where
LolniLy) 1
ni; = . * 3
0 Y —i(w-LE,)+iv;-q+1/7
C(L)=\[-i(w—LEy)+1/7+(wpq)?  (4.10)

In the above formulas I dropped the variables w, g for com-
pactness, v;=vpn;, and E; is the Zeeman energy renormal-
ized by the interactions, Eq. (3.2).

The calculation of the field-dependent thermal conductiv-
ity proceeds now as in Ref. 6: the evaluation of the transport
coefficients can be reduced to integrals over the frequency w
whose integrands consist of a distribution function part times
a kernel part K(w); the latter is found after integration over
the momentum ¢ and summation over the total spin projec-
tions. The field-dependent kernels can be found using the
expressions (4.8) and (4.9) instead of their zero-field coun-
terparts; below I calculate explicitly the correction Ak, to
the  thermal  magnetoconductivity  «,,(T,H)=«(T,H)
—k(T,0). In other words, I want to write «(7',H) in the form
(4.1) and define Ak, as

Ak, (T,H) = Ak(T,H) - Ax(T,0), (4.11)

where Ax(T,0) is the correction considered in the previous
section. To calculate Ak, I introduce for each kernel K the
corresponding kernel difference AK=K(H)-K(0) between
the kernel calculated with and without the field. As in the
preceding section, I consider separately the diffusive and
quasiballistic regimes.

1. Diffusive regime

In the diffusive regime, the two main contributions to Ax
come from the energy dependence of the elastic cross section
and from the bosonic energy transport. Writing

AKm,al= 5Kel,m + (KZ - Kg)»

m

(4.12)

the two terms are given by [cf. Egs. (6.11b) and (6.36b) of
Ref. 6]

- _
(TD w" (9NP
o =-2—= | dw A& —_— 4.13
Kelm esz w (w)_lz Jw | ( a)
and
_ . _
K;—Kf,,:%deABO(w) L (4.13b)
e’T | 4 Jw |

with the kernels
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w” —-E;

e
o' -E;

AE=

e? 1 !
-———>—|oh
op2mw’ FY

— } (4.14a)

and

62

= In
op2 e

As discussed above, these kernels are found by substituting
the expressions (4.8) and (4.9) for the propagators into the
definitions of £ and B° given in Eqs. (6.9) and (6.36d) of
Ref. 6.2° Substituting Eqs. (4.14a) and (4.14b) into Egs.
(4.13a) and (4.13b) (and by a change of variable
—27Tw) I get

2_ g2
o -E;

AB° -
- EZ2

. (4.14b)

T 1 E, E,
Okeam=—7"V I\ 5 -1\ =
’ 6 F§ 27T 2@T
+ _Z 12<_Z> —12(_2) (4153)
2@T| “\2@T 27T |
and
7| [ E E, ]
KT — k8 =—— 11(—2)—11(—2) ,  (4.15b)
41 \2@T 27T |
where I introduced the dimensionless functions
2 E2
1,(E)= d In{l-— 4.16
1(E) Trf wsinh2 TW n ? ( )
and
L(E) = fd 1) 1+ w/E @.17)
2EET A i e | 1- w/E| '
Equation (4.16) can be identically rewritten as
- (E/n)* }
I(E)=2E*-4 In(1 +(En)?) - ———
1(E) gln[ (1+(E/n)7) L+ (El)?
(4.18)
which is useful to obtain the £<<1 expansion, and as
2 2 (1)2
I,(E)=—In|E|+C+ do——n|l-—
1(£) 3 n| | WJ wsinh2 TW n E?
(4.19)

which gives the E>1 asymptotic behavior; the constant C
appearing above is

2

CE—Z'rrfdw In|w|

sinh? 7w
2 3 4

=§<7+1H27T—5)—?§,(2)20.99, (4.20)

where y=0.577 is the Euler constant and {’'(2) =-0.938 is

the derivative of the zeta function evaluated at 2. As for Eq.
(4.17), in the given form the large E limit can be readily
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obtained [I,(E)=2/3E+---], while to find the small E limit I
rewrite it as

- E 1
L(E)=msgnE—4E+4>, Im{ln(l +i—> ]

el n - iE/n
(4.21)
Note also the identity (primes indicate derivatives)
I(E) + EIL(E) =0 (4.22)

which enables to verify that the correction dk,,, of Eq.
(4.15a) vanishes in the limit F§—0, as expected.

Using Eqgs. (4.15a) and (4.15b), together with the defini-
tions (4.1), (4.11), and (3.3), and dropping terms of higher
order in 1/g, one arrives at Eq. (3.4). The approximate ex-
pressions (3.5)—(3.7) follow from Eqgs. (4.18)—(4.21).

2. Quasiballistic regime

In the quasiballistic regime, the correction Ak is deter-
mined by the inelastic electron-boson collisions and it can be
written as [cf. Eq. (6.39a) of Ref. 6]

3
gp 1 w" c?NP
A =—- | do AB —_—— 4.23
Km,qb esz w (w)|: 4 awi| ( )
with
a 2 *
AB =S ﬁ»( 5 U) J(E—Z;—Fg(,>,
op2m 1 +F§ w 1+F]
(4.24a)
(1-L.E)?
JE;F)==2 Infl -LE-—"—7—5""5
(E;F) ngﬂ{lﬂ 2 |(1—LZE)2—F2

1 1 ]
(1-LE?-F 1-F ||
(4.24b)

- 1n|F|F2{

Some details on the derivation of this kernel are given in
Appendix B. Substitution of Egs. (4.24) into Eq. (4.23) re-
sults in

T F \* ( E, F§
Axmqb=——(2wTr)2( 0 )h( e )
’ 4 1+Fy) “\2@T 1+Fg

(4.25)

with the dimensionless function /5 defined as

o* E
13(E;F)=7TjdwT.l(—;F>.
sinh” Tw \

The large and small E limits of /5 can be found by keeping
the leading-order terms in the expansion of the function
J(E;F).”" In this way I obtain

(4.26)

4
L(E;F) =~ - s In|E]| (4.27)

for E>1, and
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2 143F> F3+F?
I,(E;F) =~ —E* ( )

+ In F?
T T 2

(4.28)

for E<1. Knowing Ak, q, and the approximate formulas
(4.27) and (4.28), proceeding as in the previous subsection
finally leads to Egs. (3.9), (3.10), and (3.12).

V. CONCLUSIONS

The quantum kinetic equation approach is a powerful
method to investigate the effects of the electron-electron in-
teractions on transport in disordered metals>*!'? and open
quantum dots.!" Using this approach I considered the tem-
perature and parallel magnetic field dependence of the Lor-
entz number in two-dimensional disordered metals.

Three regimes can be distinguished as the temperature
increases: diffusive, quasiballistic, and truly ballistic. In the
low-temperature diffusive regime, the Lorentz number is en-
hanced above its Drude value due to the energy transported
by neutral bosonic modes that describe the interacting
electron-hole pairs, see Eq. (2.5) and Fig. 1. At intermediate
temperatures (the quasiballistic regime) the Lorentz number
is suppressed by the inelastic electron-boson collision, Eq.
(2.9) and Fig. 2, with the crossover between the two regimes
described by Eq. (2.3). The effect of the interaction in the
triplet channel is given in Egs. (2.10) and (2.11) for the dif-
fusive and quasiballistic regimes, respectively.

If a magnetic field is applied parallel to the two-
dimensional metal, the Zeeman splitting of the electronic en-
ergies affects the transport properties; in particular in the
diffusive regime the deviation of the Lorentz number from
its zero-field value displays a nonmonotonic dependence on
the ratio between the Zeeman energy and the temperature,
see Eq. (3.4) and Fig. 3. Finally, as discussed in Sec. III B, in
the quasiballistic regime the deviation can be either a mono-
tonic or nonmonotonic function of both temperature and
Zeeman energy depending on the value of the Fermi-liquid
parameter.
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APPENDIX A: PARALLEL FIELD DEPENDENCE OF THE
SPECIFIC HEAT

In this appendix I calculate for completeness the correc-
tion 5CV to the specific heat in the presence of a parallel
magnetic field; the general expression for 5Cv is$

Sc ——(u —uf),

Vo7 (A1)

where the energy densities u® are given by
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:fdw wb*(w)Np(w). (A2)

Here Np(w) is the Planck distribution and b%(w) are the

bosonic densities of states. In the presence of the parallel
field I find

b%(w;H) — b¥(w;H)

_ Re dq | F§ ( 1 1 )
Coony ) emPlivF\CL) b CL)
—ilo-LE)+ 1/7( 1 1 )]

(L) clL)-b CL)-1/7
(A3)
with C defined in Eq. (4.10) and
FJ 1
b=—io—2—+—. (A4)
1+F; 7

Performing the integration and the summation I arrive at

[b%(w;H) = b¥(w;H)] - [b7(w;0) — b*(w;0)]
2
-

—In

_ ;[ !
T 87D 1+F
— E)[O(E2 - o) - 0(E)? — )]

Fo’ 2 5
—(1 Fo) m1w|6(E —w)]

Next, I substitute this result into Eq. (A2) and then into Eq.
(A1); taking the temperature derivative and rescaling the fre-
quency [w— 27Tw] I finally obtain

()t )
R (e
il )l 52)
(5] -]} o

with I, defined in Eq. (4.16) and

+ 777(| |

(AS)

Sc,(H) = 8¢, (0) =

fa2) = J do (A7)

smh2

The functions f, can be given in terms of polylogarithms as
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frlz) = %2 +2zlog(1 — e7%) = Lis(e7%) + z°(1 — coth 2)

f3(2) = 35(3) +3z21og(1 — e7%) = 3z Liy(e7%)

3
=2 Lis(e™) + (1 = coth 7). (A8)
The first line in Eq. (A6) is the correction to the specific
heat in the diffusive limit, while the last two lines become
dominant in the quasiballistic limit. In this limit and for weak
interaction |F§|<1, Eq. (A6) reproduces the result of Ref.
19.

APPENDIX B: DERIVATION OF THE KERNEL A3!

In this appendix I briefly outline how to derive the kernel
AB! given in Eq. (4.24a) starting from the results of Sec. 6.2
of Ref. 6. There, the exact (at linear order in VT) solution of
the kinetic equation was given; this solution is unaffected by
the parallel field. In the quasiballistic regime, the main cor-
rections to the thermal conductivity were found to originate
from the term in the bosonic distribution function defined as
SN' and which can be neglected in the diffusive limit; these
corrections are given in Egs. (6.35¢) and (6.36¢) of Ref. 6.
Performing the angular integrations in those equations results
in Egs. (6.38a) and (6.38b) respectively; by repeating those
calculations using the propagators in Eqgs. (4.8) and (4.9) a
similar result is obtained in the presence of the parallel field.
The explicit expression is simply found by redefining some
of the quantities appearing on the right hand sides of Eqs.
(6.38) as follows: for the function C, I substitute the function
C(L,) given in Eq. (4.10); the parameter b’ is now

w1
b'(L)=—i(w-LE)+=;
-

all the other quantities, namely b [Eq. (A4)] and

- w*INp F§
R _To
T dw 1+Fj

are unchanged.

To arrive at the kernel AB!, the sum over L, needs to be
performed, along with the remaining integral over the mag-
nitude of the momentum ¢. This integral was performed in
Ref. 6 with logarithmic accuracy; in the present case, how-
ever, both the infrared divergence (due to the long-range part
of the Coulomb interaction) and the ultraviolet divergence
are absent—the latter because I consider here the kernel dif-
ference, the former because the triplet channel interaction is
short-range—and I proceed in a different manner. By rescal-
ing all the dimensionful quantities w, E*, 1/ 7, and vyq by the
temperature 7, I find that the contributions due to Eq. (6.38a)
are smaller than those of Eq. (6.38b) by 1/77 and can there-
fore be neglected. Similarly, to find the leading term in the
(Laurent) expansion over 1/T7 one can set 1/7—0 in Eq.
(6.38b). Following this procedure, I get
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qu f dnldn2

2np | —q, M ReETEIONG

5 @ Fg 1\~/de
“emi 1+ Fg )y P

1
\r’lp -(1- LZEZ/cu)2

X| Re

1
XRe I
= 5 . Iy
Vp=(1=-LEJw)?-i
p=( £2/0) 1+F§

X(l_(l—LZE;/wV) ,
p

where in terms of the original variables p=(v;q/®)?, and the
approximate equality indicates that I am neglecting higher-
order terms in 1/77. The integral over p is logarithmically
divergent, but the difference between the above expression
and the similar one at zero parallel field is finite. The exact
integration of this difference gives finally the expression for
the kernel AB! given in Egs. (4.24).

APPENDIX C: PARALLEL FIELD DEPENDENCE
OF THE ELECTRICAL CONDUCTIVITY

The aim of this appendix is to compare the present ap-
proach to the one of Ref. 12 for the calculation of the parallel
field magnetoconductivity Ao, which is given by

Ao=oy f dw[AS(w)+AS€l(w)]£[wNp(w)]. 1)

This formula follows from Eq. (6.8) of Ref. 6, and the ker-
nels are defined in the subsequent Eq. (6.9).

In the diffusive limit only A& is relevant, since the kernel
S gives contributions smaller by the factor 77<<1, as dis-
cussed in Ref. 6; it is straightforward to verify that substitut-
ing Eq. (4.14a) into Eq. (Cl1), the diffusive limit result of
Ref. 12 is recovered. Vice versa, it can be shown that in the
quasiballistic limit the kernel £ can be neglected since larger
corrections are due to S¢—this can be done, for example, by
rescaling all dimensionful quantities by the temperature, as
described in Appendix B. Proceeding as detailed there, i.c.,
dropping higher-order terms in 1/77, and introducing the
shorthand notation

s(a|b) = sgn(a) — sgn(b),
I obtain for the kernel AS® in the quasiballistic regime

AS?=AS" + AS"?, (C2a)
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AS" ¢ 7w (w-L.Ejo-L.E,))
= - s(w— w-
UDZﬂleLFi] =z =z
. F
X(w-LE), —w s(w—L.E,|w) |,
( 77 1+Fg ( Z Z| ):|
(C2b)
AS & T (0-L.E)w-LE)
= —— s(w—LE,Jo—L.
(1'1)211'2(1)2#:il =z Tz
N 2wFy
X (@~ L.E}) f
o(l +2F)) - L.E,
Fg
- s(w-E, o) |. C2c
I+ Fe ( v )] (C2¢)

Equations (C1) and (C2) lead to the quasiballistic limit
result of Ref. 12; in particular, the sum of the first terms in
square brackets gives the contribution denoted there by K5,
while the remaining terms give the K; contribution. Here I
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point out that in the low-field limit £, E;< 2T, the quasibal-
listic magnetoconductance is given by

e 2Ff 1<EZ>2
~ ZZ) qFo), C3
o= e R 3\ar) S ©3)
where
z 1 1
=1- 14—
&) 1+z[ T Tv2z (14220
2(1+z)ln2(1+z)}
- c4
(1+22)3 €4

This expression corrects the wrong definition of f(z) given
after Eq. (14) of Ref. 12.2® While the difference between the
two definitions is numerically small (less than 4%) for
-0.57<F;j=0.14, it grows rapidly outside this parameter
range, and use of Eq. (C4) rather than its counterpart of Ref.
12 may be important in a comparison between theory and
experiment.
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