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Specific heat at constant volume calculations are presented from lattice dynamic calculations of harmonic
phonon branches for the face-centered cubic crystals of Ne, Ar, and Kr using ab initio two-body potentials. The
calculated temperature-dependent specific heats and derived Debye temperatures are in good agreement with
experimental results. The unusually low Debye temperature of Ne in comparison to the heavier rare gas solids
is analyzed in detail.
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I. INTRODUCTION

Crystal lattice dynamics theory has evolved from the need
to accurately predict properties such as the phonon spectra
and thermodynamic quantities of solids. The rare gas solids
�RGS’s� have constituted a special case, as modeling these
systems does not require consideration of strong bonding
interactions, many-neighbor interactions, or free electron
gas.1 The solids of the heavier rare gases, for which quantum
effects can be neglected, are treated on a common basis. The
appropriateness of a particular approach can be assessed by
comparison with experimental phonon dispersion curves,
temperature dependences of the specific heat Cv�T�, and
other measurable quantities.

Recent empirical calculations of the phonon spectra of
some fcc lattices,2 from measured elastic constants, provided
an argument in favor of the assumption that nearest-neighbor
interactions are sufficient to accurately model the lattices of
Xe, Kr, Ar, and even Ne. The agreement between the calcu-
lated and the experimental temperature dependences of the
specific heat at constant volume served in such study as a
criterion to evaluate the calculated phonon densities. We re-
call that the Cauchy equality C12=C44, where C12 and C44
represent two of the three distinguishable elastic constants of
a cubic solid, holds reasonably well for the RGS’s of the
elements mentioned above, at temperatures between 5 and
25 K,3–5 and towards the zero-pressure limit �see predictions
compared with experimental data in Ref. 6�. The fulfillment
of Cauchy’s equality is used as an indicator of the suitability
of pair additive potentials to model the solids.7 The findings
cited from empirical calculations are consistent with a his-
tory of theoretical approaches: namely, models of the RGS
lattice dynamics based on sums of pair potentials, often of
the Lennard-Jones �LJ� type,8 to represent the potential of the
solid.1,6,9–12 Thus theoretical studies of the RGS’s have fo-
cused on the development of realistic pair potentials, as
well as on the evaluation of corrections by many-body
interactions, multiple neighbors, and anharmonic effects.

The homology of the RGS’s has also been investigated
from the analysis of their phonon spectra as well as from the
study of their thermodynamics variables.1,13 Such homology,

which holds in the case of argon, krypton, and xenon, justi-
fies the use of a common model for the solid state of these
systems. Quantum effects become important for solid Ne and
are necessary to describe solid He. The thermodynamic prop-
erties of the RGS’s have thus been calculated by Monte
Carlo and molecular dynamics simulations using LJ poten-
tials as well as other sophisticated pair potentials, often pa-
rametrized empirically.12,14–18 For example, specific heats at
constant volume for argon, determined by Monte Carlo and
molecular dynamics calculations, showed reasonable agree-
ment with experimental data at temperatures in the range
20–90 K.14,15 Those calculations were based on models of
the fcc lattice with only 108 particles, using the Wigner-
Kirkwood expansion of the free energy. Such predictions of
the specific heat reported in the literature show discrepancies
which are sensitive upon the methodologies used.1,14,15 How-
ever, for a given method there seems to be less sensitivity to
the choice of two-body potentials. This case is illustrated by
the specific heats of argon calculated by Asger and Usnami,14

where no significant differences could be found by using
either LJ or Aziz19 potentials. However, the responses to the
effects here considered have been found to be variable
depending upon the property.

Anharmonic effects tend to be important for quantities
like phonons and specific heats of RGS’s at higher
temperatures2,11,18 and pressures,6 and when considering
quantum solids like Ne or He. On the other hand, many
body effects of third or higher orders are more difficult to
investigate due to the computational cost and the challenges
to obtain an accurate description of these interactions.6,15,20

However, where attempts to evaluate the contributions
of three-body forces have been made, these forces have
turned out to be negligible at low pressures, particularly in
calculations of the specific heat.15

In a previous work we used ab initio many-body interac-
tion expansions to study the RGS crystal lattices.6 We found
that the many-body expansion converges rapidly at distances
higher than the hard-sphere radius, so that we can accurately
predict lattice parameters and cohesive energies using only
two-body terms. These two-body potentials were constructed
by fitting pointwise ab initio calculations for the diatomics of
Kr, Ar, Ne, and He to an extension of the LJ formula. In this
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paper the RGS lattice dynamics is further studied using the
extended LJ ab initio pair potentials mentioned above for
Ne, Ar, and Kr. We calculate the harmonic phonon spectra by
diagonalization of the dynamic matrix for an fcc cluster in
reciprocal space and then use these phonon frequencies to
obtain the specific heat of the lattices. This constitutes a
complete first-principles calculation of the lattice dynamics
for the RGS’s. We compare the results with analogous ones
obtained using other empirical potentials as well as with
available experimental data.

II. METHOD

The potential energy for the lattices is expressed as a sum
of two-body interatomic potentials V�2��r� as described in our
previous paper,6 which were obtained from accurate ab initio
energies for the systems He2,21 Ne2,22 Ar2,21 and Kr2.23 The
data points for those potential curves were fitted to an
extended LJ-type �ELJ-type� potential

V�2��rij� = �
k=1

n

c2k+4rij
−2k−4 �1�

by a linear-least squares procedure. rij is the internuclear
distance between atoms i and j. The fitting parameters c2k+4
are given in Ref. 6. Phonon frequencies and branches along
certain directions of space were calculated, within the har-
monic approximation, for fcc clusters of 8589 atoms for Ne,
Ar, and Kr. It was shown previously that for such cluster
sizes the phonon branches are converged out to high
accuracy.20 The dynamic matrices were constructed and di-
agonalized in reciprocal space, using a grid of k points ho-
mogeneous in the Brillouin zone. To calculate the phonon
branches we implemented the two-body potentials in the
code developed by Rosciszewski et al.,20 and then interfaced
it with the solid-state code SAMBA.24 The latter sorts the pho-
non frequencies to produce a frequency distribution g���
used to calculate the temperature dependences of the specific
heat at zero pressure. The specific heat at constant volume
was thus evaluated by summing over all phonon frequencies
according to the well-known expression

Cv�T� =
R

N
�
i=1

3N ���i

kBT
�2 e��i/kBT

�e��i/kBT − 1�2

= 3R�
0

�max

d�g���� ��/2kBT

sinh���/2kBT��2

, �2�

where N is the number of atoms which yields 3N phonon
frequencies �i, T the temperature, kB the Boltzmann con-
stant, and NAkB=R with NA being Avogadro’s number. The
calculations are also performed using the empirical two-body
potentials of LJ �Ref. 25� and HFD-B �derived from repul-
sive Hartree-Fock plus dispersion using low temperature sec-
ond virial data, see Refs. 19 and 26–28� for comparison.

III. RESULTS AND DISCUSSION

Figure 1 shows the phonon dispersion curves for neon,
argon, and krypton. Most of the previous calculations of

phonon dispersion curves have been performed for solid ar-
gon, using potentials parametrized empirically. Unlike in this
paper, the main pursuit of these studies had been the tem-
perature dependences of the phonons, particularly near
melting.1,9,11 However, they have also produced phonon fre-
quencies in agreement with the observed values near 0 K.
The quasiharmonic and the self-consistent harmonic approxi-

FIG. 1. From the top to the bottom: phonon dispersion of neon,
argon, and krypton obtained from two-body potentials �see text�.
Experimental data from Refs. 3–5 are represented with a star point
type.
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mations, with several corrections, have been used along with
empirical pair potentials like the LJ, the Bobetic-Barker,12

the Azis-Chen, and variants such as the HFD-B developed by
Aziz and co-workers.19,26–28 The contribution of three-body
forces has also been considered through Axilrod-Teller-Muto
terms.9

Figure 1 shows that the three types of two-body potentials
chosen �LJ, HFD-B, and ab initio ELJ� predict phonon
branches with slight discrepancies between them, which are
at most of 8% in the case of Kr and 4% in the cases of argon
and neon. When comparing the predicted and the experimen-
tally measured phonons, the ab initio ELJ potential gives the
closest results for neon and the most deviated for krypton.
This is expected as very accurate ab initio potential curves
are available for the light elements like helium or neon. To
include electron correlation and relativistic effects �including
spin-orbit interactions� becomes increasingly more difficult
for the heavier rare gases, resulting in larger discrepancies in
the ab initio Kr2 potential by Tao.23 The largest differences
between the phonon frequencies produced by the ELJ poten-
tial and the experimental values amount to 14% in the case
of neon and 9% in the cases of argon and krypton. As a
reference, the largest experimental uncertainties in the pho-
non energies are 7.1% in the case of neon at 6.5 K,5 3.2% for
argon at 10 K,4 and 6.3% for krypton at 10 K.3

Taking the predicted phonon frequencies as a criterion,
the ab initio potentials perform as good as the pair potentials
parametrized empirically, except for Kr. The model used here
underestimates the phonon frequencies, and a more precise
treatment requires the inclusion of three-body forces �espe-
cially for the heavier rare gases� and anharmonicity effects
�especially for the lighter rare gases�. Also, the largest dis-
crepancies between the predictions based on the various
types of two bodies occur for the longitudinal branches at
high values of the reduced wave number q. As pointed out by
Glyde and Smoes,9 the LJ potential performed very well in
the prediction of the phonons close to 0 K, and some pair
potentials turned out to be indistinguishable with regard to
the predicted phonon frequencies at low temperature. How-
ever, clear differences appeared when considering higher
temperatures and temperature dependences. The same au-
thors also concluded that the longitudinal branches are more
sensitive to variations in the methodology and particularly to
the inclusion of three-body forces.9

Figure 2 shows the temperature dependence of the
constant-volume specific heat for neon, argon, and krypton.
The experimental values at low T are based on the phonon
densities calculated from the spectra and extrapolated to 0 K.
These specific heats are compared with the experimental data
available for the RGS’s between 0 K and temperatures close
to the melting point. Once again, the choice of pair potential
does not represent significant variations, although the Cv�T�
curve predicted for krypton with the ELJ potential clearly
diverges from the calculated with the empirical LJ and the
HFD-B potentials for the reasons mentioned above. The
Cv�T� curve corresponding to the ELJ potential is always
below those of the empirical potentials, and the largest dif-
ferences between the predicted curves are approximately
11% around 10 K. The predicted Cv�T� curves for argon are
all very similar, with discrepancies of 2% or less in the range

of temperatures considered, which are mostly associated
with the HFD-B potential.

Comparison of the predicted Cv�T� curves with the
smoothed experimental data for solid argon and krypton de-
termined by Finegold and Phillips33 reveals excellent agree-
ment for argon and small discrepancies �of less than
1 J mol−1 K−1� for krypton. Interestingly, the closest agree-
ment with the experimental curve for krypton is obtained
using the ELJ potential, which might be due to error com-
pensation. The Cv�T� curves predicted here for neon differ
from the experimental ones29,30 more than for the other
RGS’s. The predicted specific heats for neon overestimate
the experimental values over the range of temperatures con-
sidered by �2 J mol−1 K−1 or less�, and the best prediction is
obtained using the ELJ potential. It is important to note that
the experimental uncertainties amount to ±1.6 J mol−1 K−1�
in the specific heats of neon reported by Batchelder et al.,29

and 2% in the smoothed values by Fenichel and Serin.30 The
larger discrepancies from experiment found here for the spe-
cific heats of neon in comparison with argon and krypton are
expected considering the increasing importance of anhar-
monic effects in the solid state of the lighter rare gases which
we have not taken into account.

Other predictions of the specific heat already reported re-
sorted heavily to empirical pair potentials and proceeded
through the calculation of the free energy of the solid. Sev-
eral approximations based on the self-consistent phonon
theories were tried, mainly for argon, with a focus on ranges
of higher temperatures. However, even in this scenario where
the theories were expected to perform best, reasonable agree-
ment with experiment was difficult to achieve �see Ref. 31
and references cited therein�. Computer simulation tech-
niques such as Monte Carlo and molecular dynamics have
also been applied in order to calculate the temperature de-
pendences of the specific heat for argon, concentrating as
well on higher-temperature ranges,1,14–16 attaining reason-
ably good agreement with experimental curves. As relevant
to the discussion of our work Asger and Usnami14 found very
similar the performances of the LJ and sophisticated empiri-
cal pair potentials in the prediction of the Cv�T� curves of
argon, while some discrepancies between analogous predic-
tions for the case of neon. They also observed more discrep-
ancy between the predicted and the experimental curves for
neon than for argon. However, our specific heat curves are
the closest to experiment in the low-temperature region
reported so far.

Finally we compare the Cv�T� curves for argon for the
three different approximations in Fig. 3, the Einstein ap-
proximation where only one atom is moved in the field of all
other atoms 	N=1 in Eq. �2�
, the Debye approximation

Cv
Debye�T� = 9R� T

�D
�3�

0

�D/T

dx
x4ex

�ex − 1�2 , �3�

where �D is the Debye temperature, and our more concise
treatment including all phonon frequencies and using the
ELJ potential. The calculated Einstein frequency of
50.7 cm−1 from Ref. 6 and the experimentally derived Debye
temperature of �D=91.8 K from Refs. 1 and 2 is taken.
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Figure 3 shows that neither the Einstein nor the Debye
approximation works particularly well for the whole
temperature range.

The low-temperature behavior in Fig. 2 shows an interest-
ing anomaly. If we take the well-known low-temperature
approximation

Cv�T� = aT3 with a =
12�4R

5�D
3 , �4�

we obtain for the constant a from our calculations using
the ELJ potential �in J mol−1 K−4� 6.04�10−3 for Ne,

FIG. 2. From the top to the bottom: specific heat of neon, argon, and krypton. From the left to the right: high- and low-temperature region
of the specific heat. Experimental data: for neon, exp 1 from Ref. 29 and exp 2 from Ref. 30; for argon, exp 1 from Ref. 31, exp 2 from Ref.
32, and exp 3 from Ref. 33; for krypton, exp 1 from Ref. 34 and exp 2 from Ref. 33.
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2.59�10−3 for Ar, and 5.28�10−3 for Kr. From the experi-
mental data �see Fig. 2� we obtain 4.02�10−3 for Ne, 2.52
�10−3 for Ar, and 5.32�10−3 for Kr. Except for Ne we are
in good agreement with experiment. According to Eq. �4�
this distinct anomaly in the trend down the group of rare
gases is also reflected in the Debye temperature. From our
calculations we get 68.5 K for Ne, 90.8 K for Ar, and 71.6 K
for Kr. This compares well with experiment where we have
75.1 K for Ne, 91.8 K for Ar, and 72.5 K for Kr in the low-
temperature limit.1,2 Hence, the data do not show a mono-
tonic decrease in the Debye temperature if we go down the
group of rare gases in the periodic table as we expect from
the increasing mass. We try to explain this anomaly using the
LJ ansatz,8 which is known to work reasonably well for the
rare gases.36

From a LJ potential

V�r� = − c6r−6 + c12r
−12, �5�

where c6 ,c12�0 we obtain for the potential of a Bravais
lattice �see Ref. 6�

Vs�R� = − L6c6R−6 + L12c12R
−12, �6�

where the Ln coefficients are the Lennard-Jones-Ingham
parameters.35 r is the distance in the diatomic rare gas and R
the nearest-neighbor distance in the solid �fcc in our case�.
We define the dissociation energy De, cohesive energy Ecoh,
force constant of the diatomic rare gas ke, and symmetric
solid-state force constant fe

s as

De = − V�re�, Ecoh = − Vs�Re�, ke = � �2V�r�
�2r

�
re

, �7�

fe
s = � �2Vs�R�

�2R
�

Re

,

where re and Re are the equilibrium distances of the diatomic
and solid, respectively. After some algebraic manipulations
we obtain

fe
s =

1

2
L6

7/3L12
−4/3ke. �8�

We now argue the following way. fe
s is the force it takes to

expand symmetrically the solid—that is, changing all
nearest-neighbor distances to Re+	R. In a molecule this re-
lates to the symmetric stretching mode and is characterized
by largest frequency of the coupled stretching modes. Simi-
larly we argue that fe

s is related to the maximum phonon
frequency; that is, we have �max=�fe

s /
 where 
 is the re-
duced mass of this mode. Furthermore, from previous studies
we know that �max
3�E /2, where �E is the Einstein fre-
quency. Using the Lennard-Jones-Ingham parameters for the
fcc lattice in Ref. 6 we get �E
2�e. As the Debye frequency
�D��E and kB�D=��D we get �D��e. Indeed, the vibra-
tional harmonic frequencies for the dimers show the same
anomaly; i.e., �e is 13.7 cm−1 for Ne2, 25.7 cm−1 for Ar2,
24.2 cm−1 for Kr2, 21.1 cm−1 for Xe2, and 17.3 cm−1 for
Rn2.37 Here we take Xe and Rn for comparison, the latter
taken from relativistic coupled cluster calculations by
Runeberg and Pyykkö.38 Converting these into force con-
stants ke we get �in N m−1� 0.11 for Ne2, 0.78 for Ar2, 1.45
for Kr2, 1.71 for Xe2, and 1.96 for Rn2. Hence the force
constants increase monotonically with increasing atomic
number, as are the reduced masses. It is therefore the rather
small force constant for the Ne-Ne interaction which causes
this anomaly. From argon onwards the trend is dominated by
the increasing mass of the rare gase atoms.

This effect seems to propagate into the solid state as it is
also observed in the corresponding Debye temperatures.

FIG. 4. Debye temperature versus the diatomic harmonic vibra-
tional frequencies from Ne to Xe �see text for details�.

FIG. 3. Specific heat of argon in three different approximations
�see text�. Experimental values exp 2 from.32
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Figure 4 shows a plot of the experimentally determined De-
bye temperatures from the solid state1,2 against the harmonic
vibrational frequencies of the rare gas dimers.37 It clearly
shows that Ne is not following the linear regression found
for the heavier rare gases. This is due to the strong anharmo-
nicity effects in both solid Ne and Ne2. Furthermore, many-
body effects in the interaction potential become more impor-
tant in the heavier rare gas systems. We note that a much
smoother trend is found between the dissociation energies De
of the rare gas diatomics and the cohesive energies Ecoh of
the solids.38 Extrapolating to the �e=17.3 cm−1 for Rn we
obtain a Debye temperature of 36 K for solid Rn. This is
much lower compared to the 90 K value empirically
predicted by Kazragis, Surotkevicius, and Liksiene.39

IV. CONCLUDING REMARKS

Results from lattice dynamic calculations which produced
the phonon branches for fcc Ne, Ar, and Kr showed good

agreement for constant-volume specific heat calculations
with experimental data. Further work on the evaluation of
many-body effects, anharmonic corrections, and more
precise potentials for the heavier rare gases is required to
produce more accurate results, which is part of our future
investigation. The calculations of three-body effects will be
expensive in computer time, and we expect the results to
cause only minor changes at low pressures, in agreement
with our previous study.6 We established a useful relationship
between the harmonic vibrational frequency of the rare gas
dimer and the Einstein frequency of the solid, which may be
used only if three- or higher-body forces and anharmonicity
effects are negligible.

ACKNOWLEDGMENT

Support by the Marsden Fund �Wellington� is gratefully
acknowledged.

*Electronic address: p.a.schwerdtfeger@massey.ac.nz
†Also at the Institute of Physics, Jagellonian University, Reymonta

4, Pl 30-059 Krakow, Poland.
1 M. L. Klein and J. A. Venables, Rare Gas Solids �Academic

Press, London, 1976�, Vol. 1.
2 S. O. Feodosyev, I. A. Gospodarev, V. O. Kruglov, and E. V.

Manzhelii, J. Low Temp. Phys. 139, 651 �2005�.
3 J. Skalyo, Y. Endoh, and G. Shirane, Phys. Rev. B 9, 1797

�1974�.
4 Y. Fujii, N. A. Lurie, R. Pynn, and G. Shirane, Phys. Rev. B 10,

3647 �1974�.
5 Y. Endoh, G. Shirane, and J. Skalyo, Phys. Rev. B 11, 1681

�1975�.
6 P. Schwerdtfeger, N. Gaston, R. P. Krawczyk, R. Tonner, and G.

E. Moyano, Phys. Rev. B 73, 064112 �2006�.
7 H. Cox, R. L. Johnston, and J. Murrell, J. Solid State Chem. 145,

517 �1999�.
8 J. E. Jones, Proc. R. Soc. London, Ser. A 106, 709 �1924�.
9 H. R. Glyde and M. G. Smoes, Phys. Rev. B 22, 6391 �1980�.

10 A. I. Karasevskii and W. B. Holzapfel, Phys. Rev. B 67, 224301
�2003�.

11 E. R. Cowley and G. K. Horton, Phys. Rev. Lett. 58, 789 �1987�.
12 M. V. Bobetic and J. A. Barker, Phys. Rev. B 28, 7317 �1983�.
13 V. Ramamurthy and S. B. Rajendraprasad, J. Chem. Phys. 83,

3590 �1985�.
14 M. Asger and Q. N. Usmani, Physica B 271, 104 �1999�.
15 J. A. Barker and M. L. Klein, Phys. Rev. B 7, 4707 �1973�.
16 M. L. Klein, T. R. Koehler, and R. L. Gray, Phys. Rev. B 7, 1571

�1973�.
17 N. S. Gillis, N. R. Werhamer, and T. R. Koehler, Phys. Rev. 165,

951 �1968�.
18 R. Ramirez and C. P. Herrero, Phys. Rev. B 72, 024303 �2005�.
19 R. A. Aziz and M. J. Slaman, Chem. Phys. 130, 187 �1989�.
20 K. Rosciszewski, B. Paulus, P. Fulde, and H. Stoll, Phys. Rev. B

62, 5482 �2000�.

21 S. M. Cybulski and R. R. Toczylowski, J. Chem. Phys. 111,
10520 �1999�.

22 R. Specchio, A. Famulari, and M. Raimondi, J. Mol. Struct.:
THEOCHEM 549, 77 �2001�.

23 F. M. Tao, J. Chem. Phys. 111, 2407 �1999�.
24 P. Schwerdtfeger, computer code SAMBA, Massey University,

Auckland, 2006.
25 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular

Theory of Gases and Liquids �Wiley, New York, 1964�.
26 R. A. Aziz and M. J. Slaman, J. Chem. Phys. 92, 1030 �1990�.
27 A. K. Dham, A. R. Allmat, W. J. Meath, and R. A. Aziz, Mol.

Phys. 67, 1291 �1989�.
28 A. K. Dham, W. J. Meath, A. R. Allmat, and R. A. Aziz, Chem.

Phys. 142, 173 �1990�.
29 D. N. Batchelder, D. L. Losee, and R. O. Simmons, Phys. Rev.

162, 767 �1967�.
30 H. Fenichel and B. Serin, Phys. Rev. 142, 490 �1966�.
31 F. Haenssler, K. Gamper, and B. Serin, J. Low Temp. Phys. 3, 23

�1970�.
32 O. G. Peterson, D. N. Batchelder, and R. O. Simmons, Phys. Rev.

150, 703 �1966�.
33 L. Finegold and N. E. Phillips, Phys. Rev. 177, 1383 �1969�.
34 D. L. Losee and R. O. Simmons, Phys. Rev. 172, 944 �1968�.
35 J. E. Lennard-Jones and A. E. Ingham, Proc. R. Soc. London, Ser.

A 107, 636 �1925�.
36 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Thomson

Learning, Toronto, 1976�.
37 K. P. Huber and G. Herzberg, Molecular Spectra and Molecular

Structure �Van Nostrand, New York, 1979�, Vol. VI.
38 N. Runeberg and P. Pyykkö, Int. J. Quantum Chem. 66, 131

�1998�.
39 A. Kazragis, E. F. Surotkevicius, and R. Liksiene, Sb. Tr. Vses.

Nauch.-Issled. Inst. Teplorzol. Akust. Stroit. Mater. Izdelii 183
�1972�.

MOYANO, SCHWERDTFEGER, AND ROSCISZEWSKI PHYSICAL REVIEW B 75, 024101 �2007�

024101-6


