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We study numerically the overdamped motion of particles driven in a two-dimensional ratchet potential. In
the proposed design, of the so-called geometrical-ratchet type, the mean velocity of a single particle in
response to a constant force has a transverse component that can be induced by the presence of thermal or other
unbiased fluctuations. We find that additional quenched disorder can strongly enhance the transverse drift at
low temperatures, in spite of reducing the transverse mobility. We show that, under general conditions, the
rectified transverse velocity of a driven particle fluid is equivalent to the response of a one-dimensional flashing
ratchet working at a drive-dependent effective temperature, defined through generalized Einstein relations.
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The idea of generating a directed dissipative transport in a
system kept out of thermal equilibrium only by unbiased
perturbations has motivated an outburst of experimental and
theoretical works in the last years. The ratchet effect is in-
deed of interest, for both applications and modeling, in very
diverse systems, ranging from biological motors,1 colloidal
matter,2 granular matter,3 vortex matter in superconductors,4

Josephson junction arrays,5 atoms in optical traps,6 and elec-
trons in semiconductor heterostructures7 to gambling
games.8 One of the simplest models is the “flashing ratchet,”
where a directed motion of a Brownian particle �i.e., break-
ing of the detailed balance condition� is obtained by coupling
it to a pulsating asymmetric-periodic potential. The identifi-
cation of the essential physical ingredients for the effect
shows that a large variety of ratchets and rectification mecha-
nisms can be realized.9

Recently, there has been a growing interest in the so-
called geometrical ratchets since they can be used as con-
tinuous “molecular sieves” to separate particles experimen-
tally �such as macromolecules or mesoscopic objects�,
according to their physical properties. These devices are
typically two-dimensional systems containing a periodic ar-
ray of asymmetric obstacles. By driving the particles through
the array an average lateral drift appears, as transverse diffu-
sive motion is rectified by collisions with the asymmetric
obstacles. Different types of geometrical ratchets have been
analyzed in the literature, both experimentally10 and
theoretically.11 The effect of additional quenched disorder in
these two-dimensional systems has not been discussed yet,
though interesting anomalous transport properties of one-
dimensional disordered ratchet systems were reported.12

Such a study is not only relevant for applications where dis-
order cannot be avoided, but it is also an interesting and
challenging issue. The driven motion of particles in a disor-
dered substrate yields a nontrivial hydrodynamics. The
current-driven motion of vortices in type-II superconductors
is a prominent example, where disorder, apart from reducing
dissipation, is responsible for marked nonequilibrium trans-
port and magnetic properties.13 On the other hand, already
the simpler case of driven noninteracting Brownian particles
in two dimensions has displayed complex phenomena. While
diffusion is anomalous at equilibrium,14 under a finite drive
diffusion becomes normal in the comoving frame, with an-
isotropic and velocity-dependent diffusion constants and

mobilities.15 Moreover, a disordered substrate can provide
alone a local or global ratchet effect, such as the generation
of large-scale vorticity in the probability current by driving
particles with a uniform alternate drive16 and the net directed
motion produced by driving the particles with crossed ac
drives.17

In this paper we investigate the effect of quenched disor-
der in a simple geometrical ratchet design under a uniform
and constant driving force. We find that disorder can strongly
enhance the transverse drift at low temperatures both for
noninteracting and interacting particles, thus improving the
performance of the device for applications. We show that the
transverse velocity of a driven fluid is equivalent to the re-
sponse of a one-dimensional flashing ratchet working at a
drive-dependent effective temperature, defined through gen-
eralized fluctuation-dissipation relations.

Let us consider the overdamped motion of particles in a
two-dimensional �2D� potential like the one depicted in Fig.
1. The equation of motion of a particle in position Ri is

�
dRi

dt
= − �i��

j�i

V�Rij� + U�Ri�� + F + �i�t� , �1�

where Rij = �Ri−R j� is the distance between particles i
and j, Rip is the distance between the particle i and a site at
Rp, � is the friction, and F=Fyŷ is the driving force. The
effect of a thermal bath at temperature T is given by the

stochastic force �i�t�, satisfying ��i
��t��=0 and ��i

��t�� j
���t���

=2�kBT��t− t���ij����, where �¯� denotes the average
over the ensemble of �i. For concreteness we consider a
logarithmic repulsive particle-particle interaction
V�r�=−Av ln�r� which corresponds, for instance, to the
vortex-vortex interaction in 2D thin-film superconductors.19

Particles interact with the quenched potential U�R�
=UR�R�+Up�R�. UR is a ratchet potential with the
form UR�R�= a

2�FR�Y�GR�X�, where X	R · x̂, Y 	R · ŷ,
GR�X�=sin�2�X /a�+0.25 sin�4�X /a�, and FR�y�
=U0 cos�2�y /b��
cos�2�y /b��, with � the Heaviside func-
tion. This ratchet potential is similar to a periodic array of
obstacles, asymmetrical around the x axis but symmetrical
around the y axis, as the ones considered in Ref. 11. Disorder
is short-range correlated, and it is modeled as a random dis-
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tribution of centers such that Up�Ri�=�pApe−�Rip / rp�2
, where

Rip= �Ri−Rp� is the distance between particle i and a center
at Rp. Centers can be either attractive Ap�0 �wells� or re-
pulsive Ap	0 �humps� or a combination of both. We solve
Eq. �1� numerically by using the method of Ref. 18. Length
is normalized by rp, energy by 2Ap, and time by 

=�rp

2 / �2Ap�. We consider N=60 particles and Np pinning
centers in a rectangular box of size Lx�Ly and periodic
boundary conditions, with Ly =100, Lx=20�3Ly, b=33, and
a=20. We average calculated properties over 500 disorder
realizations.

We start by discussing the simplest case of noninteracting
particles, Av=0, without disorder, Np=0, and with a ratchet
potential of amplitude U0=1. The dashed lines of Fig. 2�a�
show the transverse drift rate V	� 1

N�i
dXi

dt
� at T=0.05 as a

function of the longitudinal velocity Vy 	� 1
N�i

dYi

dt
�. We see

that the transverse velocity V increases from zero, has a
maximun V0.0075 at Vy 0.5, and decays to zero at large
longitudinal velocity. Since V=0 at T=0, the average di-
rected transverse motion observed is induced by the thermal
noise. This rectification effect is easy to understand, and Fig.
1�b� illustrates the mechanism, where the transverse diffu-
sion constant is D=2T if there is no disorder or interparticle
interactions. For our discussion it is useful to make explicit
the connection between the type of response shown in
Fig. 2�a� and the one of a flashing ratchet. If Fy is large,
the mean velocity in the driven direction, Vy 	� dY

dt
�, is

Vy Fy −O�Fy
−1� and longitudinal fluctuations are much

smaller 
by a factor of O�Fy
−1�� than transverse fluctuations.15

At T=0, the equation of motion for the coordinate X of a
particle located at R=Xx̂+Yx̂ can be thus written as

dX

dt
� − FR�Vyt�GR��X� . �2�

Since FR�Vyt�=U0 cos�2�Vyt /b��
cos�2�Vyt /b��, X feels
the ratchet potential GR�X� switching on and off periodically
with time periods 
on=
off=b /2Vy. At small drives the
mechanism is the same although 
on becomes increasingly
larger than 
off since the wells of UR�X ,Y� delay the motion
in the y direction �see Fig. 1�. The mapping to a flashing
ratchet explains the observed directed transverse motion with
V	0 when T	0 and can be thus used as an effective model
to explain all the features of the response shown in Fig. 2�a�.

The effect discussed so far is similar to the one described
in Ref. 11. Let us now add disorder by putting Np=2000
randomly located pinning sites. The resulting response is
shown in Fig. 2�a� �symbols�. As we can see, disorder
strongly enhances the rectification at intermediate and large
longitudinal velocities and also broadens the range of Vy
where the response is appreciable with respect to the clean
case. In addition, we find that at intermediate and large Vy, V
is finite even in the T=0 limit, since disorder induces trans-
verse diffusion when Vy 	0, even in the absence of thermal
fluctuations.

Finally, let us now turn on the repulsive interaction be-
tween particles. In Fig. 2�b� we show V as a function of Vy
for different values of the repulsion strength Av. In the inset
of Fig. 2�b� we see that the maximun response Vmax is almost

FIG. 1. �Color online� �a� Ratchet potential with disorder. �b� Schematics of the transverse rectification mechanism �top view�. Particles
move with an average velocity Vy in the direction of the applied force Fy. In the white regions the interaction with the �attractive or
repulsive� centers and with the thermal bath induces diffusion in the nondriven direction. In the shaded regions a periodic-asymmetric
potential tends to localize particles at its minima. An average transverse shift �see circles� is produced at a rate V.

FIG. 2. Transverse velocity V vs longitudinal velocity Vy. �a�
Symbols correspond to the disordered system at T=0.05, the dashed
line to the clean system at T=0.05, and the solid line to the clean
system at an effective temperature Teff�Vy ,T�. �b� V vs Vy for dif-
ferent interaction strengths Av: Av=0.05 ���, Av=0.2 ���, Av=0.5
���, Av=1 ���, Av=2 ���, and Av=5 ���. ��� symbols correspond
to purely attractive pinning centers, with Ap=−0.5, at T=0.05. In-
set: maximun rectification as a function of Av.
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constant with Av up to values Av0.2 where a slow decay
starts, but it is larger than the response of the noninteracting
clean system up to Av=2. The decay of the response at large
Av is explained by the decrease of transverse wandering due
to increasingly correlated collective motion.19 This effect is,
however, stronger in the absence of disorder. In Fig. 2�b� we
show that the response for purely attractive pinning centers,
Ap=−1, is smaller than for repulsive centers, Ap	1, for
small values of Vy, but indistinguishable for larger values of
Vy. This is due to the fact that, at the density of centers
considered, attractive centers are more effective to pin par-
ticles than humps, since the latter can provide two-
dimensional pinning only by forming rare geometric traps.
However, at a density Np /LxLy 1/rp

2 all these differences
disappear completely.

In order to understand the rectification characteristics de-
scribed above it is instructive to study, separately, the motion
of particles in the purely disordered case without the ratchet
potential �i.e., U0=0�. For simplicity we consider only the
case of noninteracting particles, but we expect similar results
for interacting particles in the dynamical regimes where
transverse diffusion is nonzero.18,20 We analyze in detail the
nonequilibrium transverse fluctuations as a function of Fy,
since they affect directly the rectification in the presence of
the ratchet potential. Following Ref. 18 we define the

observables O�t�= 1
Nv

�i=1
Nv siXi�t� and Õ�t�=�i=1

Nv siXi�t�, where
si=−1,1 are random numbers with si=0 and sisj =�ij. The
quadratic mean displacement can be written as �t , t0�
	 1

Nv
�i=1

Nv ��Xi�t�−Xi�t0��2�=C�t , t�+C�t0 , t0�−2C�t , t0�, with

C�t , t0�= �O�t�Õ�t0��. The integrated response function � for
the observable O is obtained by applying a perturbative force
fi=�six̂ at time t0 and keeping it constant for all subsequent
times on each particle, ��t , t0�=lim�→0

1
� 
�O�t���− �O�t���=0�.

In the steady state �t , t0�=�t− t0� and ��t , t0�=��t− t0� and
in particular at equilibrium the fluctuation-dissipation theo-
rem �FDT� imposes ��t�=�t� /2T. When Fy 	0 the system
is out of equilibrium and the FDT does not hold. We will
show, however, that generalized fluctuation-dissipation rela-
tions can still be defined for our system. In the long-time
limit we find �t�Dt and ��t��t, thus allowing us to
define the transverse diffusion constant D and the transverse
mobility �. These two quantities depend on the longitudinal
driving force as shown in Fig. 3�b�. D is nonmonotonic, has
a peak at Fy 1.5, and decays approximately as a power law
towards the equilibrium value without disorder, 2T, for large
forces. This behavior can be understood by considering the
effective transverse random walk induced only by collisions
with the pinning centers at T=0, and by simple heuristic
arguments it is possible to find the asymptotic forms
Dnprp

3Vy at small Vy and DnprpAp
2 /Vy at large Vy,

15 in-
dicated in Fig. 3�b�. At large Fy the transverse mobility �
approaches the equilibrium value without disorder, �=1 �in-
dependent of T�. At small Fy, � decreases due to trapping
and its value at the limit Fy→0 is controlled by T. In the
inset of Fig. 3�c� we show the parametric plot of ��t� vs
�t� /2T for Fy =0 �equilibrium� and Fy =4.0 �out of equilib-
rium�. We see that the equilibrium FDT holds for Fy =0 as
expected. For Fy =4.0 �and in general for Fy 	0� we observe

instead that the FDT holds only at very short time scales,
t�rp /Vy, but it is violated at long times. The type of viola-
tion observed can be quantified using the notion of time-
scale-dependent “effective temperatures” introduced by
Cugliandolo, Kurchan, and Peliti.21 Following Ref. 18 we
define a velocity-dependent transverse effective temperature
Teff from the slope shown in the inset of Fig. 3�c�. At long
times this implies the generalized Einstein relation
TeffD /2� in the nondriven direction. In Fig. 3�c� we see
that Teff follows closely D except at low forces where �
decreases towards the value �0.5 at very low forces. For
interacting particles similar results for Teff were obtained at
low and intermediate forces in the plastic and smectic re-
gimes of motion.19 At large forces and small temperatures,
however, the formation of pinned rough channels for particle
motion13 leads to a transverse freezing of the moving vortex
fluid19 at T=0. At this dynamical transition D and � are
strongly reduced and vanish at T=0 strictly.15,18

The fluctuating motion in a purely disordered substrate
and the connection between the response of a geometrical
and a flashing ratchet discussed above motivate a simple
model that can be used to describe the rectification response
of the disordered geometrical ratchet. We propose the follow-
ing equation for the transverse motion of noninteracting par-
ticles:

1

��Vy�
dXi

dt
� − FR�Vyt�GR��Xi� + �eff

i �t� , �3�

where we have replaced YiVyt as before, the pinning force
by an effective thermal noise �eff

i �t�, and the bare mobility by

FIG. 3. Motion in a purely disordered potential. �a� Transverse
diffusion constant D and mobility �. Dashed and solid lines indi-
cate asymptotic forms of D. �b� Effective temperature TeffD /2�.
The dash-dotted line indicates the bath temperature T=0.05. The
inset shows that Teff satisfies a generalized fluctuation-dissipation
relation between the integrated response ��t� and the quadratic
mean displacement �t�. The dashed line corresponds to the equi-
librium fluctuation-dissipation relation, valid only at short times
t�� /Vy. Upper symbols correspond to Fy =0.0 and lower
symbols to Fy =4.0.
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��Vy�. We use that ��eff
i �t��=0 and ��eff

i �t��eff
j �t���

= 
2Teff�Vy� /��Vy����t− t���ij where Teff�T ,Vy� and ��T ,Vy�
are the ones shown in Fig. 3�a�. Equation �3� therefore mod-
els transverse motion in a coarse-grained way �in time and
space�, satisfying the generalized fluctuation-dissipation re-
lation shown in the inset of Fig. 3�b� �in the absence of the
ratchet potential�. By construction, the assumptions of the
model are that �i� transverse forces are small compared with
the longitudinal drive Fy and �ii� the particle motion is inco-
herent at the length scales of the ratchet potential. In Fig.
2�a� we see that the transverse drift generated by this model
is close to the one of the full model for the parameters ana-
lyzed in this paper, which assure that the particle has many
independent collisions with the pinning centers between the
rectifying regions. The rectification characteristics of the
two-dimensional geometrical ratchet are therefore well de-
scribed by the one-dimensional flashing ratchet described by
Eq. �3� working at the effective temperature Teff�T ,Vy� and
friction �−1�T ,Vy�, determined by the disorder and the lon-
gitudinal velocity. Using this model the enhancement of the
rectification observed in Fig. 2�a� can be simply attributed to
the fact that Teff	T, but with Teff still smaller than the opti-
mal temperature for rectification of the effective pulsating

ratchet. Equation �3� is also expected to work for interacting
particles by using the respective Teff�T ,Vy� and ��T ,Vy� ex-
cept at low T and large Fy where condition �ii� can be vio-
lated since particles become correlated over long times and
distances.20

In conclusion, we have studied numerically the effect of
quenched disorder in a geometrical ratchet. We find that dis-
order enhances the transverse-rectified velocity of a driven
fluid. If particle motion is incoherent at the scale of the
ratchet potential, the response can be simply described by a
one-dimensional flashing ratchet working at a disorder-
induced, drive-dependent effective mobility and temperature
Teff, satisfying generalized Einstein relations. This effect can
be used experimentally to enhance and control the perfor-
mance of geometrical ratchets at low temperatures, and con-
versely, it can be used as a “thermometer” to access Teff in
this kind of driven disordered systems.
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