
Comment on “London model for the levitation force between a horizontally oriented point
magnetic dipole and superconducting sphere”

D. Palaniappan*
Texas A&M University at Qatar, P.O. Box 5825, Doha, Qatar

�Received 1 July 2005; revised manuscript received 16 June 2006; published 3 January 2007�

The levitation force due to a horizontally oriented point magnetic dipole placed in front of a superconducting
sphere is calculated and is shown to be different from the result given recently by Coffey �Phys. Rev. B 65,
214524 �2002��. The present calculation for the levitation force is based on the formulas developed long ago
for an equivalent Neumann boundary value problem in hydrodynamics. The result derived here demonstrates
that the value of the levitation force for a horizontally oriented dipole lies between one-fourth and one-half the
value of the configuration with a radially oriented point dipole, thus providing upper and lower bounds for the
levitation force due to a tangentially oriented magnetic dipole.
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In Refs. 1 and 2 Coffey investigated the magnetic inter-
action between a horizontally oriented dipole and a super-
conducting sphere in the Meissner state within London
theory. By the use of spherical harmonics, Coffey solved the
Neumann problem for a perfectly diamagnetic sphere in the
presence of a point dipole of horizontally oriented moment
and extended the analysis to the case of nonvanishing pen-
etration depth governed by the vector London equation. The
levitation force is then extracted from the series solutions for
the magnetostatic scalar potentials in both cases. It is eluci-
dated in this comment that for a perfectly conducting dia-
magnetic sphere the problem can be solved in closed form
using the formulas developed for an equivalent mathematical
problem in hydrodynamics. More specifically, the relation-
ship between magnetostatics and hydrodynamics is utilized
here to derive the solution for an arbitrarily oriented mag-
netic dipole located in front of a superconducting sphere. The
levitation force acting on the superconducting sphere is com-
puted using a rather simple formula used earlier in hydrody-
namics. The calculation yields an expression for the vertical
component of the levitation or lifting force that is different
from the one given by Coffey. The difference is due to the
choice of the boundary condition used by Coffey, which is
not appropriate for a superconducting surface with zero pen-
etration depth.

We begin by mentioning the relationship between the
problem for a superconducting surface in magnetostatics and
the corresponding problem for the flow field around a bound-
ing surface in inviscid hydrodynamics. A perfectly supercon-
ducting surface is described by the boundary condition that
the magnetic field has no component that is normal to the
surface. The formulation in terms of a magnetostatic poten-
tial yields a Neumann boundary value problem for the super-
conducting surface placed in an inhomogeneous magnetic
field. An equivalent boundary value problem exists in invis-
cid hydrodynamics where consequences of the flow field of
an ideal fluid past an impermeable body are of interest.3,4

This simple5 analogy may be utilized to translate results from
hydrodynamics to magnetostatics and vice versa. It is worth-
while to mention that many of the practically important cases
have already been solved in hydrodynamics and by analogy
these results can be understood in magnetostatics, avoiding
unnecessary duplications.

Recently, much interest has been shown in the calculation
of levitation force between a point magnetic dipole and su-
perconducting surfaces.1,2,6,7 This requires the construction
of solutions to the magnetostatic potential due to a magnetic
dipole located in front of a superconducting plane or sphere.
For a superconducting sphere, a closed form analytic solu-
tion for the scalar potential was obtained in the case of a
dipole oriented vertically,6 while an infinite-series solution in
spherical harmonics was derived for the magnetic dipole ori-
ented horizontally.1,2 The results for the magnetic scalar po-
tential for the same problems were obtained earlier in Refs. 8
and 9 in the context of superconducting imaging. But the
corresponding results in the context of hydrodynamics have
been known for a long time.10–14 In fact, Weiss11 treated a
more general problem in magnetostatics and derived solu-
tions for a point dipole problem as a special case. It appears
that Neumann was the first to derive the solution for a mag-
netic source �monopole� located in front of a sphere, and
documented the results in an appendix of his book.15 Below,
we utilize the results in Ref. 11 and show that the expression
for levitation force due to a horizontally or tangentially ori-
ented point dipole calculated by Coffey1,2 is quite different
from ours. For the sake of completeness, we give here a
detailed account of the general solution for an arbitrarily ori-
ented magnetic point dipole located in front of the supercon-
ducting sphere and then discuss the special cases.

As in Refs. 1, 2, and 6 let the origin of coordinates be at
the center of a sphere of radius b. The field solution is sought
for the magnetostatic potential ��x� such that the magnetic
field is given by H=−�� and induction B=�0H. The Neu-
mann problem for the magnetic scalar potential is then

�2� = 0, �1�

��

�r
= 0 on r = b . �2�

Notice that condition �2� implies vanishing of the normal
component of the magnetic field at the surface of the sphere
r=b. Coffey1,2 used the condition that the magnetic field vec-
tor vanishes �that is, both tangential and normal components
of the magnetic field vanish� at the spherical surface r=b in
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the derivation of his solutions for point-magnetic-dipole–
sphere interaction problems. Below, we present a general so-
lution for the boundary value problem described by �1� and
�2� for an arbitrary magnetic potential applied externally.

Let �0 be the scalar potential of the unperturbed magnetic
field in the absence of the sphere. If the superconducting
sphere of radius b is introduced into the field of �0, then the
modified potential � is10,11

� = �0 + �1, �3�

where

�1 =
b

r
�0�b2

r
� −

b

r
�

0

1

�0� sb2

r
�ds . �4�

The expressions given in �3� and �4� can be used to find
solutions of �1� and �2� for various externally imposed po-
tentials in the presence of a superconducting sphere. For a
general magnetic dipole of moment M=M� +M� positioned
at a outside the sphere, the perturbed magnetostatic potential
is11

� =
M · �r − a�

	r − a	3
+ �b

a
�3�M · �r − �r2/b2�a�

	r − �b2/a2�a	3

− �
0

1 M · �sr − �r2/b2�a�
	r − �sb2/a2�a	3

ds� , �5�

where r is the position vector with 	r 	 =r. The integral in the
above expression can be evaluated and the resulting magne-
tostatic potential now reads

� =
�M� + M�� · �r − a�

	r − a	3

+ �b

a
�3� �M� − M�� · �r − �b2/a2�a�

	r − �b2/a2�a	3 �
−

M� · r

ba�r2 − �a · r/a�2��r −
r2 − �b2/a2��a · r�

	r − �b2/a2�a	 � . �6�

Note that the expression for the modified potential given in
�6� represents the general solution for an arbitrarily oriented
magnetic point dipole in the presence of a superconducting
sphere. The terms in the closed form expression �6� may be
interpreted as images inside the sphere. The image system
can be best understood by analyzing the radial �the vertical
case in Ref. 6� and tangential �the horizontal case in Refs. 1
and 2� initial dipole orientations separately.

�1� For the initial radial dipole �M�� the image system
consists of an image dipole at the Kelvin image point
�b2 /a2�a.

�2� For the tangentially oriented initial dipole �M�� the
image system consists of an image dipole at the Kelvin in-
verse point together with a distribution of magnetic dipoles
from the origin to the Kelvin’s image point.9,11

Thus, there is a fundamental difference in the image sys-
tems for radial and tangential dipole-sphere configurations.
The present image representation for point-dipole–sphere

configurations agree with those already given in Refs. 8 and
9. The image system for the radial case is also given in
Ref. 6.

Now the levitation force exerted by the dipole M on the
superconducting sphere is given by �see the end of the dis-
cussion for force calculations�

F = 4��0
b3

�b2 − a2�4
�6 − 4
b2

a2 +
b4

a4��M2 +
�M · a�2

a2 �a

−
1

2
�3 −

b2

a2��1 −
b2

a2���M · a�M + 3M2a�� . �7�

The force due to a radially and/or a tangentially oriented
dipole can be extracted from the above expression �7�. For
the radial dipole with strength 	M� 	 =m /4� located at a
= �0,0 ,a�, the levitation force �7� becomes

Fz� =
3�0m2

2�

b3a

�a2 − b2�4 , �8�

which is in agreement with the force derived in Ref. 6. In the
limit a2�b2, we have

Fz� →
3�0m2

2�

b3

a7 , �9�

while for close dipole-sphere separation, a−b=h�b, Eq. �8�
yields

Fz� =
3�0m2

32�h4 . �10�

The expressions �9� and �10� are simply those given in
Ref. 6.

For the tangential dipole of strength 	M� 	 =m /4� posi-
tioned on the z axis at a= �0,0 ,a�, the levitation force ex-
tracted from �7� is

Fz� =
�0m2

4�

b3a

�a2 − b2�4�3

2
+ 2

b2

a2 −
1

2

b4

a4� . �11�

We note that the functional form in �11� is much different
from that derived recently1,2 �see Eq. �20a� in the cited ref-
erences�. It is seen from Eqs. �8� and �11� that the levitation
force in the tangential case is not one-half of the levitation
force in the radial case �except in the limiting case for a half
space�. The plots of the normalized levitation force compo-
nents for the dipole oriented along the radial and tangential
directions, respectively, are depicted in Fig. 1. The plots
show that the levitation force for the tangentially oriented
dipole is less than the levitation force due to the radially
oriented dipole for all dipole-sphere separations. In the limit
a2�b2, we have

Fz� →
3�0m2

8�

b3

a7 . �12�

Again, the above result is in disagreement with the corre-
sponding result in Ref. 1. For close dipole-sphere separation,
a−b=h�b, Eq. �11� yields
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Fz� =
3�0m2

64�h4 . �13�

This result is the same as in Refs. 1, 2, and 7 and in this
limiting case �for a semi-infinite superconductor� the levita-
tion force is one-half the value of the configuration with a
radially �vertically� oriented point dipole.

From the present results for the levitation forces given in
Eqs. �8�–�13�, it may be conjectured that

Fz�

4
� Fz� �

Fz�

2
�14�

with the limiting values attained in the small and large
dipole-sphere separations, respectively. Equation �14� tells
that the value of the levitation force for a tangentially/
horizontally oriented dipole-sphere configuration lies be-
tween one fourth and one half the value of the configuration
with a radially/vertically oriented point dipole thus, provid-
ing the upper and lower bounds for the levitation force for
the tangentially oriented dipole-sphere configuration.

The corresponding correction should be made in the ex-
pression for the lift force given in Ref. 1 �Eq. �54�� using
London model. These corrected results are important in prac-
tice and must be taken into account while modeling magnetic
levitation and magnetic force microscopy. The present dis-
cussion may also be of interest in the context of current loop
dipole theory16 involving a pair of magnetic dipoles located
in the vicinity of a superconducting sphere.

The force in the general case given in Eq. �7� was calcu-
lated using a simple formula

F = �− �M · ����1�r=a, �15�

where �1 is found using �4�. It may be worthwhile to point
out that formula �15� can be used to compute the levitation

force in a fairly straightforward fashion. To see this, we first
record the explicit expressions for �1 in the two cases dis-
cussed here. For the radial dipole located at a= �0,0 ,a�, we
have

�1 = −
b3

a3

M��z − b2/a�
�x2 + y2 + �z − b2/a�2�3/2 , �16�

and for the transverse dipole along the x direction, �1 is

�1 =
b3

a3

M�x

�x2 + y2 + �z − b2/a�2�3/2

−
M�x

ab�x2 + y2��r −
�r2 − �b2/a�z�

�x2 + y2 + �z − b2/a�2�1/2� . �17�

Now the substitution of the expressions �16� and �17� in �15�,
after some algebra, yields the respective forces given in �8�
and �11� and this independent calculation was performed to
check the results for the two levitation force components. It
should be mentioned that the levitation force may also be
calculated using a more complicated formula given in Ref.
17 in terms of spherical harmonics. But the present approach
is much simpler than the standard spherical harmonics tech-
nique.

Finally, the discrepancy between the results obtained here
�Eqs. �11� and �12�� and given by Coffey �Eq. �20a� in Refs.
1 and 2� for the vertical component of the levitation force is
due to the choice of the boundary conditions employed in the
two formalisms. We have used the condition that the normal
component of the magnetic field vanishes on the supercon-
ducting sphere, whereas Coffey assumed that both normal
and tangential components of the magnetic field vanish �that
is, B=0� at the superconducting spherical surface. It should
be mentioned that Maxwell’s equations do not restrict the
tangential component of the magnetic field �see Ref. 18, for
example�. Therefore, the boundary condition employed in
this comment is more appropriate for a superconducting sur-
face. Furthermore, the approach utilized by Coffey involved
the calculation of self-interaction energy from the infinite-
series expansion of the magnetostatic potential followed by
differentiation and summing up of the resulting series to ob-
tain the closed form expression for the force component. In
contrast, our approach here utilized an exact closed form
solution for the magnetostatic potential in the vector-
derivative equation �15� and computed the force component.
The latter technique involved the operations of function
evaluation, differentiation, and the dot product. Since for-
mula �4� yields the magnetostatic potential in a closed form,
one may use the resulting potential in �15� to calculate the
required force in a systematic and straightforward fashion,
instead of using the self-interaction energy approach. Indeed,
Eq. �15� is easy to use for the calculation of the force due to
an arbitrarily oriented magnetic dipole positioned in front of
a superconducting sphere.

FIG. 1. The levitation force due to radial and tangential dipoles
located in front of a superconducting sphere. Here Fz� is the normal-
ized force component.
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