
Theory of superfluids with population imbalance: Finite-temperature and BCS-BEC
crossover effects

Qijin Chen, Yan He, Chih-Chun Chien, and K. Levin
James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

�Received 5 September 2006; revised manuscript received 17 November 2006; published 17 January 2007; corrected 6 February 2007�

In this paper we present a very general theoretical framework for addressing fermionic superfluids over the
entire range of BCS to Bose Einstein condensation �BEC� crossover in the presence of population imbalance
or spin polarization. Our emphasis is on providing a theory which reduces to the standard zero temperature
mean-field theories in the literature, but necessarily includes pairing fluctuation effects at nonzero temperature
within a consistent framework. Physically, these effects are associated with the presence of preformed pairs �or
a fermionic pseudogap� in the normal phase, and pair excitations of the condensate, in the superfluid phase. We
show how this finite T theory of fermionic pair condensates bears many similarities to the condensation of
point bosons. In the process we examine three different types of condensate: the usual breached pair or Sarma
phase and both the one- and two-plane-wave Larkin-Ovchinnikov-Fulde-Ferrell �LOFF� states. The last of
these has been discussed in the literature albeit only within a Landau-Ginzburg formalism, generally valid near
Tc. Here we show how to arrive at the two-plane-wave LOFF state in the ground state as well as at general
temperature T.
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I. INTRODUCTION

The subject of superfluidity in ultracold trapped fermionic
gases is an exciting field,1–9 not only for its implications in
atomic physics, but also because there are important impli-
cations for condensed matter systems, including perhaps
high temperature superconductors.10,11 There are two impor-
tant aspects which are particularly notable about these sys-
tems, from the perspective of the present paper. They can be
tuned in various ways which are not available to nature-made
superconductors. Thus, one can study the entire regime from
BCS to Bose-Einstein condensation �BEC�, simply by the
application of a magnetic field in concert with a Feshbach
resonance. Moreover, one can vary the concentrations of the
two spin species arbitrarily;12–14 in a fashion, this simulates
the application of a magnetic Zeeman field. This latter tun-
ability has important implications for other subdisciplines in
physics such as dense QCD and �isospin asymmetric�
nuclear matter.15–17 Equally important is the fact that there is
a rich collection of experimental data from two different
atomic physics groups12–14 on 6Li gases near unitarity, with
which one can compare various theoretical results.

The goal of this paper is to present an overarching theo-
retical framework for dealing with fermionic gases over the
entire range of BCS to BEC crossover and the entire range of
temperature, as well as the entire range of population imbal-
ance. The foundations of this theory lie with the initial ob-
servation of Eagles18 and of Leggett19 that the BCS-like
wave function has a much greater generality than was origi-
nally recognized at the time of its proposal. It is capable of
describing both BCS and BEC like systems, providing the
pairing attraction is tunable from arbitrarily weak �BCS� to
arbitrarily strong �BEC� and one self-consistently solves for
the fermionic chemical potential. This mean-field-like
ground-state wave function is also readily generalized to in-
clude population balance. Indeed, there are at least three well
studied phases20–24 which have been proposed to accommo-

date a difference in the population of the two spin species.
What we want to stress is that these same mean-field theories
have a natural extension to finite temperature.10 This exten-
sion will be a focus of the present paper.

At strictly zero temperature, there is a rather extensive
literature25–31 on these population-imbalanced superfluids
and superconductors, including recently the effects of the
crossover from BCS to BEC. There have also been some
studies at finite T, which are at the mean-field level and do
not include the effect of the noncondensed pairs32–34 we con-
sider here. The three most studied phases are the
“Sarma”-like20 or breached pair states in which �as in BCS
theory� the condensed pairs have zero net momentum, but
polarization can, nevertheless, be introduced. At T=0 this
state appears to be stable in the deep BEC regime. Addition-
ally, two different phases22 have been proposed by Larkin
and Ovchinnikov and by Fulde and Ferrell �LOFF� in which
the condensate has a net momentum of a predetermined q or
of ±q. Even more elaborate crystalline lattices of various qi
have also been contemplated.23,24 It is believed that these
states are more appropriate closer to the BCS side of reso-
nance, although rather little has been determined about the
“two-plane-wave” LOFF state near T=0 or in the presence of
crossover effects. Added to this complexity is the possibility
of heterogeneous or phase separated states.21

In this paper we will present the theoretical formalism for
the Sarma and one- and two-plane-wave LOFF states at zero
and finite T as one varies from BCS to BEC. We note that
because theories of population imbalanced superfluids are
�almost, without exception� based on BCS-Leggett-type19

ground states, it is important to determine their finite tem-
perature implications within this broad class of ground states,
as we do here. Our premise is that the effects of finite T,
which necessarily must be accommodated in any comparison
with experiment, must be compatible with the T=0 formal-
ism. Indeed, one of the most important effects of temperature
is to stabilize the Sarma-like phase. In this way one finds an
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intermediate temperature superfluid,35–38 one that exists at
T�0, but not at T=0. Our studies of the two-plane-wave
LOFF state present new results by extending the current lit-
erature away from the Landau-Ginzburg regime �near Tc�.

With this class of generalized mean-field theories we will
show that the effects of temperature enter in a fashion which
is strongly reminiscent of Bose gas condensation. Except in
the BCS limit, pairs form at higher temperatures than the
�transition� temperature Tc at which they condense. Thus we
have to distinguish the excitation gap �called ��T�� from the
order parameter �called �sc�T��. Alternatively, this means
that there is an excitation gap �or pseudogap �pg

2 � for fermi-
onic excitations even in the normal phase. It also implies that
below Tc there will be additional modes of exciting the
condensate-via pair excitations. These latter are noncon-
densed or incoherent pairs with finite center of mass momen-
tum. We have found36 that in a trapped geometry they are
particularly important for providing a mechanism of getting
polarization into the gas.

These effects of finite T can be compared with an alter-
native class of theories in the literature based on work by
Nozieres and Schmitt-Rink �NSR�.39 This approach is known
to lack self-consistency.40 We stress that the finite tempera-
ture NSR approach was not designed to be consistent with
the standard ground state equations. This observation has
also been made in Ref. 41. Indeed, these latter authors have
presented in considerable detail42 a more complete finite T
approach based on the Tc calculations of Ref. 39. A major
concern about this class of theories remains to be addressed.
Because the gap and the number equations are not treated on
an equivalent basis, it is possible that the superfluid density
will not consistently vanish at Tc. At this temperature there
has to be a precise, but delicate cancellation of paramagnetic
and diamagnetic current contributions, as found in the
present theory.43,44 In a related fashion, pseudogap effects
�associated with the presence of noncondensed pairs� appear,
within an NSR-based approach, in the number equation but
not in the gap equation.

We begin at the more physical level by stressing the anal-
ogy between condensation in this composite boson or fermi-
onic superfluid and condensation in a gas of ideal point
bosons. Our theory treats self-consistently two-particle and
one-particle Green’s functions on an equal footing. Because
the physics is so simple and clear, we can fairly readily an-
ticipate the form of the central equations of this BCS-BEC
generalization of BCS theory. It is important to stress, how-

ever, that these equations can be derived more rigorously
from a truncated series of equations of motion for the appro-
priate Green’s functions.45

There are three principle equations which govern Bose
condensation: the vanishing of the bosonic chemical poten-
tial at all T�Tc is the first. Throughout this paper we will
refer to this condition as the “BEC condition.” It is related to
the usual Thouless criterion, but the latter is generally asso-
ciated only with the temperature Tc. The second equation is
the boson number equation. All “bosons” must be accounted
for as either condensed or noncondensed. The third equation
is the number of noncondensed “bosons,” which are created
by thermal excitations. This is determined simply by insert-
ing the known excitation spectrum of the excited pairs or
bosons, into the Bose distribution function. With this equa-
tion, and the first equation, one can then deduce the number
of condensed bosons.

These three central equations for bosons are indicated in
Table I, on the far right, for true point bosons, and in the
second column for the composite bosons which appear in
fermionic superfluids. For these composite bosons the quan-
tity which provides a measure of the “number” of bosons �N�
is given by �2�T� �up to a constant coefficient, Z�. This is
reasonably easy to see. In the fermionic regime, when the
fermionic chemical potential is positive, �2�T� represents the
square of the excitation gap. This is the energy which must
be supplied to break apart the pairs. Thus, �2�T�, in some
sense then, reflects the number of pairs. How does one quan-
titatively establish the appropriate “boson number” for the
fermionic case? This is determined via the self-consistent
gap equation for ��T�, which, in turn, is determined using
the first condition: that the pair chemical potential is zero at
and below Tc. How does one compute the number of excited
pairs? Once the gap equation is interpreted in terms of the
appropriate noncondensed pair propagator, then one knows
the related excitation spectrum �q of this propagator.

The quantity Z which appears in the last equation of Table
I �for the composite bosons� gives the relation between the
gap associated with noncondensed pairs ��pg

2 � and the num-
ber of pairs ��b��q��. It can be readily calculated in this
theory; once one has the noncondensed pair propagator, Z
appears as the inverse residue. �Deep in the BEC regime, Z is
relatively simple to compute, for here the boson number den-
sity approaches the asymptote n /2, where n is the fermion
density.� More precisely, the total number of bosons in the
present case has to be determined self-consistently through

TABLE I. BCS theory by way of BEC analogy. Here we compare condensation in composite and point
bosons; �B is the bosonic chemical potential, N0 is the number of condensed and NT is the number of
noncondensed bosons. We define �pair as the chemical potential for the noncondensed pairs. Here ��T� is the
total fermionic gap which contains contributions from the noncondensed ��pg

2 � and condensed terms ��sc
2 �. In

the strict BCS limit �pg=0, so that the order parameter and gap are identical.

Composite bosons Point bosons

Pair chemical potential �pair=0, T�Tc

Leads to BCS gap equation for ��T�
�B=0, T�Tc

Total “number” of pairs �2�T�=�sc
2 �T�+�pg

2 �T� N=N0+NT

Noncondensed pairs Z�pg
2 =�q�0b��q� NT=�q�0b��q�
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the gap equation. It also involves the fermion number equa-
tion through the related fermionic chemical potential. In this
last context, it should be stressed that there is one important
aspect of the fermionic superfluids, which is not apparent in
Table I. For BCS-BEC crossover, it is essential to derive the
self-consistent equation for the fermionic chemical potential;
in this problem the fermions are the fundamental statistical
entity. This can be readily accomplished within the same
framework used to arrive at the gap equation. The vanishing
of the pair chemical potential is associated with a particular
choice for the pair propagator involving dressed Green’s
functions. These, in turn, determine the fermionic chemical
potential through the fermion number equation. In the next
two sections we turn to the gap and number equations, and
show through a Green’s function formulation, how strongly
these two equations are interconnected.

The rest of the paper is organized as follows. We conclude
this section with a summary of the central equations associ-
ated with our T-matrix scheme. In Sec. II, we present a
mean-field theory for the Sarma and one-plane-wave LOFF
state for T�Tc. Due to the complexity of the two-plane-
wave LOFF state, we dedicate an entire section �Sec. III� to
its mean-field treatment. In Sec. IV we present a generaliza-
tion of our T-matrix formalism to include pairing fluctuation
effects. Sec. V recapitulates our simple physical picture and
Sec. VI presents our conclusions. Additional, more technical
details are given in two Appendices for the one- and two-
plane-wave LOFF states.

A. Central equations of T-matrix scheme

To make contact with the general class of mean-field theo-
ries �including the Sarma and LOFF states�, we introduce a
T-matrix approximation. This means that we consider the
coupled equations between the particles �with propagator G�
and the pairs �with propagator t�P�� and drop all higher
terms. This theory does not include direct “boson-boson”
interactions, although the pairs do interact indirectly via the
fermions, in an averaged or mean-field sense. Throughout
Secs. II and III of this paper we will be showing that the
BEC condition noted in the previous section will give the
same gap equation we find using standard techniques, such
as Bogoliubov diagonalization applied to the linearized
mean-field Hamiltonian. Here, for all T�Tc, the BEC con-
dition is interpreted as requiring that the pair chemical po-
tential �pair associated with the noncondensed pairs vanish.
In Secs. II and III we will address only the first line of Table
I. The second two lines, or sets of equations will be dis-
cussed in Sec. IV.

Within a T-matrix scheme, the pair propagator is given by

t−1�P� = U−1 + ��P� , �1�

where � is the spin symmetrized pair susceptibility, and U
�0 is the pairing interaction strength. The function ��P� is,
in many ways, the most fundamental quantity we introduce
in this paper. It provides the basis for obtaining well known
�as well as new� results of the zero temperature theory.
Moreover, it provides the basis for arriving at a finite tem-
perature description, which appears in Sec. IV. The introduc-

tion of spin symmetrization is only important for the case of
population imbalance. In earlier literature,10 this complexity
did not arise. We will show that one obtains consistent an-
swers between T-matrix based approaches and standard
mean-field theories, provided the components of the pair sus-
ceptibility in the presence of population imbalance, defined
by

��P� =
1

2
��↑↓�P� + �↓↑�P�� �2�

are given by the product of one dressed and one bare Green’s
function

�↑↓�P� = �
K

G0↑�P − K�G↓�K� �3a�

�↓↑�P� = �
K

G0↓�P − K�G↑�K� , �3b�

where P= �i�l ,p�, and G and G0 are the full and bare
Green’s functions respectively. We will discuss G in more
detail on a case by case basis. Here G0,�

−1 �K�= i	n−
k,�,

k,�=�k−��, �k=�2k2 /2m is the kinetic energy of fermions,
and �� is the fermionic chemical potential for spin �= ↑ ,↓.
Throughout this paper, we take �=1, kB=1, and use the four-
vector notation K��i	n ,k�, P��i�l ,q�, �K�T�n�k, etc.,
where 	n= �2n+1�
T and �l=2l
T are the standard odd
and even Matsubara frequencies46 �where n and l are inte-
gers�.

For the mean-field discussions in Secs. II and III of this
paper we will not be considering general values of P but
only zero frequency limits with special values of p associ-
ated with Sarma �p=0� and LOFF �p=q�0� states. How-
ever, when we include the contribution of noncondensed
pairs �or pseudogap effects� the general values of P become
important. For the Sarma phase we have the BEC condition

t−1�0� = 0 = U−1 + ��0� . �4�

More generally, for LOFF-like states we have the BEC con-
dition at finite q:

U−1 + ��0,q� = 0. �5�

We will discuss, in considerable detail, the nature of the
mean-field self-energy which appears in the full Green’s
function G��K�. Not only does this determine the gap equa-
tion but it also leads to the number equations which can be
written in terms of Green’s functions as n�=�KG��K�.

The number and gap equations then provide the underly-
ing basis for the mean-field approach. And we will see that
the same propagator for noncondensed pairs �t�P�� enters
into the beyond-mean-field corrections. It is important to
stress that when we refer to “mean field” based approaches in
secs. II and III of this paper, we will not be distinguishing
between the order parameter �sc and the excitation gap �.
Subsequently we will show that this distinction is actually an
important one in all but the BCS limit. Specifically, we note
that the expressions we present in Secs. II and III within our
Green’s function-based formulation, are more generally valid
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below Tc, but for the excitation gap �, not for the order
parameter.

II. GAP AND NUMBER EQUATIONS OF SARMA AND
ONE-PLANE-WAVE LOFF PHASES

A. Mean-field Sarma state

We now want to study the Sarma or breached pair state.
On the fermionic side of resonance, the dispersion relation of
one of the two quasiparticle bands �Ek,↑ and Ek,↓, defined
below� has two zero crossings, at momenta k1��0� and k2�
�k1�. This is associated with gapless excitations. In a mo-
mentum space representation, pairing is confined to k�k1
and k�k2. This pairing is “breached” by a normal compo-
nent in the intermediate region k1�k�k2. It is this normal
component, then, which carries the bulk of the polarization.

If we consider pairing between k and −k states, the mean-
field Hamiltonian can be rewritten as

HMF = �
k

�
k,↑ck,↑
† ck,↑ + 
k,↓c−k,↓

† c−k,↓ + �c−k,↓
† ck,↑

†

+ �ck,↑c−k,↓� , �6�

where we have chosen �*=� to be real. Using standard Bo-
goliubov diagonalization techniques, we readily arrive at the
mean-field gap equation via the self-consistency condition

� � �
K

U	ck,↑c−k,↓
 , �7�

which can be written as

0 =
1

U
+ �

k
�1 − f�Ek↓� − f�Ek↑�

2Ek
� =

1

U
+ �

k

1 − 2 f̄�Ek�
2Ek

.

�8�

Here �= ��↑+�↓� /2 and h= ��↑−�↓� /2, Ek=

k
2 +�2,

Ek↑=−h+Ek and Ek↓=h+Ek, where 
k=�k−�. In addition,
we define the average

f̄�x� � �f�x + h� + f�x − h��/2, �9�

where f�x� is the Fermi distribution function. The coupling
constant U can be replaced in favor of the dimensionless
parameter, 1 /kFa, via the relationship m / �4
a�=1/U
+�k�2�k�−1, where a is the two-body s-wave scattering
length, and kF is the noninteracting Fermi wave vector for
the same total number density in the absence of population
imbalance. Therefore the gap equation can be rewritten as

−
m

4
a
= �

k
�1 − 2 f̄�Ek�

2Ek
−

1

2�k
� . �10�

This is a familiar gap equation which has appeared many
times in the literature. The mean-field number equations can
be readily deduced

n� = �
k

�f�Ek��uk
2 + f�Ek�̄�vk

2� , �11�

where �̄=−� and the coherence factors uk
2 ,vk

2

= �1±
k /Ek� /2. Equivalently, they can be rewritten as

n = 2�
k
�vk

2 +

k

Ek
f̄�Ek�� , �12a�

�n = �
k

�f�Ek − h� − f�Ek + h�� , �12b�

where n=n↑+n↓ is the total atomic density, �n=n↑−n↓�0 is
the number difference and p=�n /n is the polarization.

B. T-matrix approach below Tc: Sarma state

We next show that the same results can be obtained from
a T-matrix based approach. This discussion provides the link
between the first line of Table I and the previous subsection.
The one particle Green’s function for particles with spin � is

G�
−1�K� = G0�

−1�K� − ���K� = i	n − 
k� − ���K� . �13�

The self-energy �� can be shown to be of the BCS-like form

���K� = − �2G0�̄�− K� =
�2

i	 + 
k�̄

. �14�

We will see later in Sec. IV how this form for the self-energy
very naturally arises �below Tc� in a T-matrix approach. Thus

G�
−1�K� = i	 − 
k� −

�2

i	 + 
k�̄

. �15�

Then, using the coherence factors we defined earlier, the
Green’s functions become

G��K� =
uk

2

i	 − Ek�

+
vk

2

i	 + Ek�̄

. �16�

Now we are in position to calculate the pair susceptibility
at P=0 for the Sarma phase based on Eqs. �2� and �3�.

��0� = �↑↓�0� = �↓↑�0� = − �
K

1

�i	n − Ek↓��i	n + Ek↑�
.

�17�

Substituting this expression into our BEC condition Eq. �4�,
we obtain the same gap equation �8�, after carrying out the
Matsubara summation.

In terms of Green’s functions, we readily arrive at the
number equations: n�=�KG��K�, which reduce to the num-
ber equations �11� we found earlier.

C. Mean-field theory of one-plane-wave LOFF state

If we now consider condensates in which momentum k
pairs with −k+q, for, as yet undermined q, the mean-field
Hamiltonian can be rewritten as

HMF = �
k

�
k,↑ck,↑
† ck,↑ + 
k−q,↓c−k+q,↓

† c−k+q,↓ + �c−k+q,↓
† ck,↑

†

+ �ck,↑c−k+q,↓� . �18�

Upon Bogoliubov diagonalization, the self-consistency con-
dition
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� � �
K

�U�	ck,↑c−k+q,↓
 �19�

readily leads to the mean-field gap equation

0 =
1

U
+ �

k

1 − f�E1,↓� − f�E1,↑�
2Ekq

=
1

U
+ �

k

1 − 2f��Ekq�
2Ekq

,

�20�

where E1,↑=Ekq−h+��k, E1,↓=Ekq+h−��k, and Ekq

=

kq
2 +�2, with ��k= ��k−�k−q� /2, and 
kq= �
k+
k−q� /2.

Here we define the average

f��x� =
1

2
�f�x − h + ��k� + f�x + h − ��k�� . �21�

We note that f��x� reduces to its counterpart f̄�x� defined by
Eq. �9� in the Sarma state when q=0.

The regularized gap equation is

−
m

4
a
= �

k
�1 − 2f��Ekq�

2Ekq
−

1

2�k
� . �22�

This equation is formally similar to Eq. �10�. Finally, the
mean-field number equations for n�, are given by

n� = �
k

�f�E1,��ukq
2 + f�− E1,�̄�vkq

2 � , �23�

with the coherence factors ukq
2 ,vkq

2 = �1±
kq /Ekq� /2. Equiva-
lently, they can be rewritten as

n = 2�
k
�vkq

2 +

kq

Ekq
f��Ekq�� , �24a�

�n = �
k

�f�Ekq − h + ��k� − f�Ekq + h − ��k�� . �24b�

Note that Eqs. �22� and �24� are invariant under q→−q due
to the reflection symmetry k→−k.

There must be another equation which governs q. This
can be obtained by minimizing the thermodynamical poten-
tial or free energy with respect to q. Equivalently, we will
derive q from the T-matrix method described below.

D. T-matrix approach below Tc: One-plane-wave LOFF state

We now use the same T-matrix based approach �as we did
for the Sarma case, and as indicated by Table I� to make
contact with the one-plane-wave LOFF state. We take the
self-energy of the form

���K� = − �2G0�̄�− K� =
�2

i	 + 
k−q,�̄
, �25�

so that

G�
−1�K� = i	 − 
k,� −

�2

i	 + 
k−q,�̄
. �26�

Then we have

G↑�K� =
uk

2

i	n − E1,↑
+

vk
2

i	n + E1,↓
, �27a�

G↓�K� =
uk

2

i	n − E2,↓
+

vk
2

i	n + E2,↑
. �27b�

Here E2,↑=Ekq−h−��k and E2,↓=Ekq+h+��k, and uk and vk
are the same as ukq and vkq in the mean-field theory in Sec.
II C. Note that if k→−k+q, then E2,↑→E1,↑ and E2,↓
→E1,↓. The number equations are n�=�KG��K�, which
yields the same answer �Eq. �23�� we found in the mean-field
approach. For T�Tc, using the BEC condition U−1

+��0,q�=0 we thus arrive at the gap equation we found
earlier in Eq. �20�.

We next investigate the pair susceptibility and its extremal
value at Q= �0,q�. We define the contributions to the pair
susceptibility in the presence of population imbalance as in
Eqs. �1�–�5�. For the one-plane-wave LOFF state, the BEC
condition is that t�0,p� diverges at a nonzero momentum p
=q. Thus, at this momentum, the quantity ��0,p� should
reach a maximum at p=q. We determine q by requiring

� ���0,p�
�p

�
p=q

= 0, �28�

where ��P� is explicitly shown in Eq. �A1�. This yields

0 = � ���0,p�
�p

�
p=q

=
1

�2�
k
�q

2
��1 −


kq

Ekq
�

− �f�E1,↑� + f�E1,↓��

kq

Ekq
�

+ �k −
q

2
��f�E1,↑� − f�E1,↓���

=
1

2�2�
k

�qnkq + �2k − q��nkq� , �29�

where nkq and �nkq are given, respectively, by Eqs. �24a� and
�24b� without the summation.

It is important to stress, as we show in Appendix A, that
this extremal condition on ��P� is equivalent to the condition
that the net current is identically zero in this situation,

j = �
K

k�G↑�K� + G↓�K�� = 0. �30�

This key observation shows that the present way of comput-
ing q directly from the pair susceptibility is consistent with
the counterparts in the literature, which are based on the
vanishing of the net current in equilibrium.

At the mean-field level we, then, have four unknowns �,
h, �, and q, and four equations: two number equations, the
gap equation, and the condition on the vanishing of the first
order derivative ���0,p� /�p at p=q.

As shown in Ref. 47, these equations can be obtained
from the first order derivatives of the thermodynamic poten-
tial � with respect to these four variables, respectively. In
particular, �� /�q=0 is equivalent to the condition �� /�p at
p=q.
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III. MEAN-FIELD SCHEME OF TWO-PLANE-WAVE LOFF
STATE

The two-plane-wave LOFF state has not been studied in
the literature in much detail away from Tc and the associated
tricritical point.24 Here we address this state at more general
temperatures, starting with a very natural mean-field Hamil-
tonian in the same spirit as in the previous two cases. It
should be stressed that once one goes beyond the one-plane-
wave LOFF state there is no simple �finite� matrix represen-
tation of the Hamiltonian. In this subsection we focus on an
approximate representation of the mean-field Hamiltonian
which has been truncated into a 3�3 matrix form. The jus-
tification for this truncation is in part, because it yields the
same results as the more systematic T-matrix approach of the
following subsection. We present it here in order to build
physical intuition and to provide the reader with the analogue
discussion for this case in the same fashion as for the Sarma
and one-plane-wave LOFF states.

The mean-field Hamiltonian is given by

HMF = �
k
�
k↑ck↑

† ck↑ + 
k↓ck↓
† ck↓ +

1

2

��ck↑
† c−k+q↓

†

+ ck↓c−k+q↑� +
1

2

��ck↑
† c−k−q↓

† + ck↓c−k−q↑�� .

�31�

Due to the mixing of ±q pairing terms, any finite-
dimensional matrix cannot faithfully represent the mean-field
Hamiltonian HMF. Therefore, there is no natural generaliza-
tion of the Bogoliubov diagonalization procedure. However,
without loss of generality we can focus on a specific fermion
momentum k, associated with ck,↑

† for spin ↑, and ck,↓
† for

spin ↓. For this k we keep the essential matrix elements so
that the truncated matrix fully describes all relevant interac-
tions involving these up and down spin fermionic states. This
leads to an effective truncated Hamiltonian in a 3�3 matrix
form, with the basis set B↑

T= �ck↑ ,c−k−q↓
† ,c−k+q↓

† � and B↓
T

= �ck↓ ,c−k−q↑
† ,c−k+q↑

† �. Here we show the matrix for B↑:

H↑ =�

k↑

1

2

�
1

2

�

1

2

� − 
−k−q↓ 0

1

2

� 0 − 
−k+q↓
� . �32�

It is evident that this matrix form describes both ±q inter-
action terms for ck↑

† , but only one interaction term for either
c−k−q↓ or c−k+q↓. Here B↑ and B↓ do not form a canonical
basis set because c−k−q↓

† and c−k+q↓
† are not orthogonal to each

other. Moreover, one can note that higher momentum pairing
terms �e.g., ±2q, ±3q, and so on� will be automatically gen-
erated. These higher momentum pairing contributions should
be dropped in the present mean-field treatment where only a
condensate of ±q pairs is considered.

For the purposes of addressing the two states ck,↑
† and ck,↓

†

we define the associated 3�3 matrix Green’s function

G↑ = �i	n − H↑�−1. �33�

The anomalous Green’s functions can be identified as
G12

↑↓�−q��	ck↑c−k−q↓
 and G13
↑↓�q��	ck↑c−k+q↓
 for ±q pair-

ing, respectively. �Due to the truncation, the matrix elements
G22, G33, and G23 are not physical� The mean-field gap equa-
tion is derived from the averages obtained from a spin sym-
metric combination of H↑ and H↓. We define

�↑ = �U��
K

G12
↑↓�K� = �

K

�U�	ck,↑c−k−q,↓
 . �34�

This is equal to

�U��
K

G13
↑↓�K� = �

K

�U�	ck,↑c−k+q,↓
 , �35�

which is equivalent to the requirement that the ±q compo-
nents of the gap parameter must be equal. Similarly

�↓ = �U��
K

G12
↓↑�K� = �

K

�U�	ck,↓c−k−q,↑
 , �36�

which is equal to

�U��
K

G13
↓↑�K� = �

K

�U�	ck,↓c−k+q,↑
 . �37�

The physical gap � is determined from

� =
�↑ + �↓

2
. �38�

We must use this spin symmetrized form to write down the
gap equation, which reflects the underlying symmetry of the
Hamiltonian.

The resulting gap equation can be shown to be of the form

1

U
=

1

2�
k
��f�E1↑� + f�E1↓��

E1 + Ekq

�E1 − E2��E1 − E3�

+ �f�E2↑� + f�E2↓��
E2 + Ekq

�E2 − E1��E2 − E3�

+ �f�E3↑� + f�E3↓��
E3 + Ekq

�E3 − E1��E3 − E2�� . �39�

Here we define E1, E2, and E3 as the solutions to the cubic
equation which is related to the determinant of the 3�3
eigenvalue equation

x3 + Ekqx2 − �Ẽkq
2 + �k · q

m
�2�x − Ekq�Ẽkq

2 − �k · q

m
�2� = 0,

�40�

where Ekq= �k2+ 1
2q2� /2m−� and Ẽkq=
Ekq

2 +�2. Then Ej↑
=Ej −q2 /4m−h and Ej↓=Ej −q2 /4m+h for j=1,2 ,3.

The mean-field number equations are

n� = �
k

��kq
2 f�E1�� + �kq

2 f�E2�� + �1 − �kq
2 − �kq

2 �f�E3��� ,

�41�

where we define
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�kq
2 =

�E1 + Ekq�2 − �k · q

m
�2

�E2 − E1��E3 − E1�

�kq
2 =

�E2 + Ekq�2 − �k · q

m
�2

�E1 − E2��E3 − E2�
. �42�

Despite the truncation of the Hamiltonian, we are, thus,
able to fully address the specific fermion states ck,↑

† and ck,↓
† .

By keeping all relevant matrix elements the truncated matrix
describes all essential interactions involving these two fermi-
ons. We will see next that when viewed from the T-matrix
formalism, this scheme represents a very natural extension of
the one-plane-wave LOFF state. The Green’s function G�

can be constructed from the Feynman rules associated with
HMF. Indeed, the Green’s function G↑ can be identified as the
first element G11

↑ of the 3�3 matrix Green’s function dis-
cussed above.

A. Green’s function approach below Tc: Two-plane-wave
LOFF state

For the counterpart mean-field theory, approached from a
T-matrix scheme, we define the self-energy as

���K� = −
1

2
��2G0�̄�− K + Q� + �2G0�̄�− K − Q��

=
1

2� �2

i	n + 
k−q�̄

+
�2

i	n + 
k+q�̄
� , �43�

where Q= �0,q�. This represents a very natural extension of
the one-plane-wave LOFF state discussed in Eq. �25� to the

case of two plane waves. The Green’s function is then given
by

G��K� =
1

G0��K� − ���K�

=
�i	n + 
k+q�̄��i	n + 
k−q�̄�

�i	n − E1���i	n − E2���i	n − E3��
=

�kq
2

i	n − E1�

+
�kq

2

i	n − E2�

+
1 − �kq

2 − �kq
2

i	n − E3�

. �44�

Again, following Eqs. �1�–�5� we can write out the form of
the pair susceptibility. For the two-plane-wave LOFF state,
this equation is presented as Eq. �B1� in Appendix B. This
quantity, in turn, enters the gap equation, given by the BEC
condition, 1+U��0,q�=0. We may write this gap equation in
compact form as

1

U
=

1

2�
K,�

i	n + 
kq�̄

�i	n − E1���i	n − E2���i	n − E3��
. �45�

This will, in turn, reduce to the gap equation �39� we de-
duced directly from the 3�3 matrix analysis.

Similarly, in our Green’s function formalism, we have
n�=�KG��K�, which reduces to the number equations we
found in Eq. �41�.

Next we determine the momentum p that maximizes ��P�

when �=0, i.e., we need to find a solution to
���0,p�

�p =0.
Since the Green’s function is symmetric under k→−k, it can
be shown that p=0 is a solution, which corresponds to the
Sarma phase. Here, however, we are interested in a LOFF-
like state p= ±q. where both signs contribute in a symmetric
fashion. Thus we choose p=q, and, thereby, arrive at the
defining equation for the net momentum of the pairs.

0 = �
K,�

k − q

m

i	n + 
k+q�̄

i	n + 
k−q�̄

1

�i	n − E1���i	n − E2���i	n − E3��

= �
k

k − q

m � 2
k · q

m
�f�
k−q↑� + f�
k−q↓� − 2�

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
� +

f�E1↑� + f�E1↓�
�E1 − E2��E1 − E3�

E1 + Ekq +
k · q

m

E1 + Ekq −
k · q

m

+
f�E2↑� + f�E2↓�

�E2 − E1��E2 − E3�

E2 + Ekq +
k · q

m

E2 + Ekq −
k · q

m

+
f�E3↑� + f�E3↓�

�E3 − E1��E3 − E1�

E3 + Ekq +
k · q

m

E3 + Ekq −
k · q

m
� . �46�

This determines the magnitude q; for definiteness we take
the direction of q as along the z axis.

The case of the single-plane-wave LOFF state should be
contrasted. There we showed that there was an intimate re-

lation between the condition that there be no net equilibrium
current and the extremal requirement on ��P�. For the two-
plane-wave LOFF state the current can be shown to be iden-
tically zero. Rather, the only condition one has to determine
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q is the vanishing of the first derivative of the pair suscepti-
bility. A similar condition was imposed in the original
Larkin-Ovchinnikov �LO� paper.22

B. Diagrammatic interpretation of Green’s function
approaches: Comparison with Larkin-Ovchinnikov

We now want to compare the present approach for the
two-plane-wave LOFF state with that proposed in the origi-
nal LO paper.22 We will do this comparison within a dia-
grammatic framework. It is useful first to illustrate the dia-
grammatic scheme by referring to the simpler Sarma and
one-plane-wave LOFF states. These two states have a rather
similar diagrammatic formulation. We write these diagrams
in a consolidated form in Fig. 1. The first line indicates the
bare quantities, that is, the bare Green’s function G0 in part
�a� and the quantity G0,↑�K��G0,↓�−K� in part �b�. This is
written for the Sarma state and readily generalized to the
one-plane-wave LOFF phase.

The second line indicates the �diagonal� dressed Green’s
function, while the third line shows effectively the Gor’kov
F function. It should be noted for Fig. 1�d� that this latter
“anomalous” or off-diagonal Green’s function is explicitly
seen to depend on a symmetrized sum of the product G and
G0. It is this combination which we have seen appear in the
pair susceptibility ��P�. Indeed, throughout this paper we
have found that GG0 is essential for arriving at the standard
mean-field theoretic approach. We can, thus, conclude from
the last line in the figure that the F function is given by a
spin symmetrized combination of �GG0.

In Fig. 2 we show the two-plane-wave LOFF diagrams
originally proposed by LO. In order to discuss their implica-
tions, we present the diagrams associated with the mean-field
matrix scheme of the previous section which are plotted in
Fig. 3. As in Fig. 1, one can see from the last line of Fig. 3�e�
that the off-diagonal Green’s function depends on a symme-
trized sum of G and G0. One can also see that there are
similarities as well as differences in these latter two ap-
proaches. In the approach of Sec. III A, just as in LO we
restrict our calculations to diagrams that do not contain

propagators with momentum beyond ±k and ±k±q. The dif-
ferences are also apparent. In the LO paper, the �diagonal
component of the� Green’s function diagrams were summed
up to second order in �. In the gap equation LO dropped
diagrams containing propagators with higher momenta and
truncated the series at third order in �.

If one were to follow the original LO scheme, but sum the
entire series, then we will arrive at a slightly modified gap
equation. We would find instead the gap is determined by

1

U
= �

K
��G0↑�− K + Q�G↓�K� + G0↓�− K + Q�G↑�K��

−
1

2
�G0↑�− K + Q�G↓

�1��K� + G0↓�− K + Q�G↑
�1��K���

= �
k
��f�E1↑� + f�E1↓��

E1 + Ekq

�E1 − E2��E1 − E3�
+ �f�E2↑�

+ f�E2↓��
E2 + Ekq

�E2 − E1��E2 − E3�
+ �f�E3↑�

+ f�E3↓��
E3 + Ekq

�E3 − E1��E3 − E2�� − �
k

f�E1,↑
�1�� + f�E1,↓

�1�� − 1

2Ekq
�1�

�47�

FIG. 1. Diagrams for Sarma states or alternatively one-plane-
wave LOFF states including �a� bare Green’s function G0. �b� ver-
tices from pairing, �c� full Green’s function G, and �d� anomalous
Green’s function 	ck↑c−k↓
 for Sarma states and 	ck↑c−k+q↓
 for
single-plane-wave LOFF states. Here the thin and thick lines repre-
sent bare and full Green’s functions, respectively. The momenta for
Sarma states are �k↓ ,−k↑ � and �k↑ ,−k↓ �, while for single-plane-
wave LOFF states, they are �k↓ ,−k+q↑ � and �k↑ ,−k+q↓ �.

FIG. 2. Diagrams representing the original Ovchinnikov-Larkin
theory for �a� noninteracting Green’s function G0, �b� vertices from
pairing with momentum q, �c� vertices from pairing with momen-
tum −q, �d� Green’s function G, and �e� anomalous Green’s func-
tion 	ck↑c−k+q↓
.

FIG. 3. Diagrams associated with the 3�3 Bogoliubov diago-
nalization theory for �a� noninteracting Green’s function G0, �b�
vertices from pairing with momentumq, �c� vertices from pairing
with momentum −q, �d� Green’s function G, �e� anomalous Green’s
function 	ck↑c−k+q↓
. Here the “�” and “�” signs on the vertices
indicate momenta +q and −q, respectively.
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and thus the pair susceptibility derived from this method is

��P� = �
K
��G0↑�P − K�G↓�K� + G0↓�P − K�G↑�K��

−
1

2
�G0↑�P − K�G↓

�1��K� + G0↓�P − K�G↑
�1��K��� .

�48�

We could similarly use this modified pair susceptibility to
arrive at the constraint on the value of q. We discuss these
contributions in Appendix B. For the above equation we de-
fine the Green’s function for the single-plane-wave LOFF
states as G↑

�1��K�= �i	n+
k−q↓� / �i	n−E1,↑
�1���i	n+E1,↓

�1�� and
G↓

�1��K�= �i	n+
k−q↑� / �i	n−E2,↓
�1���i	n+E2,↑

�1��. The energy
spectrum of the single-plane-wave LOFF states is E1,↑

�1�

=Ekq
�1�+��k−h, E1,↓

�1� =Ekq
�1�−��k+h, E2,↑

�1� =Ekq
�1�−��k−h, and

E2,↓
�1� =Ekq

�1�+��k+h, where Ekq
�1�=
�Ekq− k·q

2m
�2+�1

2 and we de-
fine �1

2= 1
2�2.

In summary, to make contact with the original results of
LO, one must subtract a second symmetrized term, which
represents pairing with only one momentum. It would thus
appear, that relative to LO, there is an overcounting in the
summation of the two series from the diagrams shown in Fig.
3, and associated with the 3�3 matrix or mean-field repre-
sentation. At this stage it is difficult to determine which of
the two-plane-wave LOFF representations is the more appro-
priate. It will be essential in future to study them both nu-
merically in the presence of BCS-BEC crossover effects.

IV. BEYOND SIMPLE MEAN-FIELD THEORY: PAIRING
FLUCTUATION EFFECTS

A. Inclusion of the pseudogap

For definiteness the equations which appear in this section
apply to the Sarma-like phase. We can readily generalize to
include the two different LOFF states.

This diagrammatic representation of our T-matrix scheme
is shown in Fig. 4. The first of these indicates the propagator
for noncondensed pairs which we refer to as tpg, and the
second of these the total self-energy. One can see throughout
the combination of one dressed and one bare Green’s func-
tion, as represented by the thick and thin lines. The self en-
ergy consists of two contributions from the noncondensed
pairs or pseudogap �pg� and from the condensate �sc�, as

shown in Fig. 4. There are, analogously, two contributions in
the full T-matrix

t = tpg + tsc, �49�

tpg�P� =
U

1 + U��P�
, P � 0, �50�

tsc�P� = −
�sc

2

T
��P� , �51�

where we write �sc=−U�k	c−k↓ck↑
. Similarly, we have for
the fermion self-energy

���K� = ��
sc�K� + ��

pg�K� = �
P

t�P�G0,�̄�P − K� . �52�

We can see at once that

��
sc�K� = �

P

tsc�P�G0,�̄�P − K� = − G0,�̄�− K��sc
2 . �53�

The vanishing of the pair chemical potential implies that

tpg
−1�0� = U−1 + ��0� = 0, T � Tc. �54�

Moreover, a vanishing chemical potential means that tpg�P�
is strongly peaked around P=0. Thus, we may approximate48

Eq. �52� to yield

���K� � − G0,�̄�− K��2, �55�

where

�2�T� � �sc
2 �T� + �pg

2 �T� . �56�

Importantly, we are led to identify the quantity �pg

�pg
2 � − �

P�0
tpg�P� . �57�

Note that in the normal state �where �pair is nonzero� Eq.
�55� is no longer a good approximation.

We now have a closed set of equations for addressing the
ordered phase. We can similarly extend this approach to tem-
peratures somewhat above Tc, by self-consistently including
a nonzero pair chemical potential. This is a necessary step in
addressing a trap as well.36 Additionally, the propagator for
noncondensed pairs can now be quantified, using the self-
consistently determined pair susceptibility. At small four-
vector P, we may expand the inverse of the T-matrix, after
analytical continuation �i�l→�+ i0+�, to obtain

a1�2 + Z�� −
p2

2M* + �pair + i�P� , �58�

where the imaginary part �P→0 rapidly as p→0 below Tc.
Because we are interested in the moderate and strong cou-
pling cases, we drop the a1�2 term in Eq. �58�, and hence

tpg�P� =
Z−1

� − �p + �pair + i�P
, �59�

where we associate

FIG. 4. T-matrix and self-energy diagrams for the present
T-matrix scheme. The self-energy comes from contributions of both
condensed ��sc� and noncondensed ��pg� pairs. Note that there is
one dressed Green’s function in the T-matrix. Here tpg represents
the propagator for the noncondensed pairs.
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�p �
p2

2M* . �60�

This establishes a quadratic dispersion and defines the effec-
tive pair mass, M*.

Finally, one can rewrite Eq. �57� as

�pg
2 �T� = Z−1�

p
b��p� , �61�

where b�x� is the Bose distribution function. Analytical ex-
pressions for this mass are possible via a small p expansion
of �. In this way we find

��P� − ��0� � Z�� −
p2

2M*� . �62�

The coefficients are

Z = � ��

��
�

�=0,p=0
�63�

and

1

2M* = − � 1

6Z

�2�

�p2�
�=0,p=0

. �64�

B. Pair dispersion in Sarma state and physical consequences
at finite T

The theoretical framework in the previous section can
now be implemented to address the physics at finite T. We do

this here only for the Sarma state, thereby expanding on
earlier papers.35,36 The counterpart results for the two LOFF
phases are presented in the two appendices.

We begin by determining the form of the pair dispersion.
The pair susceptibility is given by

��P� =
1

2
��↑↓�P� + �↓↑�P�� = �

k
�uk

2 f̄�Ek� + f̄�
p−k� − 1

i� − 
p−k − Ek

+ vk
2 f̄�
p−k� − f̄�Ek�

i� − 
p−k + Ek
� . �65�

Inserting this form into the T-matrix �Eq. �1�� we readily find
that the coefficient Z is

Z = � ��

��
�

�=0,p=0
=

1

2�2�n − 2�
k

f̄�
k�� . �66�

Here n=�k,�n��k� is the total density.
Next we want to calculate �p �defined above� and its

derivatives:

�p = � −
1

Z
t−1�

�=0
= −

1

Z� m

4
a
− �

k
� 1

2�k

+ uk
21 − f̄�Ek� − f̄�
p−k�

Ek + 
p−k
+ vk

2 f̄�
p−k� − f̄�Ek�
Ek − 
p−k

�� .

�67�

Since 
k=k2 /2m−�, we have �k
k=k /m and �k
2
k=3/m.

Then

1

2M* = �1

6

�2�p

�p2 �
p=0

= −
1

12mZ�2�
k
� f̄�
k��6 +

8
k�
k + ��
m�2 � − f̄�Ek↑��6
k

Ek
+

4�
k + ���Ek
2 + 
k

2�
mEk�

2 �
+ 4 f̄��
k�

�
k + ��
m

− 3�1 −

k

Ek
� +

2Ek

m�2�1 −

k

Ek
�2

�
k + ��� . �68�

Here f̄��x� is the derivative of f̄�x�.
With this dispersion, then one can compute the number of

noncondensed pairs, npair=Z�pg
2 =�pb��p�. We then have

�pg
2 =

�2M*T�3/2

2
2Z





4
��3

2
� , �69�

where ��x� is the Riemann zeta function. When T�Tc, �pg
2

=Z−1�pb��p−�pair�.
Physically, these noncondensed pairs, which appear at fi-

nite T, have been shown to have important physical conse-

quences. In the homogeneous situation, we have found that
finite T stabilizes the superfluid state leading to an “interme-
diate temperature superfluid.”35,38 In addition, the presence
of a finite excitation gap at Tc ��pg�Tc��0� makes the be-
havior of the superfluid transition temperature more complex
than its mean-field counterpart, Tc

MF. We frequently find a
double-valued structure,35 with superfluidity existing only
for temperature intermediate between the two Tc’s.

In the trapped situation, we have found36 that these pairs
enter explicitly as the mechanism for carrying polarization
within the Sarma phase. At low T there is very little polar-
ization carried by the superfluid core; instead, the region of
the trap where �sc=0, but ��0—which can be called “the
�correlated� mixed normal region”—carries the bulk of the
polarization, much as observed experimentally.14
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V. PHYSICAL PICTURE: FERMION PAIRING IN
ANALOGY TO BEC

We now return to the strong analogies between this BCS-
based or Leggett mean-field theory19 and Bose condensation
of point bosons, as summarized in Table I.

We have three central equations.
1. The pair chemical potential must vanish at and below

Tc

�pair = 0, �T � Tc� . �70�

Importantly this condition leads to the mean-field gap equa-
tions derived in Secs. II and III. These gap equations then
provide a specific value for ��T�, according to the different
phases being contemplated.

2. There must be a conservation of the total number of
�composite� “bosons” in the system. For this condition, our
central equation is Eq. �56�. Here it is understood that the
number of “bosons” is effectively represented by the param-
eter �2�T�. In the fermionic limit, this parameter reflects the
number of bosons through the energy which is needed to
create fermions, and thereby break the bosons apart. Unlike
the point boson case, here the “total boson number” is
temperature-dependent and has to be self-consistently deter-
mined. �As expected, in the deep BEC regime, where the
fermionic excitations are negligible, the pair density is given
by npair=Z�2�n /2.�

3. The number of noncondensed pairs is readily computed
in terms of the pair dispersion, just as in conventional BEC.
For this condition our central equation is Eq. �61�.

Then, just as in conventional BEC, the number of con-
densed bosons �proportional to �sc

2 � is determined by the dif-
ference between �2�T� and �pg

2 �T�. This, in turn, determines
the transition temperature Tc as the lowest temperature�s� in
the normal state at which noncondensed pairs exhaust the
total weight of �2 so that �pg

2 =�2. Solving for the “transition
temperature” in the absence of pseudogap effects32–34 leads
to the quantity Tc

MF. More precisely, Tc
MF should be thought

of as the temperature at which the excitation gap ��T� van-
ishes. This provides a reasonable estimate, for the pairing
onset temperature T* �when a stable superfluid phase exists�.
This is distinguished from the transition temperature. We
note that T* represents a smooth crossover rather than an
abrupt phase transition.

It should be stressed that the dispersion relation for the
noncondensed pairs is quadratic. This appears in the Sarma
and both one- and two-plane-wave LOFF states. For the lat-
ter two states, it can be seen to be closely related to the fact
that ��0,q� must reach a maximum at q. While one will
always find a linear dispersion in the collective mode
spectrum,43 within the present class of BCS-BEC crossover
theories, the restriction to a T-matrix scheme means that
there is no feedback from the collective modes onto the pair
excitation spectrum. In effect, the T-matrix approximation
does not incorporate pair-pair interactions at a level needed
to arrive at this expected linear dispersion in the pair excita-
tion spectrum. Nevertheless, because essentially all theories
which address population imbalance build on the simplest
BCS-Leggett mean-field theory, there is good reason to first

address this level of approximation when including finite
temperature effects.

VI. SUMMARY

It should be clear from the previous sections that the zero
and finite temperature theories of population imbalanced su-
perfluids can be consolidated into one general theory, based
on the quantity which we call the pair susceptibility, ��P�.
This has a very specific form in the class of mean-field theo-
ries currently applied to address population imbalance. The
quantity ��P� enters into the propagator for noncondensed
pairs Eq. �50� which is just the T-matrix, t�P�. When non-
condensed pairs are in equilibrium with a condensate, they
must have zero chemical potential. This, in turn, yields the
various gap equations for the Sarma and the one- and two-
plane-wave LOFF states, provided one take a special form
for the pair susceptibility involving one dressed and one bare
Green’s function.

Importantly, the same pair propagator characterizes the
effective number of noncondensed pairs as seen in Eq. �57�.
Each of these population imbalanced superfluids has an as-
sociated T�0 pseudogap contribution, which is summarized
for the Sarma case in Sec. III and for the two LOFF cases in
Appendices A and B. This pseudogap contribution serves to
differentiate the order parameter from the gap parameter at
all nonzero T, and in all cases except strict BCS theory. At a
more physical level, in the normal state there is an excitation
gap for fermionic excitations associated with “preformed”
pairs. In the superfluid phase, there is a new form of conden-
sate excitation, not found in BCS theory and associated with
excited pair states. As the pairing attraction becomes stron-
ger, it pays to excite pairs of atoms rather than create single
fermion excitations which cost an energy gap. These
pseudogap effects are an essential component of BCS-BEC
crossover theory, and they are necessary in order to smoothly
evolve from the fermionic statistics of BCS to the bosonic
statistics of BEC. Interestingly, they are also widely observed
in high temperature superconductors.10,11

Thus far, we have applied the present theoretical formal-
ism to the Sarma state both in the homogeneous35 and
trapped36 configurations. From the point of view of compar-
ing with experiment, our trapped calculations have again un-
derlined the importance of pseudogap effects. We find that in
the Sarma phase the bulk of the polarization is carried in the
pseudogap region of the trap: outside the condensate but in
the region where both spin states �and thus pairing� are
present. Because we find that only modest polarizations are
stable, it appears necessary in future to include LOFF-like
condensates as well, although their stability must be
demonstrated.38 This observation is also consistent with nu-
merical calculations28,32 based on Bogoliubov–de Gennes
theory. A key contribution of the present work is that it lays
the groundwork for addressing the one and two-plane-wave
LOFF phases, at general temperature.

In summary, this paper has presented a theoretical formal-
ism for the Sarma and one- and two-plane-wave LOFF states
at zero and finite T as one varies from BCS to BEC, in the
presence of an arbitrary population imbalance. Our premise
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is that the effects of finite T, which necessarily must be ac-
commodated in any comparison with experiment, must be
compatible with the T=0 formalism. The zero temperature
formalism we use here reduces to the standard one in the
literature25,30 for the Sarma and one-plane-wave LOFF
states. However, our studies of the two-plane-wave LOFF
state present new results by extending the current literature
away from the Landau-Ginzburg regime �near Tc�. The
physical implications of these more exotic �LOFF� phases
will be explored in future work.
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APPENDIX A: ADDITIONAL RESULTS FOR THE ONE-
PLANE-WAVE LOFF STATE

The following two appendices are dedicated to presenting
additional details on the one- and two-plane-wave LOFF
states. The results are presented in appendix form both for
clarity and to avoid some of the more technical details in the
main text. First, for the one-plane-wave LOFF state, we wish
to explore the relationship between the zero current condi-
tion applied by Fulde and Ferrell22 and the extremal condi-
tion on ��0,q�. For the former, we determine momentum q
by requiring the total current to be zero. From j= ���x
−�x���x→x�G��x ,x��=�K�kG↑�K�+kG↓�K��, we obtain

j = �
k

k�f�E1,↑�uk
2 + f�− E1,↓�vk

2� − �
k

�k − q��f�E1,↓�uk
2

+ f�− E1,↑�vk
2� = �

k
�q

2
�1 −


kq

Ekq
� +

q

2
�f�E1,↑�

+ f�E1,↓��

kq

Ekq
+ �k −

q

2
��f�E1,↑� − f�E1,↓��� = 0

Here uk and vk are given by ukq and vkq in Sec. II C, respec-
tively. We can take q as the z direction, and all the above
equations need to be integrated over the angular variable �.

The pair susceptibility, even for the simpler LOFF state is
reasonably complex so we present it here for completeness.
��P�= 1

2 ��↑↓�P�+�↓↑�P�� is

��P� =
1

2�
k
�uk

2 f�E1,↑� + f�E2,↓� + f�
p−k,↑� + f�
p−k,↓� − 2

� − 
p−k − �Ekq + ��k − �k−q�/2�

+ vk
2 f�
p−k,↑� + f�
p−k,↓� − f�E2,↑� − f�E1,↓�

� − 
p−k + �Ekq − ��k − �k−q�/2� � . �A1�

Next, we characterize the pseudogap contributions which
enter via �pg

2 =Z−1�pb��p�. Here Z and 1/2M* are deter-
mined as follows.

Z = � �t−1

��
�

�=0,p=q
=

1

2�2�n − �
k

�f�
k−q↑� + f�
k−q↓��� .

�A2�

Here n is the total density.
The first order derivative of � with respect to momentum

p is given by

���0,p�
�p

=
1

2�
k

�
p−k

�p �uk
2� f�E1↑� + f�E2↓� + f�
p−k↑� + f�
p−k↓� − 2

�
p−k + �Ekq + ��k − �k−q�/2��2 −
f��
p−k↑� + f��
p−k↓�


p−k + �Ekq + ��k − �k−q�/2��
+ vk

2� f�
p−k↑� + f�
p−k↓� − f�E2↑� − f�E1↓�
�
p−k − �Ekq − ��k − �k−q�/2��2 −

f��
p−k↑� + f��
p−k↓�

p−k − �Ekq − ��k − �k−q�/2��� . �A3�

Using the expressions for uk and vk, it is straightforward to verify that at p=q, the terms involving f��x� cancel each other, and
the remaining terms lead to Eq. �29�, which is precisely the zero-current equation.

Now we turn to the quadratic term. The coefficient of this second order term corresponds to the inverse pair mass, 1 /2M*.
This is determined by the 2nd order derivative

1

2M* = − � 1

6Z

�2��0,p�
�p2 �

p=q
= −

1

12mZ�2�
k
�2 f̄�
k−q��3 +

4
kq�k − q�2

m�2 � − �f�E1,↑� + f�E1,↓��

��3
kq

Ekq
+

2��k − q�2 + q2��Ekq
2 + 
kq

2 �
mEkq�2 � +

2�f�E1,↑� − f�E1,↓��
m�2 ��k − q�2 − q2�
kq +

8

m
f̄��
k−q��k − q�2

− 3�1 −

kq

Ekq
� +

2Ekq

m�2�1 −

kq

Ekq
�2

�k − q�2� . �A4�

APPENDIX B: ADDITIONAL RESULTS FOR THE TWO-PLANE-WAVE LOFF STATE

We begin with the results that relate to the simplest mean-field-based scheme discussed in Sec. III A. We then proceed to
the slightly different scheme based on a resummation of the LO diagrams.
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The pair susceptibility is given by

��P� =
1

2�
K

�G0↑�P − K�G↓�K� + G0↓�P − K�G↑�K�� =
1

2
T�

n
�
k,�

1

i� − i	n − 
p−k�

�i	n + 
k+q���i	n + 
k−q��
�i	n − E1�̄��i	n − E2�̄��i	n − E3�̄�

.

�B1�

From the pair susceptibility one may obtain the dispersion relation for the noncondensed pairs. This is important for
introducing pseudogap effects and treating T�0.

The explicit forms of the coefficients Z and 1/2M* are

Z = −
1

2�
k �

2

m
k · q�f�
k−q↑� + f�
k−q↓� − 2�

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
� +

f�E1↑� + f�E1↓�
�E1 − E2��E1 − E3�

E1 + Ekq +
k · q

m

E1 + Ekq −
k · q

m

+
f�E2↑� + f�E2↓�

�E2 − E1��E2 − E3�

E2 + Ekq +
k · q

m

E2 + Ekq −
k · q

m

+
f�E3↑� + f�E3↓�

�E3 − E1��E3 − E1�

E3 + Ekq +
k · q

m

E3 + Ekq −
k · q

m
� �B2�

and

1

2M* =
1

24mZ
�
k � f�
k−q↑� + f�
k−q↓� − 2

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
��−

12

m
�k · q� +

4

m
�k − q�2

+
8

m2 �k · q��k − q�2� 1

E1 + Ekq −
k · q

m

+
1

E2 + Ekq −
k · q

m

+
1

E3 + Ekq −
k · q

m
��

−

8

m2 �k · q��k − q�2�f��
k−q↑� + f��
k−q↓��

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
� +

f�E1↑� + f�E1↓�
�E1 − E2��E1 − E3��

4

m
�k − q�2�E1 + Ekq +

k · q

m
�

�E1 + Ekq −
k · q

m
�2

− 6

E1 + Ekq +
k · q

m

E1 + Ekq −
k · q

m
� +

f�E2↑� + f�E2↓�
�E2 − E1��E2 − E3��

4

m
�k − q�2�E2 + Ekq +

k · q

m
�

�E2 + Ekq −
k · q

m
�2 − 6

E2 + Ekq +
k · q

m

E2 + Ekq −
k · q

m
�

+
f�E3↑� + f�E3↓�

�E3 − E1��E3 − E2��
4

m
�k − q�2�E3 + Ekq +

k · q

m
�

�E3 + Ekq −
k · q

m
�2 − 6

E3 + Ekq +
k · q

m

E3 + Ekq −
k · q

m
�� . �B3�

For the LO-based pair susceptibility we have

�LO�P� = �
K

�G0↑�P − K�G↓�K� + G0↓�P − K�G↑�K�� −
1

2�
K

�G0↑�P − K�G↓
�1��K� + G0↓�P − K�G↑

�1��K��

= T�
n

�
k,�
� 1

i�l − i	n − 
p−k�

�i	n + 
k+q���i	n + 
k−q��
�i	n − E1�̄��i	n − E2�̄��i	n − E3�̄�� −

1

2
T�

n
�
k
� 1

i�l − i	n − 
p−k↑

i	n + 
k−q↑

�i	n − E2,↓
�1���i	n + E2,↑

�1��

+
1

i�l − i	n − 
p−k↓

i	n + 
k−q↓

�i	n − E1,↑
�1���i	n + E1,↓

�1��� �B4�

The momentum q is determined by minimizing ��0,p�, i.e.,
���0,p�

�p =0 at p=q. This gives the momentum equation
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0 = T�
n

�
k,�

�k − q

m
� i	n + 
k+q�

i	n + 
k−q�

1

�i	n − E1�̄��i	n − E2�̄��i	n − E3�̄�
−

1

2
T�

n
�
k
�k − q

m
�� 1

i	n + 
k−q↑

1

�i	n − E2,↓
�1���i	n + E2,↑

�1��

+
1

i	n + 
k−q↓

1

�i	n − E1,↑
�1���i	n + E1,↓

�1��� = �
k
�k − q

m
��

2

m
�k · q��f�
k−q↑� + f�
k−q↓� − 2�

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
�

+
f�E1↑� + f�E1↓�

�E1 − E2��E1 − E3�

E1 + Ekq +
k · q

m

E1 + Ekq −
k · q

m

+
f�E2↑� + f�E2↓�

�E2 − E1��E2 − E3�

E2 + Ekq +
k · q

m

E2 + Ekq −
k · q

m

+
f�E3↑� + f�E3↓�

�E3 − E1��E3 − E1�

E3 + Ekq +
k · q

m

E3 + Ekq −
k · q

m
�

−
1

2�2�
k
�q

2
�1 −


kq
�1�

Ekq
�1�� +

q

2


kq
�1�

Ekq
�1� �f�E1,↑

�1�� + f�E1,↓
�1��� + �k −

q

2
��f�E1,↑

�1�� − f�E1,↓
�1���� . �B5�

The coefficients in the pseudogap dispersion are

Z = − �
k �

2

m
�k · q��f�
k−q↑� + f�
k−q↓� − 2�

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
� +

f�E1↑� + f�E1↓�
�E1 − E2��E1 − E3�

E1 + Ekq +
k · q

m

E1 + Ekq −
k · q

m

+
f�E2↑� + f�E2↓�

�E2 − E1��E2 − E3�

E2 + Ekq +
k · q

m

E2 + Ekq −
k · q

m

+
f�E3↑� + f�E3↓�

�E3 − E1��E3 − E1�

E3 + Ekq +
k · q

m

E3 + Ekq −
k · q

m

+
1

2�2��1 − f�
k−q↑� − f�
k−q↓�� −

k·q

�1�

Ekq
�1� �1 − f�E1,↑

�1�� − f�E1,↓
�1����� �B6�

and

1

2M* =
1

12mZ
�
k � f�
k−q↑� + f�
k−q↓� − 2

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
�

��−
12

m
�k · q� +

4

m
�k − q�2 +

8

m2 �k · q��k − q�2� 1

E1 + Ekq −
k · q

m

+
1

E2 + Ekq −
k · q

m

+
1

E3 + Ekq −
k · q

m
��

−

8

m2 �k · q��k − q�2�f��
k−q↑� + f��
k−q↓��

�E1 + Ekq −
k · q

m
��E2 + Ekq −

k · q

m
��E3 + Ekq −

k · q

m
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f�E1↑� + f�E1↓�
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4

m
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− 6

E2 + Ekq +
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Here we define ukq
�1�2

= 1
2 �1+


kq
�1�

Ekq
�1� � and vkq

�1�2
= 1

2 �1−

kq

�1�

Ekq
�1� �, where 
kq

�1�=Ekq−k ·q /2m.
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