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Quantum confinement of electrons in a high-quality metallic nanofilm results in the formation of quantum-
well states. The band of single-electron states is split into a series of subbands moving in energy with changing
film thickness. When the bottom of such a subband passes through the Fermi surface, a shape resonance
appears leading to oscillations of the critical temperature Tc as a function of film thickness. We present a
quantitative description of recent experimental data on the film-thickness dependence of Tc in Pb nanofilms
with atomic-scale uniformity in thickness �Science 306, 1915 �2004�� through a numerical solution of the
Bogoliubov–de Gennes equations.
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I. INTRODUCTION

When the characteristic size of a superconductor is of the
order of the bulk Fermi wavelength �F �for most metals,
�F�1 nm�, quantum confinement of electrons plays a major
role. For high-quality metallic films quantization of the elec-
tron motion in the direction normal to the film results in the
formation of so-called quantum-well states �QWS�, and the
band structure of the single-electron states is split in a series
of two-dimensional �2D� parabolic subbands. QWS move
down in energy with increasing the film thickness. When a
QWS passes through the Fermi surface, a new subband �re-
lated to this QWS� comes into play. If the film thickness is
small enough, this passage is accompanied by a significant
change of the density of single-electron states near the Fermi
level. Consequently, the electronic properties of a thin me-
tallic film will be greatly modulated by varying its thickness.

In agreement with these expectations, photoelectron spec-
troscopy has demonstrated clear signatures of the formation
of such QWS’s in thin crystalline metallic films.1 In addition,
recent experimental studies have shown that the surface
energy2 and thermal stability3 strongly vary with changing
film thickness. The variations were found to follow a damped
oscillatory curve of Friedel-like form.2,3 Very recently, oscil-
lations of the superconducting temperature Tc and perpen-
dicular upper critical magnetic field Hc2� were also
reported4,5 for Pb nanofilms with atomic-scale uniformity in
thickness. Contrary to previous results on the thickness de-
pendence of Tc in Sn �Ref. 6� and Pb �Ref. 7� films, this is a
solid demonstration that the observed variations are corre-
lated with the passages of QWS through the Fermi surface.
Motivated by these experimental findings, we present a de-
tailed theoretical investigation of the Tc oscillations in vari-
ous metallic nanofilms. Earlier works on this subject8 were
limited to a simplified multiband BCS model and did not
investigate how the Tc oscillations are dependent on the rel-
evant parameters. Furthermore, those works were pure theo-
retical and no comparison with experiment was given. Here
we present a microscopic study which is based on the
Bogoliubov–de Gennes �BdG� equations,9 where we include

the important QWS and give a detailed comparison with re-
cent experiments.

This paper is organized as follows. In Sec. II we outline
the formalism of the BdG equations and apply it to nanofilms
in the parabolic band �PB� approximation. Section III pre-
sents numerical results of the BdG equations solved in a
self-consistent manner for various metallic nanofilms. We
discuss shape superconducting resonances resulting in quan-
tum oscillations of the critical temperature and the effect of
such resonances on the superconducting order parameter. In
Sec. IV we investigate how the Tc oscillations are dependent
on the Fermi level. It is shown that experimental results for
the period of the oscillations are not reproduced by the BdG
equations when using the PB approximation. Strictly speak-
ing, the actual band structure in the presence of quantum
confinement is needed to recover the right periodicity of the
Tc oscillations. Therefore, we introduce an effective Fermi
level which is able to provide the correct period of the quan-
tum oscillations within the PB approximation. In Sec. V we
show that the experimental data for the critical temperature
in Pb�111� nanofilms fabricated on a silicon substrate can be
well described by our theoretical results if we incorporate
also the interface effect on the electron-phonon coupling.

II. THE BOGOLIUBOV–DE GENNES EQUATIONS FOR A
FILM

In the presence of quantum confinement translational in-
variance is broken and the superconducting order parameter
depends on the position �=��r�. It is well known that the
Bogoliubov–de Gennes �BdG� equations9 are a powerful tool
for investigating the superconducting properties in spatially
inhomogeneous systems. These equations are written as

� He ��r�
�*�r� − He

* ��ui�r�
vi�r�

� = Ei�ui�r�
vi�r�

� , �1�

where for zero magnetic field the single-electron Hamil-
tonian He is given by
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He = −
�2

2m
�2 + U�r� − � �2�

with � the chemical potential and m the electron band mass
set to the free electron mass here. To study quantum-size
effects, we consider a crystalline nanofilm that is in the clean
limit in the transverse direction �Lz� le, where le is the mean-
free path and Lz is film thickness�. The periodic lattice po-
tential is taken into consideration by introducing the electron
band mass, i.e., the parabolic band �PB� approximation. We
limit ourselves to zero applied magnetic field and conse-
quently the order parameter can be chosen as a real quantity
��r�=�*�r�. The normal and anomalous mean-field poten-
tials are related to the eigenfunctions ui�r� and vi�r� through

U�r� = − g�
i

�	ui�r�	2f i + 	vi�r�	2�1 − f i�� , �3a�

��r� = g�
i

ui�r�vi
*�r��1 − 2f i� , �3b�

with g the electron-phonon coupling and f i= f�Ei� the Fermi
function. The sum in Eq. �3a� is over all positive energies Ei.
The same summation range applies in Eq. �3b� but in addi-
tion it is limited to the Debye window of the single-electron
energies 	�i 	 ���D, where �D is the Debye frequency and �i
is given by

�i =
 d3r�ui
*�r��−

�2

2m
�2 + U�r� − ��ui�r�

+ vi
*�r��−

�2

2m
�2 + U�r� − ��vi�r�� . �4�

Without this additional limitation the sum in Eq. �3b� is di-
vergent due to the 	-function approximation for the electron-
electron interaction.9 The BdG equations should be solved
together with the self-consistency relations �3a� and �3b� for
a given chemical potential � which is determined by

ne =
2

V

 d3r�

i

�	ui�r�	2f i + 	vi�r�	2�1 − f i�� , �5�

where ne is the mean electron density and V=LxLyLz is the
system volume �Lz
Lx=Ly�. The sum in Eq. �5� is over all
the states with positive Ei.

We use periodic boundary conditions in the plane of the
film, i.e., for the x and y directions. In this case ��r�=��z�
and U�r�=U�z�, and we may write

ukxkyj�r� =
eikxx


Lx

eikyy


Ly

ũkxkyj�z� , �6a�

vkxkyj�r� =
eikxx


Lx

eikyy


Ly

ṽkxkyj�z� , �6b�

where i= �kx ,ky , j� with kx�ky� the free electron wave vector
in x�y� direction and j the quantum number related to the
electron motion in the z direction normal to the film. The
normalization condition


 dz�	ũi�z�	2 + 	ṽi�z�	2� = 1 �7�

is implied in Eqs. �6a� and �6b� �see, for instance, Ref. 9�.
Due to the electron confinement in the z direction we have

ũi�0� = ũi�Lz� = 0, ṽi�0� = ṽi�Lz� = 0, �8�

which implies that the eigenfunctions �and, so, U�z� and
��z�� can be expanded in the QWS given by

�l�z� = 
2/Lz sin���l + 1�z/Lz� . �9�

Introducing the QWS components

ũi
�l� =
 dz�l

*�z�ũi�z�, ṽi
�l� =
 dz�l

*�z�ṽi�z� , �10�

we can rearrange the BdG equations as follows �i
= �kx ,ky , j��:

Eiũi
�l� = � �2

2m
��2�l + 1�2

Lz
2 + kx

2 + ky
2� − ��ũi

�l�

+ �
l�

�Ull�ũi
�l�� + �ll�ṽi

�l��� , �11a�

Eiṽi
�l� = �� −

�2

2m
��2�l + 1�2

Lz
2 + kx

2 + ky
2��ṽi

�l�

+ �
l�

��ll�ũi
�l�� − Ull�ṽi

�l��� �11b�

with

�ll� =
 dz�l
*�z���z��l��z� , �12a�

Ull� =
 dz�l
*�z�U�z��l��z� . �12b�

Note that ��z� and U�z� are expressed in terms of ũi�z� and
ṽi�z� by means of Eqs. �3b� and �3a� where ui�r� and vi�r�
are replaced by ũi�z� and ṽi�z�.

The coupled set of equations �11a� and �11b� were solved
numerically by iterations until full self-consistency was
reached. At the first iteration the bulk values for the anoma-
lous and normal mean-field potentials ��z�=�bulk and U�z�
=Ubulk were taken. At each iteration step the eigenvalues Ei

and corresponding eigenvectors �ũi
�0� . . . ũi

�l� . . . ṽi
�0� . . . ṽi

�l� . . . �
were calculated by transforming the governing matrix to a
diagonal form and, then, new values of U�z� and ��z� were
found through Eqs. �3a� and �3b�. In the case of strong de-
viations of the chemical potential from its bulk value �which
is the case for very thin films with thickness less than 2
−3 nm�, the iterative procedure was repeated for various �
until the mean electron density was obtained �see Eq. �5��.
The thickness-dependent superconducting temperature Tc
was found as the point above which ��z�=0 is the only so-
lution of Eqs. �11a� and �11b�.

It is well known10 that the superconducting order param-
eter is not sensitive to the Hartree-Fock �normal� mean-field
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potential in case of a spatially homogeneous situation ��bulk
remains the same for Ubulk=0�. We confirmed, through a
numerical investigation of the Bogoliubov–de Gennes equa-
tions, that a similar conclusion holds for nanofilms: though
��z� changes when including the normal mean-field poten-
tial, but this change is within a few percent. Therefore, in this
work we present numerical solutions of Eqs. �11a� and �11b�
for the case U=0.

III. SHAPE RESONANCES IN THE SUPERCONDUCTING
PROPERTIES

The physics of the superconducting oscillations in the or-
der parameter and in Tc can be understood as follows. Since
the classical papers by Gor’kov11 and Bogoliubov12 it is
known that the superconducting order parameter is the
Cooper-pair wave function for the situation when both fer-
mions have the same spatial coordinates. In other words,
��r� can be seen as the wave function describing the center-
of-mass motion of a Cooper pair. The Cooper-pair wave
function is influenced by the surrounding electrons of the
Fermi sea13 so that the single-fermion states with energies
well below the Fermi level do not make any essential con-
tribution to the order parameter. As a result, ��r� will depend
on the density of the single-fermion states �per unit volume
and per spin projection� situated in the nearest vicinity of the
Fermi level. Quantization of the electron motion in the direc-
tion normal to the film leads to the formation of QWS and a
splitting of the band of single-electron states in a series of
subbands. When the bottom of a given subband passes
through the Fermi surface �with a change of film thickness�,
the density of single-electron states near the Fermi level in-
creases abruptly. For nanofilms, this increase is significant.
However, when approaching the bulk regime, the effect is
washed out. Thus, the density of states per unit volume and
per spin projection exhibits remarkable damped oscillations
as a function of Lz. The same occurs for any superconducting
property. It is important to note that the single-electron states
located at the bottom of a subband give practically the same
contribution to ��r� �it is determined by Eqs. �11a� and �11b�
at kx=ky =0�. This plays the role of amplifier: an increase of
the superconducting quantities is more significant than a cor-
responding increase in the density of states. Thus, following
Blatt and Thompson �see the first two articles in Ref. 8�, the
enhancement of superconductivity due to the passage of a
QWS through the Fermi surface can be called a shape super-
conducting resonance.

The thickness-dependent superconducting temperature Tc
calculated self-consistently from Eqs. �11a� and �11b� is plot-
ted in Fig. 1 in units of Tc,bulk for four different metals �in our
numerical calculations we took Lx=Ly 
500 nm to guarantee
a sufficient accuracy, in order to be valid in the limit Lx ,Ly
→ +��. The relevant parameters �see the textbooks9,10,14� are
given in Table I. Here kB is the Boltzmann constant,
Nbulk�0�=mkF / �2�2�2� denotes the bulk density of the
single-electron states at the Fermi level and kF is the 3D
Fermi wave number. Temperature dependence of the chemi-
cal potential is negligible for T�Tc and, hence, we can write
kF=
2m�bulk /�. As seen from Fig. 1, in general we obtain a

sawtooth behavior for Tc that is more complicated then the
simple Friedel-like expression �cos�2kFLz� /Lz

����1� typi-
cal for the thermal-stability function and the surface
energy.2,3 At the resonant points the superconducting tem-
perature increases well above its bulk value Tc,bulk. Whereas
between two neighboring resonances Tc moves down and
even drops below Tc,bulk. However, the resonance enhance-
ments are more pronounced than depressions. Amplitudes of
the shape resonances in Tc /Tc,bulk are very sensitive to the
governing parameters. Recall that the bulk superconducting
quantities are determined by �D and gNbulk�0�.9,10 However,
the resonant deviations depend on the three parameters �D,
g, and �bulk �the chemical potential � appearing in the BdG
equations depends on the mean electron density and, so, is
fully determined by �bulk�. In other words, it is not sufficient
to fix the product gNbulk�0� in this case. One should know the
electron-phonon coupling g and the bulk density of states
Nbulk�0� separately. Numerical investigation shows that oscil-
lations of Tc /Tc,bulk are becoming less profound with increase
of any of the parameters mentioned above. The point is that
such increase results in an increase of the “condensation”
energy of the superconducting electrons. In this situation
some additional confinement energy is required to produce
the same deviations from the bulk value, which results in a
systematic shift of the shape superconducting resonances to
smaller film thicknesses. It follows from Fig. 1 that cadmium
ultrathin films exhibit the most profound resonances. In alu-

FIG. 1. �Color online� The relative critical temperature
Tc /Tc,bulk versus the film thickness Lz for cadmium, aluminum, tin,
and lead nanofilms.

TABLE I. Parameters used in the numerical calculations.

Metal ��D /kB gNbulk�0� Fermi level ��bulk�

Cd 164 K 0.18 7.47 eV

Al 375 K 0.18 11.7 eV

Sn 195 K 0.25 10.2 eV

Pb 96 K 0.39 9.47 eV
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minum they are less due to the larger Debye frequency and
electron density. The shape superconducting resonances in
tin and lead nanofilms are significantly suppressed by the
stronger electron-phonon coupling.

It is instructive to compare the Tc oscillations with the
corresponding oscillations in the density of states at the
Fermi level N�0� �here N��� denotes the density of single-
electron states per unit volume and per spin projection at the
energy � measured from ��. Note that N�0� was estimated as
the number of relevant states �entering the Debye window�
divided by 2��D and V. The estimation is accurate enough
because ��D
� in the case of interest. In Fig. 2 the
thickness-dependent N�0� extracted from a numerical solu-
tion of the BdG equations is plotted versus Lz in units of
Nbulk�0� for Al and Sn films. The main feature of the N�0�
oscillations is that drops of N�0� with respect to Nbulk�0� are
more pronounced than enhancements, and the amplitudes of
these drops are not very sensitive to the material. The in-
crease of N�0� /Nbulk�0� at the resonant points is much less
significant than the corresponding Tc enhancement. The “am-
plification” factors �see the end of the first paragraph in this
section� are about 6 and 4 for aluminum and tin, respectively.
We remark that, in contrast to the naive expectation that Tc
should be equal to its bulk value when N�0�=Nbulk�0�, we
find Tc
Tc,bulk for such cases �see Fig. 1�.

Numerical results demonstrate that the distance between
two neighboring resonances is about � /kF, which is one-half
of the 3D Fermi wavelength �F �see the Sn panel of Fig. 2�.
Single-electron states of a gas of noninteracting electrons are
not exactly the same as such states in the presence of the
Cooper pairing but they are close to each other. That is the
reason why the above period of shape superconducting
resonances can be explained in terms of the quantum well
states �l�z� given by Eq. �9�. This l state has the energy
�2�2�l+1�2 / �2mLz

2� and, so, passes through the Fermi sur-
face for film thickness ���l+1� /
2m�. Hence, the distance
between two neighboring resonances can be estimated as
�L=�� /
2m�. When � approaches �bulk, we find �L

��F /2. To give a feeling about the thickness dependence of
�L, we remark that � slowly increases with decreasing film
thickness �this increase is not monotonic but shows little
peaks at the resonant points�. For instance, �=11.2 eV in a
Sn film with thickness Lz=1 nm while �→�bulk=10.2 eV
near the bulk regime. Thus, in agreement with Fig. 2, �L
��F /2 within the accuracy of several percent provided that
the film thickness Lz
1 nm.

QWS passages through the Fermi surface result not only
in an increase of the superconducting quantities such as Tc
and ��z�. They are also accompanied by a strongly nonuni-
form spatial distribution of the superconducting order param-
eter. In Fig. 3 ��z� is plotted as a function of the z coordinate
normal to the film for the two resonant values of Lz and
beyond. Generally, ��z� is found to be an oscillating function
with period that slightly decreases when moving from the
sample boundaries to the center. For instance, when Lz
=1.51 nm, one-half of this period is about 0.146 nm near the
boundaries but 0.105 nm in the center. At the resonant points
�Lz=1.51 and 1.74 nm in Fig. 3� the mean value of this pe-
riod amounts to �� /
2m�, which is very close to �F /2.
While a shape resonance decays with increasing film thick-
ness, the averaged period of the spatial oscillations in ��z�
increases but the amplitude of such oscillations decrease to-
gether with the mean value of the superconducting order pa-
rameter. The number of peaks remains the same until the
next shape resonance comes “into play.” In the vicinity of
this point a new peak arises in the center, and the averaged
period of the spatial oscillations of the order parameter drops
down to �F /2. Such drops are determined by the ratio be-
tween the number of peaks in ��z� below and above the

FIG. 2. �Color online� The density of single-electron states at
the Fermi level N�0� in units of the bulk density of states Nbulk�0� as
a function of the film thickness for aluminum and tin nanofilms.

FIG. 3. �Color online� Spatial distribution of the relative super-
conducting order parameter ��z� /�bulk�z� in a Cd film of various
thicknesses. The upper panel illustrates the decay of the shape su-
perconducting resonance appearing at Lz=1.51 nm. The lower panel
is for the resonance at Lz=1.74 nm.
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resonant points. If associating any shape superconducting
resonance with such number n, the resonant point Lz

�n� is then
given by �when ignoring the thickness dependence of the
Fermi level�

2kFLz
�n� = 2�n , �13�

which follows from our numerical results and is explained by
the Bohr-Sommerfeld quantization rule. More accurate result
for Lz

�n� can be found when kF is replaced by 
2m� /� in Eq.
�13�. Concluding this section, we remind the reader that the
Ginzburg-Landau �GL� theory was found to be very reliable
when investigating mesoscopic superconductors �samples
with micron and submicron dimensions�.15 From Fig. 3 it
follows that the GL approach becomes invalid for nanofilms
where the superconducting order parameter is spatially inho-
mogeneous even in the absence of a magnetic field due to the
shape superconducting resonances. Furthermore, ��z�=0 at
the edge of a nanofilm while the GL approach �supplemented
by the conventional boundary condition� gives ��z��0 at
the edge of the film. Remember that the conventional bound-
ary condition implies zero current through the sample sur-
face. In the absence of a magnetic field the GL equations
solved together with such a boundary condition result in a
uniform spatial distribution of the Cooper pairs inside a su-
perconducting specimen for any geometry �see, for instance,
paragraph 5 in Sec. VI of Ref. 9�.

IV. EFFECTIVE FERMI LEVEL

As shown in the previous section, the distance between
two neighboring superconducting resonances is close to
�F /2. Keeping to the standard bulk values for the Fermi level
given in Table I, we find that �F /2 is about 0.2 nm �provided
that the parabolic band approximation is used�. For instance,
for Pb, which is often used in experiments, this yields
�F /2�0.7a, where a=0.286 nm denotes the thickness of
one monolayer �ML� in Pb�111�.16 According to the above
estimation, one could expect that a QWS passes through the
Fermi surface in Pb�111� nanofilms with a period less than 1
ML. However, photoelectron spectroscopy demonstrates that
this period is larger and close to 2 ML.4 To reproduce this
value with the PB approximation we need to set �bulk
�1 eV which is almost an order of magnitude smaller than
the value given in Table I. It is of importance to note that
such disagreement was also found for other materials. Pho-
toemission experiments on thin films of Cu, Ag, Au, Co, and
Fe showed similar features.1 The general explanation is that
the above problem is not connected with a depletion of the
electron density in thin films but is an artifact of the PB
approximation.1 One needs the actual band structure in the
presence of quantum confinement to determine the period of
the QWS passages through the Fermi surface in thin films.
For instance, recent first-principle calculations of the quan-
tized band structure of Pb�111� films have shown that the
period in question is about 2.2 ML.16 Another theoretical
result for this quantity is 1.8 ML.4 Both results are in agree-
ment with the experimental observation of a period of
2 ML.4

To complement the discussion of the previous paragraph,
we calculated the 1D energy spectrum of an electron in a
model external potential given schematically in Fig. 4�c�. In
this simplified situation ã is the analog of the lattice spacing
and the number of wells situated between the infinite walls
models the number of monolayers. In Fig. 4�a� the calculated
energies of the QWS corresponding to the third Brillouin
zone are shown versus the number of wells. The two states
associated with the first and last wells �say, the surface
states� are much higher in energy and not given here. The
bulk energy dispersion for the third Brillouin zone is shown
in the reduced zone representation in Fig. 4�b�. To demon-
strate how the periodicity of the QWS-passages through the
Fermi surface depends on the Fermi level, three variants of
its choice are highlighted here: level 1 is situated near the
bottom of the zone, level 2 lies exactly in the center, and
level 3 is near the edge of the zone. The relevant QWS are
marked with the filled circles so that the period of the QWS
passages is given by the distance between two neighboring
circles. As seen, for level 1 the distance is 6ã. It is of impor-
tance to note that this result is also obtained within the PB
approximation if we take �bulk

�1� =10 meV that is exactly the
energy of level 1 measured from the bottom of the zone �but
not 34.295 eV, measured from the bottom of the well�. Note
that the band mass is about 4.1m in this illustrative example
�it can be calculated from the dispersion in Fig. 4�b��. The
relevant formulas about the periodicity of the QWS passages
�or shape resonances� in terms of the PB approximation can
be found in the previous section. Level 3 shows the same
QWS periodicity as level 1. It is interesting that to determine
the electron band mass and the effective Fermi level for the
PB approximation in this situation, the edge of the zone

FIG. 4. �Color online� �a� The energy spectrum of a 1D electron
placed in the external potential given schematically below in panel
�c�. The energies corresponding to the third Brillouin zone are plot-
ted versus the number of wells. �b� is the the bulk energy dispersion
for this Brillouin zone in the reduced zone scheme. Levels 1,2,3 are
three possible positions of the Fermi level, and the thick solid
circles represent the states passing through the Fermi surface.
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should be chosen as the reference point �see also the discus-
sion in Ref. 4�. The period of the QWS passages through the
Fermi surface for level 2 is very close to the result of the PB
approximation with an accuracy of about 10% even when
introducing the effective Fermi level �of course, due to the
location in the center of the zone�. It does not matter whether
the bottom or the edge of the third Brillouin zone is now
taken as the reference point. Figure 5, where the energies of
the QWS corresponding to the second Brillouin zone are
plotted, demonstrates that the main aspects concerning the
QWS periodicity do not change with the chosen zone. As
seen, levels 1�, 2�, and 3� show the same period of the QWS
passages as levels 1, 2, and 3 in Fig. 4. Also now the PB
approximation gives good results if an effective Fermi level
is used with the same features concerning the choice of the
reference point.

Thus, based on the above simple picture, we expect that
the PB approximation yields correct results for the period of
the quantum-size oscillations when an effective Fermi level
is introduced. It is important that in spite of the number of
Brillouin zones being “in play,” this effective Fermi level is
determined by the relative position of the “true” Fermi level
with respect to the bottom �or edge� of the highest occupied
Brillouin zone in the plane corresponding to the film orien-
tation. The BdG equations �11a� and �11b� are given in the
PB approximation. Hence, though the qualitative tendencies
and conclusions found in Sec. III are valid, in order to have
relevant quantitative results we should incorporate an effec-
tive Fermi level rather than the values given in Table I. When
such an effective Fermi level is used in the BdG equations,
the product gNbulk�0� should be kept the same, in order to get
the correct bulk limit for the superconducting order param-
eter and critical temperature.

V. Tc OSCILLATIONS FOR FILMS WITH AN EVEN (ODD)
NUMBER OF MONOLAYERS

In order to observe experimentally clear signatures of the
QWS formation, one should grow ultrathin high quality films
with atomic-scale uniformity in thickness. Therefore, the
film thickness is expressed as an integer number of mono-
layers. In Pb�111� films QWS passes through the Fermi sur-
face with a period of about 2 ML, which results in spectacu-
lar oscillations2–5 of the physical properties between films
with even and odd number of monolayers �the even-odd or

bilayer oscillations�. In addition, difference between 2 ML
and the real period of the QWS passages through the Fermi
surface results in a beating effect on the bilayer oscillations.
It implies relatively slow thickness-dependent oscillations of
the physical properties in films made of even �or, alterna-
tively, odd� number of monolayers, say, the even �odd� os-
cillations. These even �odd� oscillations lead to a switching
of the film stability from even to odd number of monolayers
and vice versa.4 In particular, when the thickness is smaller
than 22 ML only stable odd-layered Pb�111� films were ob-
tained experimentally.4 Below we investigate the Tc oscilla-
tions in the even- and odd-layered Pb�111� nanofilms.

In Fig. 6 the theoretical results for even �odd� oscillations
of the superconducting temperature in Pb�111�nanofilms are
given versus the number of monolayers N. The three upper
panels show the data from a simplified Friedel-like approxi-
mation Tc /Tc,bulk=A cos�2kFaN� /N�+1, where �=0.938 �see
Ref. 4� and, recall, a=0.286 nm for Pb�111�.16 The factor
A=13 is chosen in such a way that amplitudes of the Tc
oscillations given in the upper panels are close to the ampli-
tudes of the oscillations given in the lower panels, where
Tc /Tc,bulk is calculated using the BdG equations. The squares
show the data for the odd-layered films whereas the triangles
represent the even-layered films. The left panels correspond
to the QWS-periodicity 2.2 ML ��bulk=1.07 eV�. In the cen-
tral panels the distance between two neighboring shape su-
perconducting resonances is about 2.0 ML ��bulk=1.25 eV�.
The right panels are for the period 1.8 ML ��bulk

=1.555 eV�. Note that the results from the BdG equations
are very different from the Friedel-like oscillatory behavior.
For instance, the BdG results show a qualitative difference
between the even �odd� oscillations in the left and right pan-
els of the lower row in contrast to the simple Friedel-like
approximation. The even �odd� oscillations disappear when
the period of the QWS passages through the Fermi surface is
exactly equal to 2 ML.

Figure 6 shows Tc for so-called freestanding Pb�111�films.
However, in experiments Pb films are grown on a Si�111�

FIG. 5. �Color online� The same as in Fig. 4�a� but for the
second Brillouin zone.

FIG. 6. �Color online� The thickness dependence of Tc /Tc,bulk in
odd-layered �squares� and even-layered �triangles� Pb�111� nano-
films for the QWS periods 2.2, 2.0, and 1.8 ML. The upper panels
show results of the simplified Friedel-like approximation discussed
in the text, the lower panels give the numerical results of the BdG
equations.
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substrate,2–5,19 and the Tc oscillations were reported for
Pb�111� films with an Au coverage of about 4ML in thick-
ness. Such substrate and coverage can change the electron-
phonon coupling constant in ultrathin films �with respect to
the bulk� due to an interface effect.17 For instance, in ultra-
thin films �with N�16 ML� made of Ag on a Fe�100� sub-
strate the interface was shown to have a significant effect on
the electron-phonon coupling which decreases down to its
bulk value as the film thickness increases.17 Deviations of the
coupling constant from the bulk limit follow approximately
an overall 1 /N dependence.17 Note that the relative number
of film atoms at the interface is proportional to 1/N. Hence,
we may expect that the effect of the interface on the physical
properties should on average scale as �1/N �see discussion
in Ref. 18�, which is in agreement with the experimental
result of Ref. 17. Measurements of the Eliashberg mass-
enhancement factor � in Pb�111�ultrathin films4 demonstrate
that in this case the electron-phonon coupling is lower than
in bulk and gradually increases towards the bulk value with
increasing film thickness. It is believed4 that such behavior is
due to the influence of the silicon substrate.4 Hence, based on
Refs. 4 and 17, it is reasonable to assume that, for the ex-
perimentally interesting situation of Pb�111�nanofilms grown
on a silicon substrate, the electron-phonon coupling constant
will depend on the film thickness. Following the above dis-
cussion, we approximate it by the form �for N�1�

g = g0 −
g1

N
, �14�

where g0Nbulk�0�=0.39 �this results in the correct bulk criti-
cal temperature and order parameter�. The overall thickness-
dependent drop of the superconducting temperature recently
found in Refs. 4 and 19 for Pb�111� nanofilms with N�30
ML is reproduced when we take g1Nbulk�0��0.1−0.2. Figure
7 illustrates how the Tc oscillations are changed in the pres-
ence of the thickness-dependent coupling given by Eq. �14�
�compare with Fig. 6 for the thickness independent cou-
pling�. Equations �11a� and �11b� were solved using Eq. �14�
taking g1Nbulk�0�=0.17 for the three different periods of the
QWS passages through the Fermi surface 2.2, 2.0, and 1.8
ML. We found that the results corresponding to the period
1.8 ML are not in agreement with the general trend of the

experimental points �see Refs. 4 and 19�. However, the ex-
perimental results are well reproduced if the QWS period is
chosen to be about 2 ML or slightly larger than 2 ML. In Fig.
8 we present theoretical results for Tc obtained when using
the thickness-dependent electron-phonon coupling �filled
squares and triangles for odd- and even-layered films, re-
spectively� and compare them with the experimental data of
Ref. 4 for Pb�111� nanofilms �empty squares for the odd-
layered films and empty triangles for the even-layered films�.
The BdG equations were solved using �bulk=1.25 eV, which
corresponds to a period of the QWS passages through the
Fermi surface of about 2 ML. Good agreement with the ex-
perimental data for the odd-layered films is achieved when
g1Nbulk�0�=0.204 �see the left panel of Fig. 8�. For the even-
layered Pb�111� films there are only few experimental points
but we found that g1Nbulk�0��0.26 in this case �see the right
panel of Fig. 8�. The difference in g1 between the odd- and
even-layered nanofilms is due to the fact that the approxima-
tion given by Eq. �14� provides only the correct baseline for
the electron-phonon coupling constant but neglects the fine
structure resulting in the even-odd oscillations.4,17 To get a
more accurate approximation, a damped oscillatory term
should be added to the expression in the right-hand side of
Eq. �14�. Then the electron-phonon coupling reads

g = g0 −
g* + f�2kFaN�

N
, �15�

where f�x� is a function oscillating around zero with period
2� �compare Eq. �15� with the Friedel-like approximation
given in the upper panels of Fig. 6�. Now variations of the
electron-phonon coupling follow a damped oscillatory curve
superimposed on the base line g0−g* /N. When the period
of the QWS passages through the Fermi surface is given
by � /kF=2a �or 2 ML�, from Eq. �15� we find g=g0
− �g*+ f���� /N for the odd-layered films and g=g0

− �g*+ f�2��� /N for the even-layered films. This explains the
above difference in g1. Putting, for the sake of simplicity,
f�2kFaN�=cos�2kFaN� �hence, invoking a Friedel-like ap-
proximation for the electron-phonon coupling�, we get g*
=0.232/Nbulk�0� and f�2��=−f���=0.028/Nbulk�0� for the

FIG. 7. �Color online� The relative superconducting temperature
versus the number of the monolayers in odd-layered �squares� and
even-layered �triangles� Pb�111� nanofilms for the QWS periods
2.2, 2.0, and 1.8 ML. The data have been calculated from the BdG
equations with the thickness-dependent coupling constant g given
by Eq. �14� with g1Nbulk�0�=0.17.

FIG. 8. �Color online� The superconducting temperature for the
odd-layered �the left panel� and even-layered �the right panel�
Pb�111� nanofilms: the empty squares and triangles represent the
experimental data of Ref. 4; the filled squares �triangles� are the
numerical results of the BdG equations with the thickness-
dependent electron-phonon coupling constant given by Eq. �14�
with g1Nbulk�0�=0.204 �g1Nbulk�0�=0.26�.
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theoretical data given in Fig. 8. Our numerical results repro-
duce not only the experimental trends of Tc in the odd- and
even-layered Pb�111� nanofilms but also the fine structure of
the even-odd oscillations �see Fig. 9�. Note that in the ex-
periments of Ref. 4 the even-layered Pb�111� nanofilms were
found to be rough and unstable for N�22 ML. This can be a
solid reason for a difference between our predictions and
experimental results at N=22 ML. One can expect that being
at the edge of the stability region, a Pb�111� flat terrace with
N=22 ML was not as perfect as the even-layered terraces
with N
22 ML. Fluctuations in film thickness can signifi-
cantly smooth and even wash out the quantum oscillations of
the superconducting temperature �see the papers by Blatt and
Thompson in Ref. 8�. In addition, structural defects19 can
also be responsible for the difference between the theoretical
and experimental data in Fig. 9.

The critical temperature in Pb�111� films with an Au cap
cover4 and with an amorphous Ge cap layer19 were found to
be different. We may interpret this as due to different inter-
face effects, which leads to small changes in the electron-
phonon coupling constant, i.e., g1 in Eq. �14�. In Fig. 10 we
show that our calculations are in agreement with the results
of Ref. 19 when g1Nbulk�0�=0.077 for the odd-layered nano-
films and g1Nbulk�0�=0.177 for the even-layered specimens.
In terms of Eq. �15� this gives g*=0.127/Nbulk�0� and
f�2��=−f���=0.05/Nbulk�0�. From Figs. 8–10 we find that
there is little difference in Tc for odd- and even-layered
Pb�111� nanofilms �compare with Figs. 6 and 7�. The even-

odd oscillations in the critical temperature are significantly
weakened by the presence of the even-odd oscillations in the
thickness dependence of the electron-phonon coupling con-
stant. Another important consequence of Eqs. �14� and �15�
is a gradual decrease in the superconducting temperature
with reducing film thickness. This is in marked contrast with
recent results20 for Al nanowires where Tc was found to in-
crease with decreasing thickness. However, we should stress
that a silicon substrate influences the results for Pb�111�
nanofilms with thickness less than 30 ML �about 9 nm�. For
thicker films the effect is washed out and the electron-
phonon coupling approaches the bulk value. In this situation
we arrive at the regime illustrated in the lower panels of Fig.
6. As seen, this regime is characterized by an overall increase
of the thickness-dependent Tc when the film thickness de-
creases. Such increase was recently observed in Al nano-
wires, fabricated on a silicon substrate, with effective diam-
eter �10 nm.20

We want to stress that an oversimplified explanation of
the Tc drop in ultrathin Pb�111� nanofilms invoking the GL
theory with an extra surface term21 is not correct. Such an
explanation as that given in Ref. 19 ignores the fact that the
GL theory with the surface term predicts not only a drop of
the critical temperature in ultrathin nanofilms but also a de-
crease of the critical perpendicular and parallel magnetic
fields while the experimental data5 show an increase of the
perpendicular upper critical magnetic field in Pb�111� nano-
films.

We remark that atomically flat Pb terraces with width of
about 1−2 �m were investigated in Refs. 4 and 19. Very
recently the data for Tc in flat Pb islands grown on Si�111�
surface were reported �their width is about 50−100 nm�.22,23

It is interesting that the superconducting critical temperature
was found to be rather sensitive to the island width23 and
higher than Tc in Pb terraces. In order to go in more detail
about this problem, several points should be kept in mind.
First, contrary to the experiments of Refs. 4 and 19, lead
islands investigated in the papers22,23 were produced without
protecting cover caps. Second, scanning tunnelling spectros-
copy used in Refs. 22 and 23 is a local probe. On the con-
trary, the results for Tc in the Pb terraces were extracted from
measurements of the temperature dependent resistance and
upper critical magnetic field that involve an averaging over
the whole sample.4,19 At last, quantum growth defects19 can
contribute to a quenching of the electron-phonon coupling
found in the experiments with lead terraces on silicon.4

VI. CONCLUSION

Quantum-size variations of Tc in atomically uniform me-
tallic nanofilms with thickness less than the mean free elec-
tron path were studied through a self-consistent numerical
solution of the Bogoliubov–de Gennes equations. We found
pronounced oscillations in Tc with decreasing film thickness.
The maxima of these oscillations are substantially above
Tc,bulk while the minima are just below �about 10%� Tc,bulk.
The resonant enhancements of Tc are largest for Cd and
smallest in Pb nanofilms. Renormalization of the electron-
phonon coupling due to the presence of a substrate �and a

FIG. 9. The even-odd oscillations in the critical temperature of
Pb�111� films on silicon: empty circles represent the experimental
data from Ref. 4, solid circles are numerical results of the BdG
equations �parameters are the same as in the previous figure�.

FIG. 10. �Color online� The same as Fig. 8 but the experimental
data are now from Ref. 19 and theoretical results correspond to
g1Nbulk�0�=0.077 for the odd-layered nanofilms and g1Nbulk�0�
=0.177 for the even-layered films.
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protecting cover, as well� may reduce the predicted enhance-
ments in Tc. When comparing with recent experimental re-
sults on Pb�111� flat terraces grown on silicon, we found that
the damped oscillatory decrease in the electron-phonon cou-
pling constant strongly reduces the superconducting tem-
perature and smoothen its quantum-size oscillations. Based
on related experiments on the width dependence of nanofilm
properties �see Refs. 2, 3, and 17� we assumed a simple
damped Friedel-like analytical expression for the electron-
phonon coupling constant with two fitting parameters. Insert-

ing this expression into our numerical solution for the
Bogoliubov–de Gennes equations, we found excellent agree-
ment with the recent experimental results on the width de-
pendence of Tc in Pb�111� nanofilms.
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