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We propose techniques for implementing two different rapid-state purification schemes, within the con-
straints present in a superconducting charge qubit system. Both schemes use a continuous measurement of
charge �z� measurements and seek to minimize the time required to purify the conditional state. Our methods
are designed to make the purification process relatively insensitive to rotations about the x-axis, due to the
Josephson tunneling Hamiltonian. The first proposed method, based on the scheme of Jacobs �Phys. Rev. A 67,
030301�R� �2003�� uses the measurement results to control bias �z� pulses so as to rotate the Bloch vector onto
the x-axis of the Bloch sphere. The second proposed method, based on the scheme of Wiseman and Ralph
�New J. Phys. 8, 90 �2006�� uses a simple feedback protocol which tightly rotates the Bloch vector about an
axis almost parallel with the measurement axis. We compare the performance of these and other techniques by
a number of different measures.
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I. INTRODUCTION

Superconducting charge qubits �Cooper pair boxes� are a
promising technology for the realization of quantum compu-
tation on a large scale.1,2 For conventional fault-tolerant
quantum computing, the quantum states should have a high
level of purity, preferably being as close to a pure state as
possible. When the qubit is coupled to an environment it is
subject to decoherence, which will typically result in a com-
pletely mixed state.3 However, a qubit initially in a com-
pletely mixed state can be purified by measurement. Here we
consider continuous measurements, which can be considered
as a rapid succession of “weak measurements.”3 This gives
rise to stochastic “quantum trajectories” that “unravel”4 the
average density operator evolution described by the Markov-
ian master equation.5 The quantum trajectory is for the con-
ditional density operator, conditioned upon the specific mea-
surement record that was obtained in a given experiment.

In the Bloch sphere representation, pure qubit states lie on
the surface of the sphere, with mixed states being in the
interior, and the completely mixed state being at the center.
When a weak measurement is performed on the qubit, the
effect is to pull the state �on average� towards one of the
poles on the measurement axis �which we will take to be the
z axis for simplicity�. This pull corresponds to an increase in
the average purity over time. An infinitely fast measurement
would instantly project the state to one of the poles, as in the
quantum Zeno effect.6 However, real measurements are
never infinitely fast. Moreover, for a charge qubit it can be
difficult to connect and disconnect a strongly coupled �fast�
measuring device without introducing additional environ-
mental noise. Thus it is necessary to consider measurements
giving a finite rate of purification.

Since purification takes a finite time, it makes sense to
consider whether the information in the measurement record
can be used to change the process of purification via feed-
back. The use of such quantum feedback techniques to in-
crease the purity of conditioned states has been the subject of
a number of recent studies.7–9 Jacobs showed that the maxi-
mum increase in the average purity occurs when the qubit
Bloch vector is rotated onto the x-y plane �the plane perpen-
dicular to the measurement axis�, after each incremental
measurement.7 This strategy is optimal in the sense of maxi-
mizing the fidelity of the qubit with some fixed pure state at
a given final time, as has recently been shown using rigorous
techniques from control theory.10 In addition, this feedback
protocol is deterministic because even though the condi-
tioned density operator evolution is stochastic in general, the
stochastic term is proportional to the projection of the Bloch
vector along the measurement axis.7 Hereafter, in this paper,
this protocol is referred to as “ideal protocol I.”

Although ideal protocol I performs best in the sense just
defined, Wiseman and Ralph have recently shown that there
are reasons to consider the �conceptually� opposite approach,
namely keeping the Bloch vector aligned with the measure-
ment axis.9 They show that this results in the majority of
qubits reaching a given level of purity earlier than in ideal
protocol I. In fact this strategy is optimal in the sense of
minimizing the expected time for a qubit to reach a given
level of purity �or fidelity with a fixed pure state�.10 This is
achieved at the expense of having this time be stochastic
�unlike ideal protocol I�. Specifically, the distribution of qu-
bit purification times is heavily skewed, with a long tail of
low purity values. Hereafter, in this paper, this protocol is
referred to as “ideal” protocol II.
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This paper addresses a complication that occurs when one
attempts to apply either of these two schemes to a specific
model of a voltage-controlled charge qubit. A superconduct-
ing charge qubit consists of a superconducting island �also
known as a Cooper pair box� coupled to a bulk supercon-
ductor via a small capacitance and a Josephson weak link
junction. The Josephson junction, which allows the tunneling
of Cooper pairs onto and off the island, normally has limited
controls. Although the tunneling rate can often be modified
in experimental systems,11 the Josephson tunneling energy
provides an avoided level crossing between the two qubit
energy levels, and maintaining this minimum energy gap
minimizes the risk of thermal excitation of the system. Close
to this avoided crossing the energy states are formed from
superpositions of the quantized charge states �q=0,2e� that
act as the computational basis for this qubit. The tunneling
gives rise to a �x Hamiltonian corresponding to a rotation
about the x-axis. As the junction energy should not be zero,
the qubit Bloch vector is continually in motion. The effect of
the Hamiltonian evolution often dominates the evolution of
the system under the action of the continuous measurements.
This means the Bloch vector can neither be stopped near the
x-y plane or z-axis nor can the direction of rotation be re-
versed. However, the applied voltage bias allows some con-
trol over the z-axis rotations due to the �z term in the Hamil-
tonian. This voltage bias is more commonly expressed as an
effective biasing charge. ng

11,12

In this paper we study the purification of charge qubits
�Secs. II and III� using quantum feedback, based on both
ideal protocols discussed above. We suggest mechanisms
that could provide near optimal purification rates in the pres-
ence of more realistic feedback constraints than those con-
sidered in the ideal protocols previously studied.7,9 For the
protocol based on ideal protocol I we show that good rates
for the increase of the average purity should be achievable
using a constant Josephson energy and applying controlled
voltage bias field pulses to create a z-rotation to rotate the
state vector onto the x-axis �Secs. IV and V�. We refer to this
as practical protocol I. This is advantageous in two ways:
first the x-axis is trivially on the x-y plane, which satisfies the
rapid purification condition, and second the effective radius
of the x-rotations is reduced, so the vector remains near to
the plane even when the control pulses are not accurately
applied. Next, we will show that the Bloch vector can be
constrained to the region near the measurement axis �z-axis�,
by using a strong voltage bias field applied at the correct
moment to encourage tight radius orbits around an axis al-
most parallel to the z-axis �Secs. VI and VII�. This decreases
the average time for the qubit to purify, as in ideal protocol
II. We refer to this as practical protocol II. In Sec. VIII we
conclude with a brief summary of the results.

II. SYSTEM MODEL

A superconducting charge qubit, shown in Fig. 1, consists
of a small island of superconducting material connected via a
Josephson junction of tunneling frequency � to a bulk super-
conducting electrode, where �= IC /2. The electrode supplies
a voltage bias, which can be expressed as an effective charge

qg. The island is also capacitively coupled to a grounded
electrode to supply a common reference. For simplicity, we
ignore the dynamics of the biasing circuitry.13

The Hamiltonian of this system is

H =
�q − qg�2

2Cq
− �� sin�2�

�

�0
� . �1�

Here � is the superconducting phase difference across the
Josephson junction expressed in units of the flux quantum
�0=h /2e. There exists a commutation relation between the
conjugate variables of charge and phase, �q ,��=−i�. The
capacitance Cq is the effective qubit capacitance calculated
from the three physical capacitances,14 CJ, Cg, and Cp,

Cq =
CgCJ + CJCp + CpCg

Cg + Cp
�2�

�see Appendix A for values�. At low energies this Hamil-
tonian can be approximated by using just two states. Using
ng=qg /2e for the effective number of Cooper pairs induced
by the bias voltage, the Hamiltonian in the charge basis is
11,12

H =
�2e�2

2Cq
�ng

2 − ng +
1

2
�I +

�2e�2

2Cq
�1

2
− ng��z −

��

2
�x.

�3�

The first term may be discarded as the identity matrix does
not affect the dynamics of the system, but is included ini-
tially for comparison with Eq. �1�. The second ��z� term
shows that the applied voltage bias field controls the rota-
tions about the z-axis. When ng=0.5 the rotations are halted;
when ng	0.5 the qubit rotates in one direction, and when
ng
0.5 the direction is reversed. The third and final ��x�
term is caused by the Josephson junction. For a single Jo-
sephson junction at constant temperature and magnetic
fields, the frequency of rotation around the x-axis is fixed by
manufacture—we take the frequency to be 10 GHz, in line

FIG. 1. �Color online� The simple charge qubit model is an
island �orange box� coupled to a bulk bias electrode via a single
Josephson junction whose frequency is known. The qubit is con-
trolled via a bias voltage applied across the device. There are three
major capacitances, CJ is the capacitance of the Josephson junction,
Cg couples the island to a grounded electrode, and Cp is the para-
sitic capacitance observed between the bulk electrodes.
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with experimental values.15 This frequency is equal to the
minimum splitting �ng=0.5� shown by Fig. 2, and it is vital
that a sizeable separation is maintained to preserve the two
distinct states and suppress the effect of thermal fluctuations.
In some implementations it is possible to use a flux-
controlled Josephson junction to vary �.16 However, the
method proposed in this paper uses the voltage bias alone to
apply the feedback, thereby simplifying the control system.

III. CONTINUOUS MEASUREMENT

For scalable quantum computing17 it is necessary to work
with pure states. For qubits, this means states on the surface
of the Bloch sphere. Both pure states �surface of sphere� and
mixed states �inside the sphere�, can be written as a 2�2
density matrix �. The on-diagonal elements represent the
populations of, and the off-diagonal elements represent the
coherences between, the charge states. The impurity of the
qubit state can be quantified by the following 8:

L = 1 − P = 1 − Tr��2� . �4�

Any pure state has an impurity of zero, and the completely
mixed state has an impurity of 0.5.

One way to increase the purity of a state is through mea-
surement, that is to extract some information about the state
of the system. Assuming continuous measurement of charge
��z�, the conditioned state �c of the charge qubit obeys a
stochastic master equation 18 with the following form:

d�c = −
i

�
�H,�c�dt −




�
†�z,��z,�c�‡dt +�2


�
��z�c + �c�z

− 2��z	�c�dW . �5�

The first term is the Hamiltonian evolution, with H given by
Eq. �3�. The second term represents the back-action of the
measurement �parametrized by 
�. In the absence of Hamil-

tonian evolution, this causes a deterministic decay of the
mixed state towards the z-axis. �We have assumed that there
are no other sources of decoherence for simplicity�. The third
term is due to conditioning upon the measurement result. It is
stochastic, with dW being a Wiener increment.3,19 That is, in
every time interval of duration dt, dW is an independent
Gaussian distributed random variable, with zero mean and
variance equal to dt. This stochastic term depends upon the
particular unravelling considered,4,18,20 which depends upon
the measurement scheme. In this case we are conditioning
the state upon a continuous “current” which is different in
every run of the experiment and which is given by

I�t�dt =
4


�
Tr��c�t��z�dt +�2


�
dW�t� . �6�

This is a current in the generalized sense used in quantum
optics and other areas, such that I�t�dt is dimensionless. If
this measurement result is ignored then one simply averages
over the last term in the stochastic master equation �5�. This
yields the deterministic master equation given by the first
two terms of Eq. �5�.

Rather than evolve Eq. �5�, we implemented the simula-
tions using Bloch coordinates v= �x ,y ,z�T, which is equiva-
lent to using the density matrix formalism, however, the po-
sitional coordinates are easier to visualize. The equations for
the incremental changes in the Bloch coordinates due to con-
tinuous weak measurement dv= �dx ,dy ,dz�T can be found in
Appendix B. In addition the rotations due to the nonzero
Hamiltonian acting on the Bloch vector must be included.
The equations for dx, dy, and dz are then numerically inte-
grated over time.

As the system evolves under continuous measurement, it
tends to be pulled towards the surface of the Bloch sphere as
information �the measurement record� is obtained. In the ab-
sence of Hamiltonian evolution this Bloch vector will be
aligned with the measurement �z� axis, and the system will
evolve stochastically towards one or the other of the two
poles defined by this axis through the Bloch sphere. If the
Hamiltonian evolution is included, and if 
 is relatively
small, the Bloch vector will rotate under the action of the
Hamiltonian and be only weakly perturbed by the measure-
ment interaction. The information extracted by the measure-
ment is dependent upon the orientation of the Bloch vector
with respect to the measurement axis.7 This means that ma-
nipulating the Hamiltonian by external controls can affect the
way that the purity of the system increases. It is this that
forms the basis of the rapid purification protocols discussed
in the following four sections.

IV. FEEDBACK PROTOCOLS I

In this and the following section we are concerned with
protocols for maximizing the increase in the average purity,
as in ideal protocol I. Thus we need a baseline by which to
compare the various methods. This baseline is given by ideal
protocol II— a situation in which the ideal feedback controls
cancel any Hamiltonian evolution and the qubit Bloch vector
is allowed to drift stochastically towards the poles. This ap-

FIG. 2. �Color online� Energy level structure of the qubit. The
avoided crossing caused by the 10 GHz Josephson junction creates
an energy gap between the energy states. This separation is kept
relatively large to reduce problems caused by thermal excitations or
other extraneous noise.
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pears to be the worst in terms of the time T��� taken for the

average impurity L̄ to drop to a given level �. For the ideal
protocol II this function TII��� is defined implicitly by

L̄II�TII�=�, where7,9

L̄II�t� =
e−4
t

�8�t



−�

+� e−x2/�2t�

cosh��8
x�
dx . �7�

This integral can be solved numerically7 but for long times
�small �� an analytical approximation gives
TII� ln��−1� /4
.7,9 For shorter times �larger �� TII is bigger
than this expression.7 In general, TII can be used to define the
speed up factor for a given test method,

Stest��� =
TII���
Ttest���

. �8�

A. Ideal protocol I

The ideal protocol I7 rotates the Bloch vector onto the
plane orthogonal to the measurement axis to maximize the
increase in the average purity during each incremental step.
In our situation, this means rotating onto the x-y plane. This
protocol eliminates the stochastic contribution to the evolu-
tion of �c, as can be verified from the stochastic equations in
Appendix B. Thus the impurity equals the average impurity,
which decays exponentially:

L̄I�t� = e−8
t1

2
. �9�

From this, the time taken to reach impurity � is

TI = ln��−1/2�/8
 , �10�

and for minimizing this time this is an exceptional protocol.
Thus the maximum speed up factor is 2, in the limit of very
small �.

It would be extremely difficult to apply these instant and
perfect control fields to a practical qubit. In addition, for our
superconducting charge qubit there is also the continual mo-
tion of the state vector due to the nonzero Josephson junction
energy. The protocols discussed below address these issues.

B. Flux-controlled Hamiltonian feedback

Although this is not feedback, natural x-axis rotations take
the Bloch vector through the x-y plane �Fig. 3�, so there is
still an improvement over having no Hamiltonian evolution
at all. The spiral path only momentarily passes through the
x-y plane so it does not experience the full benefit of the
rapid purification protocol. However, it is possible to utilize a
method that uses a flux-controlled Josephson junction to ma-
nipulate the x-axis rotational frequency.16 The algorithm
slows the qubit, while the Bloch vector is close to the x-y
plane and then hastens the passage through the z-axis poles,
maximizing the time close to the x-y plane. The control is
purely via the �x term �modulating the Josephson tunneling
frequency, �� and always maintains a significant energy gap
to suppress the effects of thermal fluctuations. This benefit of

this approach is significant16 but not as close to ideal proto-
col I as the following approach. It is important to note that
Fig. 3 should not be interpreted as the average position of the
Bloch vector, as the stochastic measurement noise causes
random initial phases for the rotation, and as such the aver-
age position of the Bloch vector is the center of the Bloch
sphere for all time. This is also true for Figs. 4, 6, and 10,
which are only provided to illustrate the feedback concepts.

�Note that this should not be interpreted as the average
position of the Bloch vector, as the stochastic measurement
noise causes random initial phases for the rotation, and as
such the average position of the Bloch vector is the center of
the Bloch sphere for all time. This is also true for Figs. 4, 6,
and 10, which are only provided to illustrate the feedback
concepts.�

C. Practical protocol I

The first algorithm proposed in this paper attempts to use
finite duration voltage bias pulses to rotate the Bloch vector
repeatedly on to the x-axis, taking a screwlike path �Fig.
4�a��, we refer to this as practical protocol I. The x-axis is of
particular interest as it is invariant under x-rotation. There-
fore if the vector can somehow be positioned close to the
x-axis, it should remain close to the x-y plane, even in the
absence of further control pulses. This is why the x-axis is an
attractive target in the presence of continuous x-rotation due
to Josephson tunneling. However, the effect of the weak
measurement is to pull the Bloch vector towards the poles, so
the Bloch vector will be gradually pulled away from the
x-axis in a growing spiral path. Therefore to successfully

FIG. 3. �Color online� Under continual x-rotation and the influ-
ence of weak measurement, the time evolution of the Bloch vector
takes a spiral path. The weak measurements increase the purity, as
the purity is a direct measure of the Bloch vector length, the length
of the vector is increasing. As there is only one axis of rotation, the
vector length corresponds to the radius of the orbit. Hence the spiral
path found in the yz-plane only. Note that this should not be inter-
preted as the average position of the Bloch vector, as the stochastic
measurement noise causes random initial phases for the rotation,
and as such the average position of the Bloch vector is the centre of
the Bloch sphere for all time. This is also true for Figures 4, 6 and
10, which are only provided to illustrate the feedback concepts.
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return the Bloch vector to the x-axis, a simple control scheme
has been devised which utilizes a finite duration Hamiltonian
proportional to �z to return the vector to the x-axis within a
half cycle. The feedback process triggers when z exceeds a
particular threshold zLimit �Fig. 5�. On triggering, the control-
ler applies a bias field �z-axis rotation� of the required am-
plitude and duration. An advantage of this approach is that
the control field does not need to be continually altered.

After the Bloch vector has reached the x-axis, the bias
field is removed, so the qubit only experiences the constant

x-rotation. This creates a distorted spiral path �similar to that
in Fig. 3� that will once again expand to exceed zLimit, where
the feedback will trigger. The overall effect is to constrain
the magnitude of z to zLimit, so that the Bloch vector remains
relatively near the x-axis.

Ignoring the effects of weak measurement during the
feedback pulse, it is possible to determine the pulse ampli-
tude and duration analytically. Consider a point in the
xz-plane with z=zLimit �Fig. 5� and use a �-rotation about an
axis �dotted arrow� to finish exactly on the x-axis, by rotating
from the very top to the very bottom of the circular path
about this axis. The angle � of the axis can be calculated
using elementary geometry from zLimit-axis and the distance
from the center of the Bloch sphere ��a�=1−2L�. The latter
can be obtained from the conditional density matrix �c
�which represents the current state of knowledge of the sys-
tem�. We find

� =
1

2
sin−1� zLimit

�a� � . �11�

This angle is bounded as follows:

�max =
1

2
sin−1�1� = 45 ° �x = 0� , �12a�

�min =
1

2
sin−1�zLimit� ��a� = 1� . �12b�

To implement this control strategy it is necessary to deter-
mine the x and z angular velocity components. To simplify
matters we assume that the Josephson junction angular fre-
quency is fixed, �x=�. Then we find we require

�z = �x tan � , �13�

the required bias value can then be obtained from Eq. �15�
below. Figure 6 shows the relation between the measured z
value and the application of feedback as a function of time
for the first two applications of the feedback protocol. For
this example zLimit=0.333 and the other values can be found
in Appendix A. The bias pulse duration �, required to per-
form the �-rotation about the � axis, is

� =
1

2

2�

��x
2 + �z

2
. �14�

The relation between the z-axis rotational frequency and
bias is a linear relationship described by the following equa-
tion:

�z =
�2e�2

�Cq
�1

2
− ng� . �15�

For our feedback mechanism presented we find that the
maximum �z is equal to the Josephson junction frequency,
which means there is a limit on the size of bias that should be
applied. This is actually a favorable constraint as applying a
bias field substantially larger than ng	0.75 increases the risk
of accessing an unwanted third charge state.12,21 Another re-
quirement of the control system is being able to halt the
z-rotations or at least slow the rotations significantly by set-

FIG. 4. �Color online� �a� Pictorial representation of the pro-
posed practical protocol I which attempts to return the Bloch vector
to lie on the x-axis. This is achieved using pulsed rotations around
the z-axis, the combined rotational frequencies of the x and z rota-
tions define a plane of rotation about an arbitrary axis. The timing
and duration is selected to move the vector from the top of the
circular path to the bottom �x-axis�. This quick corrective feedback
is performed whenever the weak measurement process pulls the
vector past a predetermined threshold �here zLimit=0.5�, creating a
screwlike path. The dashed vertical lines represent the gradual spi-
raling observed in Fig. 3. �b� An example trajectory showing the
effects of the stochastic continuous measurement noise for the first
application of the feedback pulse train. The noise corrupted feed-
back path finished above the target x-axis, where the second spiral
is highlighted in red.

FIG. 5. �Color online� The applied feedback creates a rotation
about the axis �dotted arrow� defined by �, this angle can be calcu-
lated through a measurement, or estimate, of z and either the purity,
P or impurity, L. The z rotation frequency is adjusted and pulsed to
ideally take the Bloch vector to ��a� ,0 ,0� within a half cycle.
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ting the ng close to 0.5. It is expected that both of these
requirements should be achievable. The bias control range to
compensate for a system with a constant 10 GHz x-axis ro-
tation and the capacitances provided in Appendix A is

0.5000 � ng � 0.5323. �16�

The pulse train featured in Fig. 6 shows a decreasing
trend in the voltage bias amplitude �ng� and an increase in

the pulse duration ���. This increase is due to the slower
z-axis angular velocity at the latter stages. The values of ng
and � tend to steady state values defined by �min �Eq. �12b��.
Of course, as Fig. 4�b� shows, the evolution of the Bloch
vector will not be as smooth or predictable as that depicted in
Fig. 4�a�; in addition the control pulse cannot be applied or
removed instantaneously. There will always be some control
delay and some uncertainty as to when the Bloch vector is
likely to exceed the threshold value. The stochastic terms
will make the prediction of the evolution uncertain and, con-
sequently, the timing of the pulses will contain an uncer-
tainty. To mitigate potential problems in the timing of the
control pulses, the evolution of the Bloch vector can be fil-
tered further to reduce the effect of the noise �the evolution
described by Eq. �5� already represents a filter of the infor-
mation extracted from the qubit�. However, numerical calcu-
lations including timing errors show that the accuracy of the
control pulses is not critical to the performance of the puri-
fication protocol �see Fig. 10 below�. As long as the Bloch
vector is reasonably close to the threshold value and the
pulse takes the Bloch vector back to the vicinity of the
x-axis, then the majority of the available purification increase
is still obtained. This is good news for a practical implemen-
tation of this protocol because it demonstrates that the ap-
proach is robust to errors in the control system.

V. RESULTS I

As mentioned in the previous section, finding the peak
value of z could prove difficult under noisy conditions. How-
ever, we have found that finding the peak is not required if
the measurement of the system is sufficiently weak such that
the threshold zLimit is not far exceeded. Using a simple
threshold on the z value derived from �c, the resulting per-
formance is still close to the ideal.

Figure 7 shows the improvement in the average purifica-
tion rate, or �for convenience� the speedup.7 This improve-
ment is measured relative to the minimum average purifica-
tion protocol, the case of free measurement evolution with
no Hamiltonian �Eq. �7��, which forms the baseline perfor-
mance. The shape of the graph indicates that the performance
increase is not constant for all values of purity, with maxi-
mum gains at high purity �the final part of the time evolu-
tion�. It should be noted that this graph is also independent of
the measurement strength 
. Equation �8� defines the im-
provement S as a function of remaining impurity L, and ex-
act analytical solutions to this equation are nontrivial, how-
ever, it is possible to invert the run-averaged transients
graphically, or use piecewise approximation.22

The ideal protocol I requires ideal and instantaneous feed-
back, which would be very difficult to achieve in practice.
This motivated considering the no feedback case, for which
the Bloch vector continually rotates about the x-axis. The
constant rotation takes the Bloch vector through the equato-
rial plane twice per cycle; this momentarily approximates the
ideal feedback conditions. This creates a minor increase in
the purification rate, the dash-dot line �Fig. 7�.

When the feedback routine detailed in Sec. IV is applied
to the qubit with a best possible threshold value for zLimit, an

FIG. 6. �Color online� Idealized timing diagram for the feedback
pulses with zLimit=0.333 and using the values found in Appendix A.
The topmost graph shows the ideal evolution of z as a function of
time, with the dashed and solid line segments corresponding to
those found in Fig. 4�a�. The dashed lines indicates no feedback
�ng=0.5�, and so the sinusoids are rotations about the x-axis due to
the tunneling across the Josephson junction �Fig. 3�. When zLimit

=0.333 is exceeded, the feedback is applied, and the Bloch vector is
�-rotated from the top of the tilted plane to the bottom such that
z=0. The process is repeated when z again exceeds zLimit, the pulses
eventually tending to the same shape set by �min �Eqs. �12b�, �14�,
and �15��.
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almost optimum increase is achieved �dashed line� using a
single practical control field. Hence we have shown that it is
possible to create a control strategy to gain a significant
amount of the ideal purification rate.

The performance of the algorithm depends on the value of
the zLimit threshold �Fig. 8�. We find good performance over a
relatively large range, 0.2
zLimit
0.6. This implies that the
system can tolerate inaccurate and noisy thresholding, with
only a minor penalty in the performance. For low values of
zLimit the thresholding performs poorly due to the system
operating under the “noise floor”: due to the measurement
noise during the control pulses triggering often recurs before
the Bloch vector is returned to the vicinity of the x axis. For
large values of zLimit the trigger for applying the feedback is
only activated at a late stage, and so the speedup is severely
reduced.

Increasing the frequency � of the Josephson junction aids
the feedback procedure as the increased tangential velocity
of the rotation reduces the time for the Bloch vector to reach
the x-axis. This is advantageous as the measurement noise
disrupts the path taken �an example is provided in Fig. 4�b��,
therefore the reduction in the time a point travels increases
the probability of reaching close to the desired destination,
the x-axis. In addition, the relatively large Josephson junc-
tion energy gap reduces the possibility of thermal excitations
between the two energy levels.

The anticipated disadvantage of using such high frequen-
cies would be timing problems, although the control pulses
should be feasible as the required �-pulses are often used in
quantum information processing. If time delays are a prob-
lem, then the qubit state can be allowed to rotate through
several complete cycles if the radial growth of the Bloch
vector is sufficiently small. Figure 9 shows the effect of de-

laying the application of the feedback as a phase angle from
the top of the Bloch vector orbit, at the Josephson frequency
of 10 GHz for an optimum zLimit
0.333. Ideally, the feed-
back should be applied immediately �0°� but it can be seen
that there is an allowable delay with a small decrease in
expected performance.

To summarize, we have shown in this section that the
proposed method achieves a near optimum improvement in
purification, and further improvement could be achieved by
an increase in Josephson junction frequency. It can be clearly
observed in Figs. 8 and 9 that the method is quite tolerant of
errors, and it is found to be sufficient to rotate the qubit back
to the vicinity �rather than exactly on� the x axis.

VI. FEEDBACK PROTOCOLS II

In contrast to ideal protocol I, the ideal protocol II9 maxi-
mizes the stochastic terms in Eqs. �B1� by keeping the Bloch
vector on the measurement axis. By using feedback to rotate
the Bloch vector to the measurement axis, it has been shown
recently that the majority of qubits reach a given level of
purity faster than by using ideal protocol I.9 It is the exis-
tence of rare but extremely long purification times which
makes the average purification time longer for this scheme
than that for the deterministic ideal protocol I.

For a qubit that has either Hamiltonian evolution around
the measurement axis or no Hamiltonian at all, this protocol
requires no controls to implement, as it is not a problem and

FIG. 7. �Color online� The graph of purity rate improvement
shows that the practical feedback protocol proposed in this section
�dashed line� achieves similar performance to that of the ideal
method �solid line�, which required instantaneous feedback. In ad-
dition, the feedback mechanism described in Sec. VI C �dotted line�
has little performance gain, as expected. It should also be noted that
using no feedback in this system still yields a minor improvement
�dash-dot line� over having no Hamiltonian evolution at all.

FIG. 8. �Color online� This graph of the average purification rate
improvement as a function of zLimit shows the dependence on the
thresholding at three different levels of purification. Setting zLimit

�1 is equivalent to deactivating the feedback as the Bloch vector is
constrained inside a unit sphere, alternatively using a small value
threshold �zLimit=0.1� also yields lower performance due to the in-
herent measurement noise. The horizontal dashed line is the theo-
retical maximum performance increase given by ideal Protocol I at
L=0.001. The flattened peak for L=0.001 near this “envelope” in-
dicates a high tolerance of inaccuracies, with triggering between z
=0.2 and 0.6 being quite sufficient with an optimal value of zLimit


0.333 as indicated by the vertical dashed line.
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the Bloch vector naturally diffuses along the measurement
axis between the two possible outcomes �the poles�. How-
ever, there is an issue when a Hamiltonian takes the Bloch
vector away from the measurement axis, meaning the effect
of the system measurement will be less than ideal. Unfortu-
nately, this is the case for our superconducting charge qubit,
where the continual x-axis rotation takes the Bloch vector
away from the z-axis and passes through the x-y plane before
returning to the z-axis �Fig. 3�. This helps for the purpose of
maximizing the rate of purity increase of a single qubit, but
is harmful for the purpose of minimizing the average time
for a qubit to reach a given purity.

A. Ideal protocol II

Assuming ideal and instantaneous controls, it would be
possible to apply feedback to rotate back perfectly to the
z-axis after each measurement. If this were possible, the pu-
rity would evolve as per Eq. �7�.

B. Flux-controlled Hamiltonian feedback

A tunable flux-controled Josephson junction can be used
to change the x-axis rotational frequency, slowing the pas-
sage of the Bloch vector near the poles and speeding it
through the equatorial plane.16 This is the dual of the method
described in Sec. IV B.

C. Practical protocol II

It is anticipated that there would be difficulties in adapting
the previously described method, for rotating to the x-axis, to
rotate to the z-axis instead. Due to the constant x-axis rota-
tions and the switchable z-axis rotations, the nature of the

problem is not symmetrical. Whenever the z-axis rotations
are removed, the Bloch vector will still rotate about the
x-axis therefore taking the vector away from the required
z-axis. Unless the experimental apparatus can measure, pro-
cess, and apply a correcting control field within a fraction of
a cycle, the application of feedback will be futile as a com-
plete cycle about the x-axis will have been made anyhow.

To solve this, we propose a very simple feedback protocol
where the Bloch vector rotates about a tilted axis almost
parallel to the measurement axis �Fig. 10�a��. Initially, no z
control is applied and the Bloch vector is allowed to rotate
about the x-axis. The effect of the weak measurement is to
pull the Bloch vector towards the poles, and a spiral growth
results. This initial period allows an experimentalist to detect
a sizeable peak or trough in the z measurement record cor-
responding to the phase of the oscillation in z, indicating
when the Bloch vector is near to the z-axis. When at this
point, if the threshold value �zLimit=0.333� is exceeded, the
strong z control is applied, creating a rotation about an axis
that should be almost parallel to the z-axis. If the initial de-
tection is completed successfully, the Bloch vector should be
near the z-axis and will now travel in a tight spiral close to
the z-axis �Fig. 10�a��. Alternatively, if the Bloch vector was
somewhere near the y-axis, for example, due to an initial
delay, the orbital path about this tilted axis would be much
wider and fail to coincide with the actual z-axis. One could
instead simply apply this �z control from the start of the
purification process to ensure that the qubit always remains
close to the z-axis. However, there is little benefit in applying
the control at the early stages because the performance gain
close to the center of the Bloch sphere is small.

The definition of � as the angle of the axis of rotation
between the x and z axes still holds for this method. Equation
�17� defines � as a function of Bloch sphere coordinates.

FIG. 9. �Color online� Using the optimal value for the thresh-
olding, in this case zLimit=0.333. This graph of the average purifi-
cation rate improvement as a function of the time delay starting
from the top of the Bloch vector orbit �expressed as a phase delay
with frequency Fx� suggests there is a reasonably large window of
opportunity to apply the control fields and still achieve near optimal
results. Indeed this is a test of synchronization; it could also be
possible to allow the Bloch vector to make complete rotations and
later apply the fields within this window.

FIG. 10. �Color online� �a� Pictorial representation showing the
intended path of the Bloch vector. The feedback control is initially
off, so that the Bloch vector continually rotates and grows around
the x-axis, this is to allow the peak value of z to become more
distinct. Once the Bloch vector has exceeded a threshold and is at a
maximum or minimum, the high frequency z-rotations are applied
which locks the Bloch vector to the measurement axis. �b� An ex-
ample trajectory showing the effect of measurement noise on the
path of the Bloch vector. While the noise is significant, the overall
shape of the stochastic trajectory is similar to the conceptual path
shown above. The shape confirms that the Bloch vector is confined
to the vicinity of the measurement axis �z-axis� as required.
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Here we express it in terms of the system frequencies: the
constant Josephson junction frequency �x and the bias con-
trol frequency �z

� =
1

2
sin−1��z

�x
� . �17�

.
The magnitude of the bias field should not be too large or

the next charge state may be accessed and the two state ap-
proximation would be violated. Figure 11 shows how � var-
ies as a function of the bias control, plotted until ng=0.75 as
this is halfway between the charge states. A bias value of
ng=0.70 is chosen in the simulations below to reduce the
possibility of accessing a new state. This gives �=82° �see
Fig. 11�. Increasing ng gives minimal gain in � as the angle
asymptotes to 90°. Ideally we would have �=90° but we find
an angle of 82° gives acceptable performance.

VII. RESULTS II

Figure 12 shows that the performance gain for the practi-
cal protocol II is near that of ideal protocol II. This indicates
the desired operation: a practical implementation of rotating
to the z-axis despite the presence of the constant x-axis rota-
tions due to the qubit tunneling. Thus considering Figs. 7 and
12, we see that both the practical protocols I and II emulate
the ideal counterparts.

To demonstrate the usefulness of rotating the Bloch vector
to the z-axis, we examine the statistical distributions for the
five options described in this paper. In Figs. 13 and 14 the
following notation is used: A—perfect rotations to the z-axis

�ideal protocol II9�, B—rotations about an axis almost paral-
lel to the z-axis �practical protocol II�, C—�x tunneling
Hamiltonian only �No feedback�, D—rotating to the x-axis
�practical protocol I�, and finally, black dashed line—perfect
rotations to x-y plane �ideal protocol I7�. The component
values and measurement strength used to simulate the fol-
lowing histograms can be found in Appendix A.

Figure 13 depicts the distributions of the times of first
passage, that is, the time for the stochastic impurity to fall
below a given impurity of 1�10−3. Each histogram com-
prises 105 independent simulation runs separated into 100
bins. Figure 13�a� confirms that for ideal protocol II, the
majority of runs reach the required purity at times earlier
than that predicted by ideal protocol I. The modal value for
ideal protocol II �gray dashed line in all the plots� is 4.0 ns
as opposed to 10.4 ns for ideal protocol I. It is apparent that
the poor average performance is due to the existence of a
small number of extraordinarily long duration runs that have
a significant effect on the average purity. Note the many runs
that do not reach the required purity by the end of the simu-
lation �Tmax=20 ns� and are included in the histogram
marked as “	20 ns.”

Figure 13�b� shows the remarkable similarity between the
ideal and practical protocol II distributions, with the modal
values in close alignment. This would indicate that rotating
about a tilted z-axis is a near optimal approach for rotating to
the z-axis, given the presence of a constant x or y rotation.

When no feedback is applied, there is a constant rotation
about the x-axis. This rotation momentarily passes the Bloch
vector through the z-axis and the x-y plane, creating a com-
promise between the two ideal purification methods �Fig.
13�c��.

Rotating the Bloch vector to the x-axis �practical protocol
I as described in Sec. IV C�, yields a distribution of smaller

FIG. 11. �Color online� Angle � as a function of bias, ng. This
illustrates the operating range of the two techniques described in
this paper. The green region indicates the necessary angles and bi-
ases for practical protocol I, the range of which is intrinsically
constrained by the maximum value of �=45° �0° ���45° �. The
solitary dashed line illustrates a possible bias value for generating
the tilted axis of practical protocol II. Notice that only one value is
required. We require � to be as close to 90° as possible, however, if
the bias is set too far from 0.5, there is a risk of accessing an
unwanted third state. For large bias values the gains in � are actu-
ally quite minimal.

FIG. 12. �Color online� The graph of the improvement, in com-
parison with ideal protocol I, in achieving the time of first passage
shows that the practical protocol proposed in this section �blue line�
achieves similar performance to that of the ideal protocol II �black
line�, which required perfect instantaneous feedback. In addition,
the practical protocol described in Sec. IV C �red line� has little
performance gain, as expected. It should also be noted that using no
feedback in this system still yields a minor improvement �green
line� over having no Hamiltonian evolution at all.
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variance. Indeed it should be noted, as indicated by the ar-
row, no runs exceeded the maximum simulation time of
20 ns. The modal value is closer to that of ideal protocol I
�10.4 ns�. The nonzero variance is due to the need to allow
the Bloch vector to grow and rotate about the x-axis; the
nonzero z component �Fig. 4�b�� contributes measurement
noise to the purity �see Eq. �B1��.

Figure 14 shows the distribution of impurities at t
=7.5 ns, which is the time at which the impurity under ideal
protocol I reaches 5�10−3. Each histogram contains 50 000
runs separated into 50 logarithmically spaced bins. Compar-
ing Figs. 14�a� and 14�d� we see a dramatic difference in the
spread of values by many orders of magnitude. The deter-
ministic natures of both ideal protocol I and the reduced
stochasticity of the more practical protocol I can be easily
observed. Of particular interest is the area corresponding to
high impurity indicated by the arrow. In Fig. 14�d� this re-
gion is mostly unoccupied but the other three histograms
which do not employ protocol I have high occupancy. This

implies that although these three methods can potentially
reach very low impurities, it is done at the risk of ending
with a high impurity.

Interestingly, Fig. 14�b� follows a similar profile to Fig.
14�a� until the impurity is of the order 10−5, when smaller
impurities become inaccessible. This is due to a mushroom-
ing effect that creates an end cap to the expected path of the
Bloch vector. The end cap occurs whenever the Bloch vector
is near a pole at the surface of the Bloch sphere and is due to
the weak measurement noise. This can be further explained
by examining Eqs. �B1� for weak measurement in the Bloch
sphere representation when the Bloch vector is near a z-axis
pole. It can be seen that as �z� approaches one, the random
contribution of the Weiner increment becomes much larger.
As the x and y values are nonzero �due to the off-axis rota-
tions removing the Bloch vector from the z-axis�, the “large”
random changes in x and y combined with the constant rota-
tion due to Hamiltonian evolution make it naturally improb-
able that the Bloch vector will settle exactly on the z-axis.
Hence in practice access to the smallest impurities may be
difficult without increasing the measurement strength 
 rela-
tive to �.

FIG. 13. �Color online� Plotting the distribution of times to
reach a given impurity of 1�10−3 clearly shows that the majority
of simulated runs �100 000 runs� of the other protocols reach the
target impurity before the deterministic ideal protocol I, �indicated
by right most dotted line�, which greatly reduces the average impu-
rity. Due to the deterministic nature of ideal protocol I it guarantees
that all qubits reach a set impurity in a given time. However, it has
been suggested that the poor average performance of rotating to the
z-axis is due to the existence of a few important and extraordinarily
long duration runs ��20 ns simulation time� that have a significant
effect on the calculation of the average.

FIG. 14. �Color online� The histograms �50 000 runs� of the
final impurity at the simulation end time of 7.5 ns demonstrates the
large range of final impurities given ideal protocol II �a�, allowing
access to better purity in a shorter time at the risk of worse purity on
some occasions. Interestingly, when perfect feedback is replaced
with practical protocol II �b�, the range of very small impurities
�below 10−5� is not accessible. In addition, when using practical
protocol I we can �for these example values� be confident that by
7.5 ns almost all impurities will be at least smaller that 5�10−2,
indicated by the arrow.
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VIII. CONCLUSIONS

We have considered two techniques for rapid state purifi-
cation for use with a model superconducting charge qubit
with a single control field and continuous weak measure-
ment. We show that near optimal results can be obtained
using a realistic implementation of feedback control. For
practical protocol I, the feedback is simple to calculate and
uses constant amplitude �-pulses that are applied for time
scales that are comparable with the natural period of the
qubit evolution. In addition, as the maximum angle between
the rotation axis and the x-y plane ��� is 45°�, the range of
bias controls is confined to a small range of values close to
the default bias condition. For practical protocol II, the feed-
back control is simply maintained, once triggered.

If an experimenter wished to ensure that the majority of
qubits reach the same level of purity at the same time, ideal
protocol I or the more practical implementation of rotating to
the x-axis as described in Sec. IV C should be used �practical
protocol I�. Alternatively, if the objective is to maximize the
number of qubits attaining a given level of purity, the experi-
menter should choose practical protocol II described in Sec.
VI C and based on ideal protocol I. As the techniques need
only keep the Bloch vector close to the ideal conditions, the
practical protocols are expected to be robust to a variety of
control errors �e.g., time delays, magnitude of bias, pulse
duration�.

Both of the practical protocols �I and II� described in this
paper operate with continuous rotations about the x-axis,
which are generated by the constant tunneling frequency of
the Josephson junction �which is the realistic scenario for
practical superconducting charge qubits�. Numerical simula-
tions demonstrate that both of the practical protocols perform
well and are not adversely affected by this constraint on the
controls allowed in the system. In fact, the constant �x term
arising from the tunneling is essential to the correct operation
of practical protocol I. If these continuous rotations are ei-
ther naturally occurring or can be applied, it opens the pos-
sibility of implementing these purification techniques in
other systems that contain such Hamiltonian evolution.
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APPENDIX A: TABLE OF VALUES

Values are constant and consistent for all simulations �see
Table I�, in line with experimental values quoted in Ref. 15.

APPENDIX B: WEAK MEASUREMENT IN THE BLOCH
SPHERE REPRESENTATION

Here we state the Cartesian equations for the random in-
cremental changes in x, y, and z for each time step dt due to
a continual weak measurement process with measurement
strength 
. These equations can be found in Ref. 22, and they
can be derived by working through Eq. �5� using the Pauli
matrix identities and equating the resulting density matrix
elements with the Bloch vector coordinate equations: x
=Tr��c�x�, y=Tr��c�y�, and z=Tr��c�z�.

dx = − �4
dt + z�8
dW�x , �B1a�

dy = − �4
dt + z�8
dW�y , �B1b�

dz = �1 − z2��8
dW , �B1c�

L =
1

2
�1 − x2 − y2 − z2� . �B1d�

This set of simultaneous stochastic differential equations is
not trivial to solve. Indeed, Eq. �7� is the special case where
x=y=0, and yet yields an integral that appears to have no
analytical solution.7
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