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Macroscopic quantum tunneling in globally coupled series arrays of Josephson junctions
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We present a quantitative analysis of an escape rate for switching from the superconducting state to a
resistive one in series arrays of globally coupled Josephson junctions. A global coupling is provided by an
external shunting impedance. Such an impedance can strongly suppress both the crossover temperature from
the thermal fluctuation to quantum regimes, and the macroscopic quantum tunneling (MQT) in short Josephson
junction series arrays. However, in large series arrays we obtain an enhancement of the crossover temperature,
and a giant increase of the MQT escape rate. The effect is explained by excitation of a spatial-temporal charge
instanton distributed over a whole structure. The model gives a possible explanation of recently published
experimental results on an enhancement of the MQT in single crystals of high-T,. superconductors.
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Great attention has been devoted to an experimental and
theoretical study of dc biased series arrays of Josephson
junctions.'"* Such a system displays diverse fascinated non-
linear classical and macroscopic quantum-mechanical phe-
nomena. For example a resistive state of Josephson junction
series arrays can show synchronized behavior,':> and this ef-
fect has been used in Josephson voltage standard devices.?
As we turn to a region of small dc bias currents and low
temperatures, the macroscopic quantum-mechanical phe-
nomena start to play a role. Thus, a quantum phase
superconductor-insulator transition has been observed in ar-
tificially prepared series arrays of a small size Al/Al,05/Al
junctions.* All these effects strongly depend on the interac-
tion between Josephson junctions.

This field of research, i.e., the macroscopic quantum phe-
nomena in spatially extended superconducting systems, has
been boosted even further by recent discovery of macro-
scopic quantum tunneling (MQT) in single crystals of lay-
ered high-T, superconductors.>® At low temperatures the
MQT determines the escape rate of the switching from the
superconducting state to a resistive one. Although the MQT
of a single Josephson phase has been found a long time ago
in low-T, lumped Nb Josephson junctions,”$ MQT in layered
high-T, superconductors has shown many novel features. A
most unexpected result is that the MQT escape rate I'yor in
high-T,. superconductors is four orders of magnitude larger
than the MQT escape rate for a lumped Josephson junction
having the same parameters.® Moreover, the crossover tem-
perature T from the thermal fluctuation regime to the MQT
regime increases in respect to a lumped Josephson junction.
In these experiments it was also found that the escape rate '
in the thermal fluctuation regime did not differ from the es-
cape rate of a single Josephson junction.

Layered high-T, superconductors can be modeled as a
stack (a series array) of intrinsic Josephson junctions.” A
modern fabrication technique allows one to prepare single
crystals of layered high-7,. superconductors with an ex-
tremely homogeneous distribution of critical currents of in-
trinsic Josephson junctions, and a low level of dissipation.>%
Since in the model of independent Josephson junctions the
escape rate I is just proportional to N, an enhancement of the
MQT observed in layered high-7, superconductors stems
from an interaction between intrinsic Josephson junctions.
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All experimental observations receive a natural explanation
in a simple model'® of Josephson junctions series array with
an intrinsic charge interaction between nearest-neighbor Jo-
sephson junctions.''> Moreover, such a model allows quan-
titative comparison with experimental results, and a good
agreement has been found as the Debye screening length is
of the order of superconducting layer thickness,'? i.e., a
rather large charge interaction between nearest-neighbor Jo-
sephson junctions has to be assumed.

However, the authors of Ref. 6 proposed another model in
order to explain a giant increase of the MQT escape rate. In
this model intrinsic Josephson junctions are globally coupled
through an electromagnetic environment. The authors of Ref.
6 argued that in globally coupled Josephson junction series
arrays the MQT escape rate has to be proportional to N2,
where N is the number of Josephson junctions, but the quan-
titative analysis of MQT in globally coupled Josephson junc-
tion arrays has not been carried out.

An electromagnetic environment in experiments with tun-
nel junctions can be described by an external shunting im-
pedance Z (see schematic in Fig. 1). An influence of a shunt-
ing impedance Z on the MQT in a lumped Josephson
junction has been studied a long time ago in Refs. 3-13 It
was shown that the presence of a small shunting impedance

0(7)

FIG. 1. (Color online) Schematic of a dc biased layered high-T,
superconductor and a series array of Josephson junctions. A
strongly localized instanton (dashed line) and a charge instanton
with long tails (solid line) are shown.
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can lead to a strong suppression of the MQT in a lumped
Josephson junction. Therefore, natural questions arise: what
is a role of shunting impedance Z in the macroscopic quan-
tum dynamics of large Josephson junction series arrays (N
>1) and what is a most appropriate model in order to ex-
plain a giant increase of the MQT escape rate in Josephson
junction series arrays?

In order to answer these questions we carry out a quanti-
tative analysis of the escape rate I'(I) in globally coupled
Josephson junction series arrays. A global coupling is pro-
vided by an external shunting impedance Z (see Fig. 1). We
obtain, and it is a main result of the paper, that if the elec-
tromagnetic environment strongly suppresses the MQT in a
lumped Josephson junction, the role of an external shunting
impedance is diminished in large Josephson junction arrays,
and the standard quantum-mechanical behavior is recovered.
Therefore, the globally coupled Josephson junction series ar-
rays can show a giant increase of the MQT escape rate with
a strong dependence on a number of junctions. Moreover, the
MQT escape rate is tunable in a wide region by a simple
change of Z. Such tuning of the MQT escape rate can be very
promising for a modern field of quantum information
processing. '

A Josephson junction series array is characterized by the
set of Josephson phases ¢, (7), where number n changes from
1 to N. Moreover, electrodynamics of a shunting impedance
Z is described by a flowing charge Q(7). We will consider a
particular case as all resistive effects are small, i.e., the
shunting impedance has only a reactive part, and it contains
inductor L and capacitor C in series. In order to obtain the
escape rate I’ we use an “instanton technique,”'*!7!8 and
therefore, ¢,(7) and Q(7) are periodic functions of the imagi-
nary time 7 varying from 0 to 7/ (kzT) (T is the temperature).
The escape rate is determined by the action S as follows:

I'= f Dq(T)D(pn(T)exp[— @} ,
hikgT
S=f L(ndt (1)
0

and the Lagrangian of a series array with the shunting im-
pedance is written

1 1 1
L= 2n4 2—0)[2)[%(7)]2 + z—wi[é(T)]2 + 561(7)2

+ 3 U, +i—2 gDy,
n WR

U,(@) =cos @,(7) +jeu(7), 2)

where j=1/1. is the normalized external dc current, and /. is
the nominal value of the critical current of a single junction.
Here, w, is the plasma frequency of a single Josephson junc-
tion in the absence of dc bias. The Lagrangian is expressed in
units of E,;, where E; is the Josephson energy of a single
junction. The g=Q/VE,C is the normalized charge flowing

through the impedance Z. The shunting impedance is char-
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acterized by the resonance frequency wgz=1/ \E'R', where L
and C are the impedance inductance and capacitance, accord-
ingly. The coupling between the Josephson junction series
array and the shunting impedance branch is described by
dimensionless parameter a=+2e¢/(Al.L). In (2) we did not
include the nondiagonal elements of the capacitance matrix,
i.e., the intrinsic charge interaction between nearest-neighbor
Josephson junctions that was a subject of Refs. 11 and 12, is
neglected.

Integrating (1) over ¢(7)'° we obtain the effective action
S, that depends on the variables ¢,(7) only

hkgT
Serfent =2 f dr—[¢,(D* + U,
n 0 2wp

2 (hlkgT (hikgT
o
+_j f dTldTZGT(TI_TZ)
2 0
x {2 cpn(n)] [E s‘on(rz)], (3)
where the kernel G4(7) is determined as follows:

kgT e
o= 2
m m R

W, T

m

>

w,=mQukgD)/h, m=+1,£2--- . (4)
Thus, the last term in Eq. (3) presents an effective global
charge interaction, that is due to current fluctuations flowing
through an external shunting impedance.

In the escape experiments E;>hw,, and the switching to
a resistive state occurs as the dc current / is close to /., and
therefore (j—1)<<1. In this case the potential U,(¢p) is writ-
ten

L (7
U,(¢)=(1=))e,(7) - 6 (5)

The escape rate is determined by the particular solution ¢,(7)
providing the extremum of effective action (3). At high tem-
peratures such a solution is determined by extremum points
of the potential U, and it is written

or=202(1 = )8, —\2(1 - j).

Here, [ is a junction number where the fluctuation occurs.
Since this solution does not depend on the time 7, we can
immediately conclude that the last term in (3) does not give
contribution to the escape rate exponent I'y=exp(-S{¢!}/
). Note here that an absence of the dependence of the es-
cape rate exponent in the thermal fluctuation regime on a
number of junctions N is a generic property of Josephson
junctions series arrays with a charge interaction.'?

However, the crossover temperature from the thermal
fluctuation regime to the MQT can be strongly enhanced by
such a global coupling. Indeed, using the method elaborated
in'*!1718 we obtain that at high temperatures the optimal fluc-
tuation ¢,(7) around an extremum point has a form:
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FIG. 2. (Color online) Typical dependencies of the crossover
temperature 7°(N) on a number of junctions N. Both cases of in-
ductive (upper curve) and capacitative (lower curve) impedance for
particular sets of parameters are shown.

QDn(T) — e27rikBT7/h¢n’ (6)

where the eigenfunctions ¢, are the solution of the nonlocal
and inhomogeneous equation:

2a22 2

§2¢n 2 ¢n 2w051n¢11 - ()\ (1)0 d’n’

_ 27TkBT

P ()

Here, \ are the eigenvalues of the Eq. (7), wy=w,[2(1
—j)]"* is the dc bias dependent frequency of oscillations on
the bottom of potential well, U, (¢). The crossover tempera-
ture 7" is determined by the condition that there is the eigen-
value A=0.%!% In a global coupling case [Eq. (7)] the cross-
over temperature is obtained as a solution of the particular

transcendent equation:

2 2
g + M[ E*Z (

&2
k T

- 2IN)w;] = w;, (8)

perature T is strongly suppressed for short arrays (N= 1) for
both cases, namely, “inductive” (wgz << wy, and a=1) or “ca-
pacitive” (wgp>w,, and a>1) types of an external imped-
ance. However, T recovers to the value T"=fw,/(2mkg) for
long arrays (N>1). Typical dependencies of T"(N) are
shown in Fig. 2.

Now we turn to the MQT regime, where the extremum
point of the action S,;{¢,} is the “tau-dependent” instanton
(bounce) solution. At zero temperature and in the presence of
an external impedance Z, a spatial-temporal instanton solu-
tion satisfies the equation:

du,

1 o]
_Q(bn(T) + 0122 f dTIGO(T_ Tl)¢m - = 0’ (9)
wp m Y0 dQD

where GO(T)=2+0R exp(—wg|7]). The solution of Eq. (9) has a
following form: a large bounce solution localized on a par-
ticular junction /, ¢;(7)=f(7), and a small spatial-temporal
tail solution distributed over a whole array (see schematic in
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Fig. 1, solid line). The Fourier transform of the instanton tail
is obtained as follows:

S o ()= - o?(N - l)wiwzgo(a))
=" w? + wy+ a*(N - 1)wl2,w2g0(w)

flw),

(10)

where go(w) and f(w) are the Fourier-transform of G,(7) and
f(7), respectively. The bounce solution f(7) localized on the
junction [ is determined self-consistently from the equation:

1. ” . r
Live | anirmim--p+L =0,

(!)p 0

0 d_w (w2+wg)eiw7'

G(n= (11)

2T+ w% + ?(N - 1)w,2,w2g0(w) '

In the absence of a global coupling the instanton solution is
strongly localized on a particular junction (see schematic in
Fig. 1, dashed line), i.e., Ref. 14,

3v2(1 -
@u(7) = fo(7) 6, = W@m (12)

Substituting (10) in the expression (3) for the effective action
S.sr and using a perturbative approach (similarly to Refs. 13
and 15), i.e., f(7)=f,(7), we obtain the MQT escape rate (in
physical units) as written:

E;
Tyor=T - 21 =)0+ x|, (13
MOT oeXP[ ISﬁw,, (1=-7)""(1+x) (13)
where
30w’ [ 2+ 1 inh—2
e 7:; wpf i x*(x )ngZ(X)Sm (7x) (4)
o -0 x+1+—L(N—1)xg0(x)
‘"0
where
golx) = 1/[X2 + (wR/wO)z]- (15)

Here, the parameter I'; is just proportional to N. A parameter
x having a positive value, characterizes a suppression of the
MQT due to the presence of the charge interaction between
Josephson junctions of the array and an external shunting
impedance. For short Josephson junction array (N=1), such
a MQT suppression can be rather large for moderate values
of a. However, as we turn to large Josephson junction arrays
(N>1) a standard MQT behavior is recovered. Quantita-
tively an enhancement of MQT depends strongly on param-
eters a and wg. The expression (14) can be simplified in two
limits: wg> o, (capacitative impedance) and wg < @ (induc-
tive impedance) as follows:

1
5 Wi > wp;
2 wR+aw2(N 1) R 0
x=5a 1 (16)
s wp < wy.
w0+a2w§(N 1) R 0
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FIG. 3. (Color online) The dependence of the MQT escape rate
I yor on the dc bias current / for various values of N=1,50,100.
Both cases of capacitative (a) and inductive (b) impedance for par-
ticular sets of parameters are shown.
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Typical dependencies of the MQT escape rate I'yo7 on
the dc bias current / for various values of N are presented in
Fig. 3. One can see a giant enhancement of the MQT escape
rate as we turn from short to long Josephson junction arrays.
This enhancement results from a decrease of the slope of the
bias current dependence escape rate. Comparing our theoret-
ical predictions with the experimental curves published in
Ref. 6 (see Fig. 5 in Ref. 6) we find a good agreement for
both the crossover temperature T~ and the dependence of
[por(D) for the inductive type of a shunting impedance.
Therefore, in order to choose between two models, i.e., a
nearest-neighbor intrinsic charge interaction or external glo-
bal charge coupling, one needs additional independent mea-
surements of Debye screening length!® or to tune the MQT
by variation of Z.

In conclusion we have shown that the dissipative (deco-
herence) effects can be strongly suppressed in long (N> 1)
Josephson junction series arrays with a global charge inter-
action. Both the dissipation and global charge interaction
can be introduced through an external shunting impedance.
This effect manifests itself as a giant enhancement of the
MQT escape rate for the switching from the superconductive
state to a resistive one (see Fig. 3). A giant MQT enhance-
ment is explained through an excitation of spatial-temporal
charge instanton distributed over a whole array.
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