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We use a ferromagnetic voltage probe model to study the influence of inelastic scattering on giant magne-
toresistance and current-induced torques in ferromagnetic and antiferromagnetic metal spin valves. The model
is based on the Green’s function formulation of transport theory and represents spin-dependent and spin-
independent inelastic scatterers by interior voltage probes that are constrained to carry respectively no charge
current and no spin or charge current. We find that giant magnetoresistance and spin transfer torques in
ferromagnetic metal spin valve structures survive arbitrarily strong spin-independent inelastic scattering, while
the recently predicted analogous phenomena in antiferromagnetic metal spin valves are partially suppressed.
We use toy-model numerical calculations to estimate spacer layer thickness requirements for room temperature
operation of antiferromagnetic metal spin valves.
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I. INTRODUCTION

Electronic phase coherence often plays an important role
in mesoscopic quantum transport. The simplest example, per-
haps, is the Aharonov-Bohm effect1 in a mesoscopic ring
which is manifested by dependence of conductance on en-
closed magnetic flux and requires phase coherence across the
ring. In the Landauer-Büttiker theory of quantum transport2,3

it is possible to simulate phase breaking scattering processes
by including internal “floating” voltage probes in addition to
source and drain4 electrodes, and requiring that their chemi-
cal potentials adjust so that they do not carry a current. This
simple model is compatible with a Green’s function descrip-
tion of transport and is able to describe those qualitative
consequences of inelastic scattering not associated with the
peculiarities of a specific mechanism. It has, for example,
been applied to study the influence of phase decoherence on
spin-independent transport in one-dimensional systems,5,6

and the effect of dephasing on transport through quantum
dots.7,8

In this paper we report on a comparison of the influence
of inelastic scattering on giant magnetoresistance �GMR� and
spin-transfer �ST� torque effects in traditional spin-valve
structures containing ferromagnetic metals, and in the anti-
ferromagnetic spin-valve structures that we9,10 have recently
proposed. �Spin valves are illustrated schematically in Fig.
1.� These devices are normally intended for operation at
room temperature and above and electron scattering is there-
fore normally dominantly inelastic. Moreover, contrary to
elastic scattering which can at least in principle be eliminated
by growing clean single-crystalline samples, inelastic scatter-
ing is inevitable at room temperature. In traditional ferro-
magnetic spin-valves only spin-flip scattering in the para-
magnetic spacer is expected to have a large impact on GMR
�Refs. 11 and 12� or ST.13,14 Both effects are expected to be
strong when the spin diffusion length is longer than the para-
magnetic spacer thickness. �Spin-independent inelastic scat-
tering does however play a role in limiting the amplitude of
oscillations in the dependence of exchange coupling between

ferromagnetic layers on spacer layer thickness.15� It is com-
monly believed that GMR and ST in ferromagnetic spin
valves can survive arbitrarily strong spin-independent inelas-
tic scattering. For antiferromagnetic spin valves, however,
the analogous effects depend,9 at least in a simple toy model,
on coherent multiple scattering in the spacer layer and at its
interfaces with the antiferromagnets. We have therefore ar-
gued that both effects will become weak when inelastic scat-
tering is strong, even if the scattering is spin independent.
Since phonon scattering is only weakly spin dependent and
strong at high temperatures, inelastic scattering cannot be
ignored in practical antiferromagnetic spin valves.

To pursue these ideas more quantitatively we use a volt-
age probe model to represent the influence of spin-
independent and spin-dependent inelastic scatterers in a
Green’s function description of transport through a spin
valve. In the linear response regime the voltage probe model
has been shown to be equivalent to local coupling to a
harmonic-oscillator heat bath.16 In a magnetic metal circuit,
however, conventional voltage probe models produce both
longitudinal and transverse spin relaxation. Consider, for ex-
ample, a largely collinear magnetic configuration with a
natural spin-quantization axis. Spin components transverse to

FIG. 1. �a� Parallel configuration and equivalent circuit consist-
ing of two resistors R and r�R, and �b� antiparallel configuration
and equivalent circuit, of a spin valve consisting of two single-
domain ferromagnets separated by a paramagnetic spacer. �c� Anti-
parallel configuration and equivalent circuit of an antiferromagnetic
spin valve and �d� its parallel configuration and equivalent circuit.
�For convenience, only two ferromagnetic layers within each anti-
ferromagnet are shown.� Note that in the ferromagnetic case the
resistance of parallel and antiparallel circuits is different, contrary
to the equivalent circuits in the antiferromagnetic case.
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this axis are represented in quantum mechanics by coherence
between spin-up and spin-down projections of the form �↑ �
+ei��↓ �. A conventional paramagnetic voltage probe will
change the magnitude and randomize the phase of both �↑�
and �↓� parts of this spinor independently and therefore alter
all spin-density components. This property was used very
recently by Michaelis and Beenakker to model spin decay in
chaotic quantum dots.17 This feature is however undesirable
in modeling the influence of inelastic scattering on magne-
toresistance properties of spintronic devices, because the
strongest inelastic scatterers are often phonons, and phonons
conserve spin to a good approximation. In our calculations
we therefore use a voltage probe model generalized to the
case of ferromagnetic probes, shown in Fig. 2. This gener-
alization allows us to consider separately spin-dependent and
spin-independent inelastic scatterers. The spin-independent
case is realized by adjusting the magnetization direction and
the majority and minority spin chemical potentials of the
voltage probes so that the probe carries neither charge or spin
currents.

There are a number of important distinctions between
GMR and ST physics in ferromagnetic and anti-
ferromagnetic9 structures. In the ferromagnetic case GMR
can be understood qualitatively simply by using a two-
channel resistor model illustrated in Fig. 1 which does not
rely on phase coherence. When applied to antiferromagnetic
spin valves, the same argument does not predict GMR be-
cause the two spin channels have identical conductances, as
seen from Fig. 1. �Note that this argument ignores the
interface-related contribution to GMR found recently in ab
initio studies,18 which could, for example, be taken into ac-
count in the resistor model by giving the resistors that mimic
the surface magnetic moment of the antiferromagnet differ-
ent values from the other resistors.� Clearly the antiferromag-
netic spin-valve GMR effect relies at least in part on phase
coherence near the spacer layer. In the simple model we
discuss below antiferromagnetic spin-valve GMR comes
about, roughly speaking, because the reflection amplitude for

an electron scattering off an antiferromagnet is spin depen-
dent, although the reflection probability and transmission
amplitude and probability are not. Similarly ferromagnetic
spin-valve ST torques can be understood by using a model of
a ferromagnetic metal which has quasiparticle and magneti-
zation orientation degrees of freedom, and appealing to con-
servation of total spin angular momentum to infer an action-
reaction relationship between the torque exerted on the
quasiparticles by the exchange field and the torque exerted
on the magnetization by current-carrying quasiparticles. In
the antiferromagnetic case, it is the staggered moment anti-
ferromagnetic order which behaves collectively. Since this
coordinate does not carry total spin, its current-driven dy-
namics is not specified by a global conservation law. The
theory of current-driven order parameter dynamics in this
case requires a more microscopic approach19 in which ST is
seen as following from changes in the spin-dependent ex-
change potential experienced by all quasiparticles, which fol-
low in turn from changes in the spin density in the presence
of a transport current. Indeed the use of the term spin trans-
fer torque is perhaps inappropriate in the antiferromagnetic
case since current-induced order parameter changes are not
related to transfer of total spin angular momentum between
subsystems. Nevertheless staggered torques do act on the
staggered spins and do drive the antiferromagnetic order pa-
rameter. To make clear that current-induced order parameter
changes in antiferromagnets are not related to conservation
of spin and are therefore strictly speaking not an example of
spin transfer we, from now on, will call these torques
current-induced torques. Remarkably, current-induced
torques in an antiferromagnetic spin valve act throughout the
volume of the antiferromagnets in the absence of inelastic
scattering and disorder. Critical currents for order parameter
reversal are therefore independent of antiferromagnetic film
thickness in this limit, rather than being proportional to
thickness as in the ferromagnetic case.

The main aim of this paper is to shed light on the robust-
ness of these GMR and current-induced torques in realistic

FIG. 2. Model system consisting of sites with
an arbitrary on-site exchange and scalar potential.
In addition to the coupling to its nearest neigh-
bors, each site is coupled to a ferromagnetic
reservoir.
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room-temperature thin-film antiferromagnetic spin-valve
structures by examining how properties change upon intro-
duction of spin-dependent and spin-independent inelastic
scatterers. The ferromagnetic voltage probe models of elastic
and inelastic scattering are completely satisfactory for this
purpose because we are interested in achieving a qualitative
understanding that transcends the details of specific systems.
We solve the model using the Green’s function formalism for
electronic transport in mesoscopic systems.20,21 This is con-
venient because the spin torques we want to evaluate can be
expressed19 in terms of the transport steady-state electron
spin density and local observables are readily calculated us-
ing the Green’s function formalism.

Our paper is organized as follows. In Sec. II we describe
the Green’s function formalism for electronic transport as
applied to systems with ferromagnetic leads. �For related
work, see Refs. 22 and 23.� The main result of this section is
a general expression for the spin current from the ferromag-
netic leads into the system which is necessary to apply our
voltage probe model of a spin-independent inelastic scatterer.
In Sec. III we apply the formalism to study the effect of
spin-independent and spin-dependent inelastic scattering on
magnetoresistance and current-induced torques in both ferro-
magnetic and antiferromagnetic systems. We conclude that
although GMR and current-induced torques in antiferromag-
netic spin valves will be weakened by the inelastic scattering
always present at spintronic device operation temperatures,
the effects predicted in Ref. 9 should still be easily observ-
able in favorable materials. We end in Sec. IV with a discus-
sion of our results and some suggestions for future work.

II. GREEN’S FUNCTION FORMALISM WITH
FERROMAGNETIC LEADS

In this section we describe our model system and give an
expression for the spin current from the leads into the sys-
tem.

A. Model

We consider first a one-dimensional noninteracting elec-
tron system that is connected on every site j to a ferromag-
netic reservoir at equilibrium with chemical potential � j �see
Fig. 2�. The noninteracting electrons should be understood as
quasiparticles in a mean-field description of a magnetic
metal similar to the Kohn-Sham quasiparticles of spin-
density functional theory. The assumption of one dimension-
ality is not essential. Calculations similar to the ones we
describe which allow for a number of transverse channels
could be carried out to model particular materials systems
realistically. The generalization of the formalism to two and
three dimensions is straightforward. The total Hamiltonian
H=HS+HL+HC is the sum of three parts. The first term
describes the system, which in our case includes the para-
magnetic spacer layer and the magnets. In terms of the
second-quantized operators ĉj,� that annihilate an electron in
spin state �� �↑ , ↓ � at site j

HS = − JS �
�j,j��;�

ĉj,�
† ĉj�,�

+ �
j;�,��

ĉj,�
† �Vj

S��,�� − � j
S� j

S · ��,���ĉj,��. �1�

In this expression the first term is proportional to the hopping
amplitude JS and its sum is over nearest neighbors only. In
the second and third terms of HS we allow for a site-
dependent scalar potential Vj

S and a site-dependent exchange
potential −� j

S� j
S where � j

S is a unit vector which specifies
the �instantaneous� magnetization orientation on site j and �
is the Pauli spin-matrix vector. This single-particle Hamil-
tonian should be understood as a time-dependent mean-field
Hamiltonian that depends on the instantaneous � j

S values.
We assume that the magnetization dynamics is always slow
enough to justify time-independent quasiparticle transport
theory. The leads are described by the Hamiltonian HL
=� jHLj, where HLj is the Hamiltonian of the lead that is
connected to the system at site j, which is given by

HLj = − JLj �
�j�,j��;�

	d̂j�,�
Lj 
†d̂j�,�

Lj

− �Lj�Lj · �
j�;�,��

	d̂j�,�
Lj 
†��,��d̂j�,��

Lj , �2�

where d̂j,�
Lj are the fermionic annihilation operators of the jth

lead and JLj
is the hopping amplitude in that lead. Each lead

has a chemical potential � j and a uniform exchange potential
−�Lj�Lj which we adjust as described earlier to simulate
spin-independent and spin-dependent inelastic scatterers.
Note that �Lj is in general different for different leads. The
Hamiltonian that couples the system and its leads is
HC=� jHC

j where

HC
j = − JC

j �
�

†ĉj,�
† d̂�Lj,�

Lj + 	d̂�Lj,�
Lj 
†ĉj,�‡ . �3�

Here, �Lj denotes the last site of the half-infinite ferromag-
netic reservoir connected to site j and JC

j is the amplitude to
hop from that reservoir to the system.

B. Quantum transport Green’s function formalism

The quantum transport Green’s function formalism deter-
mines the equal-time “lesser” Green’s function20,21

Gj,�;j�,��
� �t , t�� i�ĉj�,��

† �t�cj,��t�� of the system in the transport
steady state, the quantity in terms of which all observables
are calculated. It is given by20,21

− iG��t,t� � � = �
j
� d	

�2
�
N�	 − � j�Aj�	� , �4�

where N�x�= �e�x+1�−1 is the Fermi distribution function,
�=1/kBT the inverse thermal energy, and

Aj�	� = G�+��	�� j�	�G�−��	� , �5�

the spectral weight contribution from lead j. The matrix ele-
ments of the rate � j�	� are related to the retarded self-
energy of lead j, denoted by �� j,�+��	�, by

INELASTIC SCATTERING IN FERROMAGNETIC AND… PHYSICAL REVIEW B 75, 014433 �2007�

014433-3



� j�	� = i	�� j,�+��	� − �� j,�−��	�
 , �6�

where �� j,�−��	� is the complex transpose of the retarded
self-energy. �G�−� is obtained similarly from the expression
for G�+� below.� The only nonzero elements of the retarded
self-energy are

�� j,�;j,��
j,�+� �	� = −

�JC
j �2

2JLj

	eik↑
j �	�a + eik↓

j �	�a
��,��

−
�JC

j �2

2JLj

	eik↑
j �	�a − eik↓

j �	�a
�Lj · ��,��, �7�

where k�
j �	�=arccos	−�	+��Lj� /2JLj


 /a is the wave vector
in the leads at energy 	, with a the lattice constant. Finally,
the retarded Green’s function is specified by

	+ − H − �
j

�� j,�+��	��G�+��	� = 1, �8�

with 	+�	+ i0 where the system Hamiltonian is

Hj,�;j�,�� = − JS��,���� j,j�−1 + � j,j�+1�

+ � j,j��Vj
S��,�� − � j

S� j
S · ��,��� . �9�

Note that H, �, G�, Aj, � j, �� j,�±� and G�±� are matrices in
real and spin space of dimension �2Ns�� �2Ns�, where Ns is
the number of sites in the system. From now on we use the
convention that any quantity is a matrix in those indices that
are not explicitly indicated. For example, the quantity
Gi,j

�+��	� is a 2�2 matrix in spin space.
We now proceed to calculate the current and spin currents

from the leads into the system. Since the underlying model
Hamiltonian in these model calculations are spin-rotationally
invariant, each component of spin is conserved and there is
no ambiguity in the spin-current definition. The expression
for the current from lead j has been derived previously24 and
is given by

−
dNj

dt
� −

d

dt
�
j�,�

	d̂j�,�
Lj �t�
†d̂j�,�

Lj �t�

=
1

�
� d	

�2
��k

	N�	 − � j� − N�	 − �k�


�Tr	� j�	�G�+��	��k�	�G�−��	�
 . �10�

This expression relates the Landauer-Bütikker formalism to
the Green’s function formalism.25

The expression for the spin current into lead j proceeds
along similar lines. We first calculate the rate of change of
spin density in lead j:

ds j

dt
�

d

dt
�

j�;�,��

�	d̂j�,�
Lj �t�
†

��,��

2
d̂j�,��

Lj �t��
= −

iJC
j

2�
�
�,��

��,��	�ĉj,�
† �t�d̂�Lj,��

Lj �t�� − c.c.
 . �11�

In principle, there is an additional term that describes the
precession of electronic spins in the lead around the ex-

change field in the leads, but this term vanishes since the
leads are assumed to be in equilibrium and have electron
spins that are aligned with the local exchange field.

The evaluation of the above expression follows the
same line as in the charge current expression derived by
Meir and Wingreen.24 We first introduce the Green’s function

Gj;�,��
C,� �t , t��� i�	d̂�Lj,��

Lj �t��
†ĉj,��t��. The corresponding
Keldysh contour ordered Green’s function obeys the Dyson
equation24

Gj
C�t,t�� =

JC
j

�
�

C�
dt�Gj,j�t,t��G�Lj,�Lj

Lj �t�,t�� , �12�

where the time integration is over the Keldysh contour C�. In
Eq. �12� G�t , t�� is the contour ordered Green’s function of
the system coupled to the leads whereas, in order to avoid
double-counting of the effects of coupling between system
and leads, GLj�t , t�� is the contour ordered Green’s functions
for the jth lead in the absence of coupling to the system.
Using standard rules for calculus on the Keldysh contour we
find that

Gj
C,��t,t�� =

JC
j

�
� dt�	Gj,j

�+��t,t��G�Lj,�Lj

Lj,� �t�,t��

+ Gj,j
� �t,t��G�Lj,�Lj

Lj,�−� �t�,t��
 , �13�

which after Fourier transformation results in

Gj
C,��	� = JC

j 	Gj,j
�+��	�G�Lj,�Lj

Lj,� �	� + Gj,j
� �	�G�Lj,�Lj

Lj,�−� �	�
 .

�14�

This expression is evaluated using

G�Lj,�Lj

Lj,� �	� =
i

�JC
j �2N�	 − � j�� j,j

j �	� , �15�

G�Lj,�Lj

Lj,�−� �	� =
1

�JC
j �2�� j,j

j,�−��	� , �16�

and the kinetic equation 	Eq. �4�
 to obtain

Gj
C,��	� =

i

JC
j N�	 − � j�Gj,j

�+��	�� j,j
j �	�

+ �
k

N�	 − �k�Aj,j
k �	��� j,j

j,�−�� . �17�

It follows that

ds j

dt
=

1

2�
� d	

�2
�
Tr�N�	 − � j�� j,j

j �	�i	�Gj,j
�+��	� − Gj,j

�−��	��


− �
k

N�	 − �k�i	��� j,j
j,�+��	� − �� j,j

j,�−��	��
Aj,j
k �	�� .

�18�

In the next subsection we turn to a discussion of the physical
content of this equation.
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C. Spin currents, exchange interactions, and current-induced
torques

In order to provide some insight into the general expres-
sion we have derived for the spin current, we examine first
the relatively simple situation in which the system is con-
nected to leads only on the most left and most right sites,
denoted by site 1 and Ns, respectively. Their respective
chemical potentials are �1=	F+ �e�V, and �Ns =	F with �e�V
�0. Moreover, we assume that there is no exchange poten-
tial in the system, i.e., � j

S=0, so that spin currents are con-
served in the system. This is the circumstance then of trans-
port between ferromagnetic leads through a paramagnetic
system. In this case ds1 /dt=−dsNs /dt. It is informative to
separate the spin-current flowing between leads into equilib-
rium and nonequilibrium contributions:

ds1

dt
= �ds1

dt
�

eq
+ �ds1

dt
�

neq
. �19�

It follows quite generally from the time-dependent
Schrödinger equation satisified by quasiparticles that ds /dt
has contributions from the spin-current divergence and from
precession around an effective magnetic field. Since the
leads are by definition spatially homogeneous, it follows that
spin currents in the leads may be equally well thought of as
a torque acting on the leads. The equilibrium spin torque is
given �at temperatures low compared to Fermi energies� by

�ds1

dt
�

eq
=

1

2�
�

−�

	F d	

�2
�
Tr��1,1

1 �	�i	�G1,1
�+��	� − G1,1

�−��	��


− i	���1,1
1,�+��	� − ��1,1

1,�−��	��
A1,1�	�� , �20�

where A�	�� i	G�+��	�−G�−��	�
 is the total spectral function.
It can be shown that the equilibrium torque always points out
of the plane spanned by �L1 and �LNs, the magnetization
directions of the two leads. This is expected, since the equi-
librium contribution to the torques between the leads is a
simply due to exchange coupling mediated by the paramag-
netic system. The dynamics induced by this coupling con-
serves total energy and hence leaves �L1 ·�LNs invariant.
Note that spin currents are even under time reserval, unlike
charge currents, and can be present in equilibrium.

The nonequilibrium �transport� contribution to the torques
between the two leads, is given by

�ds1

dt
�

neq
=

1

2�
�

	F

	F+�e�V d	

�2
�
Tr��1,1

1 �	�i

�	�G1,1
�+��	� − G1,1

�−��	��


− i	���1,1
1,�+��	� − ��1,1

1,�−��	��
A1,1
1 �	�� , �21�

and has both an out-of-plane and in-plane contribution. The
former corresponds to a transport-modified electronmediated
exchange torque between the leads. The latter corresponds to
the spin transfer torque between the ferromagnetic leads.
�This contribution was also calculated within the context of
the Green’s function formalism in Ref. 22 for the case of two
ferromagnetic leads.� Note that the in-plane spin transfer
torque is present only at finite bias �e�V, which reflects the

fact that energy-conservation violating torques can only be
present in a nonequilibrium situation. Finally, note that this
spin transfer torque acts on the leads and should not be con-
fused with the torques that act on the local magnetization in
the system that we calculate in the next section.

III. APPLICATIONS

The ferromagnetic voltage probe model discussed in the
previous section is a flexible tool which can be used to model
a wide variety of potentially interesting spintronic device
geometries. We use it in this section to model both spin-
independent and spin-dependent inelastic scattering.

In the presence of an exchange field which defines a pre-
ferred direction in spin space, we can recognize �at least�
three different length scales that are relevant to spintronic
device functionality. The phase-coherence length L� is the
length over which electronic quasiparticles maintain phase
coherence. The spin-flip scattering length or spin diffusion
length Lsf is the average distance travelled along the channel
between spin-flip scattering events. This quantity usually
controls the length scale on which the magnititude of the
magnetization along the exchange field direction recovers
local equilibrium, and therefore also the paramagnetic spacer
layer thickness scale at which giant magnetoresistance ef-
fects are strongly attenuated. The spin-coherence length Lsc
is the length scale over which components of the spin-
density transverse to the exchange field can be maintained.
The phase-coherence length is limited by spin-dependent in-
elastic scattering processes. In addition to this inelastic con-
tribution, the spin-coherence length in two and three dimen-
sional ferromagnetic metals tends to be short because of
destructive interference due to the phase difference of the
spinor components in transverse conduction channels26 with
different Fermi velocity components in the current flow di-
rection. As we discuss below, phase coherence can have a
strong influence on the properties of a spintronic circuit, es-
pecially in circuits containing antiferromagnetic elements.

The solution of transport Green’s function models with
ferromagnetic leads and noncollinear magnetization presents
a number of numerical challenges, even for the one-
dimensional case we consider here, because the spin and
charge currents in the leads depend nonlinearly on both the
magnetization direction and the magnitude of the exchange
spin-splitting in each lead. When we wish to model a spin-
independent inelastic scatterer, both the magnitude and the
direction in each lead have to be carefully adjusted to
achieve the zero-spin-current condition. Indeed the case of
spin-independent inelastic scatterers can be very relevant to
experiment since phonon-scattering can be dominant in ex-
perimental systems. To model circumstances in which pho-
non scattering is dominant �Lsf�L��, we must deal with the
complications associated with preventing spin-relaxation in
the voltage probes, a requirement that is especially trouble-
some for noncollinear magnetization configurations. Inelastic
scattering off magnons, which does flip spins, can also be
important however. The simplest case to examine numeri-
cally is one with paramagnetic, i.e., spin-isotropic, voltage
probes. Calculations with this voltage probe model are rela-
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tively simple even for noncollinear magnetizations, since in
this case only the charge current into the probes is set to
zero. This limit corresponds to Lsf=L� and can be interpreted
as representing the case in which quasiparticle scattering
from magnons is dominant.

We start by considering the giant magnetoresistance ratio
which is easier to evaluate because we need to consider only
parallel and antiparallel configurations which are both collin-
ear. We define the GMR ratio as

� =
GP − GAP

GP
, �22�

where GP is the conductance for the parallel configuration
and GAP for the antiparallel one. For antiferromagnets, the
designations parallel and antiparallel refer to the moment
directions on the two sites adjacent to the paramagnetic
spacer.

In our model we define the phase coherence length as the
product of the Fermi velocity and the inelastic scattering
rate:

L� =
4JSa sin�kFa�

� Tr�
j

 j�	F�/Ns� , �23�

where kF is the Fermi wave length of the system. This defi-
nition is motivated the fact that the average inelastic scatter-
ing time is given roughly by 2/Tr	� j

j�	F� /Ns
.

A. Ferromagnetic metal nanostructures

We report results for a spin-valve ferromagnetic nano-
structure, which consists of two ferromagnetic elements
separated by a paramagnetic spacer �see Fig. 1�. This struc-
ture is known as a spin valve because the current can be
sharply reduced under favorable circumstances when the two
ferromagnets have opposite orientations. In our toy model
we choose � j

S /JS=0.5 and independent of position, i.e., the
site index j, in the ferromagnetic parts of the system. In the
paramagnetic parts the exchange potential is set to zero. Both
ferromagnets are 4 sites long in our tight-binding model. The
other parameters used for the calculations reported on here
were 	F /JS=1.8, JS=JLj

and Vj
S. We note that because the

model used is one-dimensional the numerical results are
somewhat sensitive to details. Here, as well as in the case of
antiferromagnetic spin valves, parameters are chosen such
that the results are typical.

1. GMR ratio for LsfšL�

To model a finite phase coherence length due to spin in-
dependent inelastic scattering, the phonon scattering case, we
choose Lsf=�. We then have to require that both spin and
charge currents into the voltage probes vanish. As explained
before, considering the noncollinear case for this situation is
very difficult numerically. However, calculation of the GMR
ratio requires comparing parallel and antiparallel configura-
tion in which the spin currents with polarization out of the
plane are zero. This observation makes calculating the GMR
ratio numerically tractable.

In Fig. 3 we present results for the GMR ratio as a func-
tion of spacer thickness for various inelastic scattering
lengths. The GMR ratio exhibits oscillations as a function of
spacer thickness which have been observed experimentally.15

For the phase coherent case these oscillations persist up to
arbitrary large spacer thickness in our one-dimensional
model. For finite L� the oscillations are damped and the
GMR ratio saturates to a nonzero value for a spacer of thick-
ness much larger than L�. This is expected because for a
ferromagnet the transmission and reflection probabilities are
spin dependent, and not only the amplitudes.

2. GMR ratio and spin transfer torques for L�=Lsf

For the magnon scattering case, L�=Lsf, implemented by
making the floating voltage probes paramagnetic and requir-
ing the charge current to be zero, we are also able to consider
the noncollinear case. The spin transfer torques are due to the
net misalignment of electron spins with the local magnetiza-
tion in the transport steady state,19 and calculated from

st � �
j

� j
S

�
� j

S � �s��. �24�

Here, �s�� denotes the electron spin component that points
out of the plane spanned by the two magnetizations. The sum
over sites in the above expression is restricted to the ferro-
magnet for which we want to calculate the spin transfer
torques, which in our case is by definition the right “down-
stream” ferromagnet. In Fig. 4 the spin transfer torque per
current is shown for various L� as a function of the angle �
between the two ferromagnets. The inset of this figure shows
the conductance as a function of this angle. Clearly, both
GMR and spin transfer torques are suppressed for decreasing
L�, as expected in the Lsf=L� case.

B. Antiferromagnetic metal nanostructures

In this subsection, we consider a system which consists of
two antiferromagnets separated by a paramagnetic spacer.
Hence, we take � j

S=��−1� j in the magnetic parts of the sys-

FIG. 3. Ferromagnetic GMR ratio as a function of the spacer
thickness for various inelastic scattering lengths.
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tem, and zero in the paramagnetic parts. We take the param-
eters � /JS=1. The other parameters used to obtain the results
reported on here were 	F /JS=1.8, JS=JLj

, and Vj
S. The calcu-

lations presented in this subsection were performed on nano-
structures in which each antiferromagnet has 30 sites.

1. GMR ratio for LsfšL�

In Fig. 5 the antiferromagnetic GMR ratio is shown as a
function of the thickness of the spacer, for various inelastic
scattering length L�. Note that as the phase coherence length
decreases, the oscillations in the GMR ratio with increasing
thickness are suppressed. Unlike the case of a ferromagnetic
spin valve, the GMR ratio goes to zero when the thickness of
the spacer is much larger than the phase coherence length.
This property demonstrates that phase coherence is essential
for the antiferromagnetic GMR effect. This observation is in
agreement with qualitative arguments presented in previous

work.9 Note however, that the GMR decreases rather gradu-
ally with decreasing phase coherence length.

2. GMR and current-induced torques for L�=Lsf

One of the most important results in our previous work on
antiferromagnets9 is that in the ballistic limit the out of plane
spin density which is responsible for the current-induced
torque is periodic with the period of the antiferromagnet. For
the tight-binding model used in this paper this property im-
plies that this spin density component, present only in the
transport steady state, is constant throughout the antiferro-
magnet. It is this property which makes current-induced
torques very efficient in driving collective order parameter
dynamics in uncompensated antiferromagnets in the absence
of inelastic scattering.

In Fig. 6 we show the out of plane spin density for the
angle �=
 /2 between two moments in the antiferromagnets
opposite the spacer. This calculation was performed for a
spacer thickness of 10 sites. In agreement with our previous
results we find that for L�=� the out of plane spin density is
constant. For nonzero L� the out of plane spin density decays
away from the spacer into the antiferromagnets.

In Fig. 7 we show the current-induced torque per current
acting on the right antiferromagnet as a function of the angle
� between the two moments facing the paramagnetic spacer.
It is important to realize that a single domain antiferromagnet
is driven by a staggered torque. Hence, in this case we have
to calculate the staggered torque given by

st �
1

�
�

j

�− 1� j�� j
S � �s��. �25�

As expected, both GMR and current-induced torques are re-
duced by inelastic scattering. It is somewhat surprising that
the current-induced torques at L�=20 are larger than at L�

=�. However, this is most likely because the current-induced
torque is normalized to the current and because of the one-

FIG. 4. Spin-transfer torque for the case Lsf=L� normalized to
I / �e�, where I is the charge current, as a function of �. The inset
shows the conductance in units of �e� / �2
��. For this calculation
the spacer thickness is taken equal to five sites.

FIG. 5. Antiferromagnetic GMR ratio as a function of the spacer
thickness for various inelastic scattering lengths.

FIG. 6. Spin density component out of the plane spanned by the
moments of the antiferromagnets opposite the paramagnetic spacer
layer for various inelastic scattering lengths. In this calculation
L�=Lsf and the angle between the two moments opposite the spacer
is 
 /2.
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dimensional model under consideration. We checked that in
the limit L�→0 the current-induced torques always vanish.

IV. DISCUSSION AND CONCLUSIONS

The most important conclusion of this paper is that the
introduction of inelastic scattering does not immediately de-
stroy magnetoresistive and current-induced torques in nano-
structures with two antiferromagnetic elements separated by
a paramagnetic spacer. On the contrary, we find that the
GMR ratio goes to zero smoothly for spacer thicknesses
larger than the phase coherence or inelastic scattering length.
�Ab initio calculations for Cr/Au/Cr antiferromagnetic
spin-valves18 demonstrate that there is an additional interface
related contribution to antiferromagnetic GMR which is not
captured by our toy model and is not limited by inelastic
scattering in the spacer layer.� Since typical inelastic scatter-
ing lengths at room temperature ��10 nm� are much larger
than the minimum paramagnetic spacer layer thicknesses re-
quired to make coupling between magnetic layers insignifi-
cant, inelastic scattering does not impose any practical limi-
tation on GMR and current-induced torques in thin film
based antiferromagnetic metal nanostructures.

Unlike the ferromagnetic case, current-induced torques in
antiferromagnets do not follow simply from the approximate
conservation of total spin angular momentum. Toy model
calculations, as well as ab initio calculations for realistic
systems,18 suggest that both GMR and current-induced
torques tend to be somewhat weaker for very thin films in the
antiferromagnetic case compared to GMR and spin transfer
torques in ferromagnets. It seems natural to associate this
property with the absence of grounding in a simple robust
conservation law. A surprising and interesting property of ST
physics in antiferromagnets is the property that torques act
throughout the entire volume of the antiferromagnet in the
phase coherent case. This property helps to compensate for
the tendency toward somewhat weaker effects in very thin
films. When inelastic scattering is introduced, spin torques
again act only over a finite thickness �L� within the antifer-
romagnets. Still the length scale over which the torque acts
should be �10 nm, much longer than the atomic length scale
over which spin torques act in ferromagnetic spin-torque
structures.

As explained in earlier work,9 ST effects in antiferromag-
nets are expected to be strongest when moment directions
alternate in the direction of current flow. In the one-
dimensional single channel model studied here, this is the
only possibility. For real three-dimensional antiferromagnets
this property requires particular orientations of current with
respect to the crystal axes, or in thin film structures particular
growth directions for the antiferromagnetic films which yield
alternating ferromagnetic layers. It seems likely that the
greatest obstacle to achieving interesting GMR and current-
induced torques in purely antiferromagnetic circuits may be
the difficulty in growing antiferromagnetic thin films with
individual ferromagnetic layers that are not strongly compen-
sated. Studies of the influence of magnetic disorder within
ferromagnetic layers on GMR and ST physics require multi-
channel Green’s function calculations and will be the subject
of future work.
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