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Using the low-energy effective field theory for magnons and holes—the condensed matter analog of baryon
chiral perturbation theory for pions and nucleons in QCD—we study different phases of doped antiferromag-
nets. We systematically investigate configurations of the staggered magnetization that provide a constant
background field for doped holes. The most general configuration of this type is either constant itself or
represents a spiral in the staggered magnetization. Depending on the values of the low-energy parameters, a
homogeneous phase, a spiral phase, or an inhomogeneous phase is energetically favored. The reduction of the
staggered magnetization upon doping is also investigated.
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I. INTRODUCTION

The precursors of high-temperature superconductors1 are
doped antiferromagnets with a spontaneously broken global
SU�2�s spin symmetry and with magnons as the correspond-
ing Goldstone bosons. The effect of antiferromagnetic spin
fluctuations on the dynamics of doped holes has been inves-
tigated in great detail in the condensed matter literature.2–43

Using a variety of numerical and analytical techniques, a
wide range of interesting phenomena has been investigated
in doped antiferromagnets. In particular, it was suggested
that spiral phases with an inhomogeneous staggered mag-
netization may replace the Néel phase of the undoped
antiferromagnet even at arbitrarily small dop-
ing.7,11,19,22,24–29,32,33,36–40,42,43 In a spiral phase the staggered
magnetization develops a helix structure, and the Néel-
ordered antiferromagnet thus turns into a helimagnet. Other
inhomogeneities—most importantly stripes—have also at-
tracted a lot of attention.44 Unfortunately, away from half-
filling, the microscopic Hubbard and t-J models cannot be
simulated reliably due to a severe fermion sign problem.
Also analytical calculations are usually not fully systematic
but suffer from uncontrolled approximations. Consequently,
most results for these strongly correlated systems remain, at
least to some extent, debatable. While this may seem un-
avoidable taking into account the complicated nonperturba-
tive dynamics of these systems, a systematic effective field
theory approach allows us to reach some unambiguous con-
clusions at least for lightly doped systems. While some re-
sults of this paper have been derived before using less rigor-
ous methods, the effective field theory derivation is still very
useful because it is reliable and particularly transparent.

Particle physicists are facing the challenges of strongly
correlated systems in studies of the strong interactions be-
tween quarks and gluons. Just like an undoped antiferromag-
net, the QCD vacuum has a spontaneously broken global
symmetry—in that case SU�2�L � SU�2�R chiral symmetry—
which gives rise to three Goldstone pions—the analogs of
the magnons in an antiferromagnet. The QCD analog of the

doped holes carrying electric charge are the nucleons carry-
ing baryon number. Just as simulating the Hubbard model at
nonzero doping is prevented by a fermion sign problem,
simulating QCD at nonzero baryon density is prevented by a
severe complex action problem. For this reason, lattice QCD
is presently limited to simulating individual particles propa-
gating in the QCD vacuum. Although simulations of the
QCD vacuum do not suffer from the complex action prob-
lem, they are still very demanding, especially in the physical
regime of small quark masses. Fortunately, a systematic ef-
fective field theory45–48—chiral perturbation theory—is ex-
tremely successful in describing the low-energy physics in
this regime. In chiral perturbation theory, not quarks and glu-
ons, but pions and nucleons are the fundamental degrees of
freedom. Although the effective theory is not renormalizable,
it allows a systematic low-energy expansion with only a fi-
nite number of a priori unknown low-energy parameters en-
tering at each order. The values of the low-energy parameters
can be determined from experiments or from lattice QCD
simulations. Chiral perturbation theory provides us with pre-
cise predictions for low-energy pion physics, which would
be practically impossible to derive directly from QCD.
Baryon chiral perturbation theory49–53 extends these suc-
cesses to the low-energy physics of both pions and nucleons.
At present, a fully systematic power-counting scheme seems
to exist only for the sector with a single nucleon.53 Still,
few-nucleon systems have also been treated quanti-
tatively.54–58 The QCD analog of a spiral phase in a doped
antiferromagnet is a pion condensate in nuclear matter.59–64

The systematic technique of chiral perturbation theory is
not limited to QCD but can be applied to any system with
Goldstone bosons. Indeed, systematic low-energy effective
theories have been very successful in describing the dynam-
ics of magnons in both ferromagnets and antiferro-
magnets.9,10,13,23,30,35,65–69 In Refs. 70 and 71 we have ex-
tended the pure magnon effective field theory by including
charge carriers. The resulting effective theory for magnons
and doped holes is the condensed matter analog of baryon
chiral perturbation theory. The effective theory incorporates
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important experimental as well as theoretical results, such as
the location of hole pockets at lattice momenta � �

2a , ± �
2a

�
which follows from angle-resolved photoemission spectros-
copy �ARPES� experiments72–75 as well as from theoretical
investigations of Hubbard or t-J-like models.6,7,20,41 Re-
cently, we have used the effective theory to derive the
magnon-mediated forces between two isolated holes in an
otherwise undoped system.71,76 Remarkably, the Schrödinger
equation corresponding to the one-magnon exchange poten-
tial can be solved analytically and gives rise to an infinite
number of bound states. It remains to be seen if these iso-
lated hole pairs are related to the preformed Cooper pairs of
high-temperature superconductivity. In this paper, we use the
effective theory to investigate the regime of small doping.
This is possible analytically if the four-fermion contact inter-
actions between doped holes are weak and can be treated
perturbatively. Whether this is indeed the case depends on
the concrete magnetic material under consideration. It should
be noted that the four-fermion couplings between doped
holes in the effective theory may well be small, although the
microscopic on-site Coulomb repulsion U in the Hubbard
model and the exchange coupling J in the t-J model which
cause antiferromagnetism are strong. In particular, in the ef-
fective theory antiferromagnetism arises, independent of the
strength of the remnant four-fermion couplings between
doped holes. Assuming that the four-fermion couplings can
be treated perturbatively, the effective theory predicts both
homogeneous and spiral phases, depending on the specific
values of the low-energy parameters.

The paper is organized as follows. In Sec. II the effective
theory of magnons and holes and the nonlinear realization of
the spontaneously broken SU�2�s spin symmetry are re-
viewed. The holes interact with the Goldstone bosons via a
U�1�s “gauge” field and two “charged” vector fields com-
posed of magnons. The gauge group U�1�s and the corre-
sponding “charge” refer to the unbroken subgroup of SU�2�s.
In Sec. III we consider the most general magnon field that
gives rise to constant gauge and charged vector fields and
thus to a homogeneous background for the doped holes.
These magnon fields turn out either to be homogeneous
themselves or form a spiral in the staggered magnetization. A
particular magnon field which gives rise to inhomogeneous
composite gauge and charged vector fields—a so-called
double spiral—is also discussed. In Sec. IV homogeneous
and spiral phases are investigated. The effect of weak four-
fermion contact interactions is investigated in Sec. V using
perturbation theory and—depending on the values of the
low-energy parameters—it is determined which phase is en-
ergetically favored. In Sec. VI the reduction of the staggered
magnetization upon doping is calculated for both the homo-
geneous and spiral phases. Section VII contains an outlook
as well as our conclusions. In the Appendix we prove that the
most general configuration of the staggered magnetization
that provides a constant background field for the doped holes
is either constant itself or represents a spiral.

II. SYSTEMATIC LOW-ENERGY EFFECTIVE FIELD
THEORY FOR MAGNONS AND HOLES

In order to make this paper self-contained, in this section
we review the effective theory for magnons and holes con-

structed in Refs. 70 and 71 which is based on the pure mag-
non effective theory of Refs. 10, 13, 23, 30, 35, and 65–68.

The staggered magnetization of an antiferromagnet is de-
scribed by a unit-vector field

e��x� = „sin ��x�cos ��x�,sin ��x�sin ��x�,cos ��x�… ,

�2.1�

in the coset space SU�2�s /U�1�s=S2, with x= �x1 ,x2 , t� denot-
ing a point in �2+1�-dimensional space-time. For our pur-
poses it is more convenient �but completely equivalent� to
use a CP�1� representation in terms of 2�2 Hermitian pro-
jection matrices P�x� that obey

P�x� =
1

2
�1 + e��x� · �� �, P�x�† = P�x� ,

TrP�x� = 1, P�x�2 = P�x� , �2.2�

where �� are the Pauli matrices. The relevant symmetries are
realized as follows:

SU�2�s: P�x�� = gP�x�g†,

Di:
DiP�x� = 1 − P�x� ,

O: OP�x� = P�Ox�, Ox = �− x2,x1,t� ,

R: RP�x� = P�Rx�, Rx = �x1,− x2,t� ,

T: TP�x� = 1 − P�Tx�, Tx = �x1,x2,− t� . �2.3�

Here g�SU�2�s is a matrix that implements the global spin
symmetry which is spontaneously broken down to U�1�s, Di

denotes the displacement by one lattice spacing in the
i-direction, and O, R, and T denote 90° spatial rotations,
spatial reflections, and time reversal, respectively.

In order to couple doped holes to the magnons, a nonlin-
ear realization of the SU�2�s symmetry was constructed in
Ref. 70. The magnon field is diagonalized by a unitary trans-
formation u�x��SU�2�s—i.e.,

u�x�P�x�u�x�† =
1

2
�1 + �3� = �1 0

0 0
�, u11�x� � 0,

�2.4�

with

u�x� = � cos� 1
2��x�� sin� 1

2��x��exp�− i��x��

− sin� 1
2��x��exp�i��x�� cos� 1

2��x�� � .

�2.5�

The transformation u�x� describes a rotation of the local stag-
gered magnetization vector e��x� into the 3-direction. Since
u�x� is more directly related to P�x� than to e��x� itself, we
have chosen the CP�1� representation. Under a global SU�2�s

transformation g the diagonalizing field u�x� transforms as

u�x�� = h�x�u�x�g†, u11�x�� � 0, �2.6�

which defines the nonlinear U�1�s symmetry transformation
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h�x� = exp�i��x��3� , �2.7�

which acts like a gauge transformation in the unbroken sub-
group U�1�s. The local symmetry transformation h�x� de-
pends on the global transformation g as well as on the local
staggered magnetization P�x� from which it inherits its
x-dependence. Under the displacement symmetry Di one ob-
tains

Diu�x� = ��x�u�x�, ��x� = � 0 − exp�− i��x��
exp�i��x�� 0

� .

�2.8�

The way in which the global SU�2�s spin symmetry dis-
guises itself as a local symmetry in the unbroken U�1�s sub-
group is characteristic for any systematic effective field
theory of Goldstone bosons. The nonlinear realization of
spontaneously broken continuous global symmetries has
been discussed in full generality in the pioneering work of
Coleman, Wess, and Zumino45 and Callan et al. 46 Following
their general scheme, doped holes are derivatively coupled to
the magnons. In fact, the holes are “charged” under the local
U�1�s symmetry and transform with the nonlinear transfor-
mation h�x�. In order to couple holes to the magnons it is
necessary to introduce the anti-Hermitian traceless field

v	�x� = u�x��	u�x�†, �2.9�

which obeys the following transformation rules:

SU�2�s: v	�x�� = h�x��v	�x� + �	�h�x�†,

Di:
Div	�x� = ��x��v	�x� + �	���x�†,

O: Ovi�x� = 
ijv j�Ox�, Ovt�x� = vt�Ox� ,

R: Rv1�x� = v1�Rx�, Rv2�x� = − v2�Rx�, Rvt�x� = vt�Rx� ,

T: Tv j�x�=Div j�Tx�, Tvt�x� = − Divt�Tx� . �2.10�

Writing

v	�x� = iv	
a �x��a, v	

±�x� = v	
1 �x� � iv	

2 �x� , �2.11�

the field v	�x� decomposes into an Abelian “gauge” field
v	

3 �x� and two “charged” vector fields v	
±�x�, which transform

as

v	
3 �x�� = v	

3 �x� − �	��x�, v	
±�x�� = v	

±�x�exp�±2i��x�� ,

�2.12�

under SU�2�s.
ARPES measurements72–75 as well as theoretical calcula-

tions in t-J-like models6,20,41 have revealed that at small dop-
ing holes occur in pockets centered at k�= � �

2a , �
2a

� and k�

= � �
2a ,− �

2a
� in the Brillouin zone. The elliptically shaped hole

pockets are illustrated in Fig. 1. The effective field theory is
defined in the space-time continuum, and the holes are de-
scribed by Grassmann-valued fields 
s

f�x� carrying a “flavor”
index f =� ,� that characterizes the corresponding hole
pocket. The index s=± denotes spin parallel ��� or antipar-

allel ��� to the local staggered magnetization. Following
Refs. 70 and 71, under the various symmetry operations the
hole fields transform as

SU�2�s: 
±
f �x�� = exp�±i��x��
±

f �x� ,

U�1�Q: Q
±
f �x� = exp�i��
±

f �x� ,

Di:
Di
±

f �x� = � exp�iki
fa�exp��i��x��
�

f �x� ,

O: O
±
��x� = � 
±

��Ox�, O
±
��x� = 
±

��Ox� ,

R: R
±
��x� = 
±

��Rx�, R
±
��x� = 
±

��Rx� ,

T: T
±
f �x� = � exp��i��Tx��
±

f†�Tx� ,

T
±
f†�x� = ± exp�±i��Tx��
±

f �Tx� . �2.13�

Here U�1�Q is the fermion number symmetry of the holes.
Interestingly, in the effective continuum theory the location
of holes in lattice momentum space manifests itself as a
“charge” ki

f under the displacement symmetry Di.
Once the relevant low-energy degrees of freedom have

been identified and the transformation rules of the corre-
sponding fields have been understood, the construction of the
effective action is uniquely determined. The low-energy ef-
fective action of magnons and holes is constructed as a de-
rivative expansion. At low energies terms with a small num-
ber of derivatives dominate the dynamics. Since the holes are
heavy nonrelativistic fermions, one time derivative counts
like two spatial derivatives. Here we limit ourselves to terms
with at most one temporal or two spatial derivatives. One
then constructs all terms consistent with the symmetries
listed above. The effective action can be written as

FIG. 1. Elliptically shaped hole pockets centered at �± �

2a , ± �

2a
�.

Two pockets centered at kf and kf + � �

a , �

a
� combine to form the

pockets for the flavors f =� ,�.
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S�
±
f†,
±

f ,P� =� d2xdt�
n


Ln

, �2.14�

where n
 denotes the number of fermion fields that the vari-
ous terms contain. The leading terms in the pure magnon
sector take the form

L0 = �sTr��iP�iP +
1

c2�tP�tP� =
�s

2
��ie� · �ie� +

1

c2�te� · �te��
= 2�s�vi

+vi
− +

1

c2vt
+vt

−� . �2.15�

Here �s is the spin stiffness and c is the spin-wave velocity.
The leading terms with two fermion fields �containing at
most one temporal or two spatial derivatives� are given by

L2 = �
f=�,�

s=+,−

	M
s
f†
s

f + 
s
f†Dt
s

f +
1

2M�
Di
s

f†Di
s
f

+ � f
1

2M�
�D1
s

f†D2
s
f + D2
s

f†D1
s
f�

+ ��
s
f†v1

s
−s
f + � f
s

f†v2
s
−s

f � + N1
s
f†vi

svi
−s
s

f

+ � fN2�
s
f†v1

sv2
−s
s

f + 
s
f†v2

sv1
−s
s

f�
 . �2.16�

It should be noted that vi
±�x� contains a spatial derivative,

such that magnons and holes are indeed derivatively coupled.
In Eq. �2.16�, M is the rest mass and M� and M� are the
kinetic masses of a hole, � is a hole–one-magnon coupling,
and N1 and N2 are hole–two-magnon couplings, which all
take real values. The sign � f is � for f =� and � for f =�.
The covariant derivative takes the form

D	
±
f �x� = �	
±

f �x� ± iv	
3 �x�
±

f �x� . �2.17�

The leading terms with four-fermion fields are given by

L4 = �
s=+,−

�G1

2
�
s

�†
s
�
−s

�†
−s
� + 
s

�†
s
�
−s

�†
−s
� �

+ G2
s
�†
s

�
s
�†
s

� + G3
s
�†
s

�
−s
�†
−s

�

+ G4	
s
�†
s

� �
s�=+,−

�
s�
�†v1

s�
−s�
� − 
s�

�†v2
s�
−s�

� �

+ 
s
�†
s

� �
s�=+,−

�
s�
�†v1

s�
−s�
� + 
s�

�†v2
s�
−s�

� �
� ,

�2.18�

with the real-valued four-fermion coupling constants G1, G2,
G3, and G4. Here we have limited ourselves to terms con-
taining at most one spatial derivative. In principle there are
even more contact interactions among the fermions such as
six- and eight-fermion couplings as well as four-fermion
couplings including more derivatives. Some of these terms
have been constructed in Ref. 71 but play no role in the
present work and have hence been suppressed.

Remarkably, the above Lagrangian has an accidental glo-
bal U�1�F flavor symmetry that acts as

U�1�F: F
±
f �x� = exp�� fi��
±

f �x� . �2.19�

This symmetry is not present in the underlying microscopic
systems and is indeed explicitly broken by higher-order
terms in the effective action. For c→� the leading terms of
the effective action also have an accidental Galilean boost
symmetry

G: GP�x� = P�Gx�, Gx = �x� − v�t,t� ,

G
±
f �x� = exp�ip� f · x� − � ft�
±

f �Gx� ,

G
±
f†�x� = 
±

f†�Gx�exp�− ip� f · x� + � ft� , �2.20�

with p� f = �p1
f , p2

f � and � f given by

p1
f =

M�

1 − �M�/M��2�v1 − � f
M�

M�
v2� ,

p2
f =

M�

1 − �M�/M��2�v2 − � f
M�

M�
v1� ,

� f =
�pi

f2
�

2M�
+ � f

p1
f p2

f

M�

=
M�

1 − �M�/M��2	1

2
�v1

2 + v2
2� − � f

M�

M�
v1v2
 . �2.21�

Also, the Galilean boost symmetry is explicitly broken at
higher orders of the derivative expansion. In real materials
Galilean �or actually Poincaré� invariance is spontaneously
broken by the formation of a crystal lattice, with phonons as
the corresponding Goldstone bosons. Here we assume that
phonons play no major role in the cuprates and we focus
entirely on the magnons. Still, phonons and a spontaneously
broken Galilean symmetry could be included in the effective
field theory if necessary.

III. SPIRALS IN THE STAGGERED MAGNETIZATION

In the following we will consider configurations e��x� of
the staggered magnetization which—although not necessar-
ily constant themselves—provide a constant background
field for the doped holes. We restrict ourselves to time-
independent configurations, such that vt�x�=0. The most
general configuration, with vi�x� constant up to a gauge
transformation, represents a spiral in the staggered magneti-
zation. We also discuss a so-called double spiral which gives
rise to a nonuniform composite vector field and thus to an
inhomogeneous fermion density.

A. Spirals with uniform composite vector fields

Since the holes couple to the composite vector field vi�x�
in a gauge-covariant way, it is sufficient to assume that vi�x�
is constant only up to a gauge transformation—i.e.,

vi
3�x�� = vi

3�x� − �i��x� = sin2 ��x�
2

�i��x� − �i��x� = ci
3,
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vi
±�x�� = vi

±�x�exp�±2i��x��

=
1

2
�sin ��x��i��x� ± i�i��x��exp
�i���x� − 2��x���

= ci
±, �3.1�

with ci
3 and ci

± being constant. As shown in the Appendix, the
most general configuration that leads to a constant vi�x��
represents a spiral in the staggered magnetization. Further-
more, by an appropriate gauge transformation one can al-
ways achieve

ci
+ = ci

− = ci � R . �3.2�

The magnon contribution to the energy density of these con-
figurations is given by

�m =
�s

2
�ie��x� · �ie��x� = 2�svi

+�x�vi
−�x� = 2�s�c1

2 + c2
2� .

�3.3�

To be specific, let us consider a concrete family of spiral
configurations with

��x� = �0, ��x� = kixi, �3.4�

which implies

vt�x� = 0, vi
3�x� = ki sin2 �0

2
, vi

±�x� =
ki

2
sin �0 exp��ikixi� .

�3.5�

Choosing the gauge transformation

��x� =
1

2
kixi, �3.6�

one obtains the constant field

vt�x�� = 0, vi
3�x�� = vi

3�x� − �i��x� = ki�sin2 �0

2
−

1

2
� = ci

3,

vi
±�x�� = vi

±�x�exp�±2i��x�� =
ki

2
sin �0 = ci. �3.7�

Hence, comparing with the Appendix, in this case we can
identify

ci
3 = −

ki

2
cos �0, a =

ci

ci
3 = − tan �0, �3.8�

and the magnon contribution to the energy density is

�m = 2�s�c1
2 + c2

2� =
�s

2
�k1

2 + k2
2�sin2 �0. �3.9�

B. Double spiral

For most of this paper we restrict ourselves to configura-
tions of the staggered magnetization which give rise to a
homogeneous composite vector field vi�x��. However, in this
subsection we examine a configuration with an inhomoge-
neous vi�x��—the so-called double spiral.19 Although we will
not explore this configuration any further in this work, it is
interesting for future investigations. In particular, one can
study it in order to figure out whether spirals with constant
vi�x�� may be unstable against developing inhomogeneities.

A particularly simple form of a double spiral is given by

e��x� = „sin�k1x1�cos�k2x2�,sin�k2x2�,cos�k1x1�cos�k2x2�… .

�3.10�

The magnon contribution to the energy density of the double
spiral takes the form

�m =
�s

2
�ie��x� · �ie��x� =

�s

2
�k1

2 cos2�k2x2� + k2
2� . �3.11�

It is straightforward to compute the composite vector field
for the double spiral, and one obtains

v1
3�x� = −

k1 cos�k1x1�sin�k2x2�cos�k2x2�
2�1 + cos�k1x1�cos�k2x2��

, v1
±�x� =

k1 cos�k2x2�
sin�k1x1�sin�k2x2� ± i�cos�k1x1� + cos�k2x2���
2�1 + cos�k1x1�cos�k2x2��

,

v2
3�x� =

k2 sin�k1x1�
2�1 + cos�k1x1�cos�k2x2��

, v2
±�x� =

k2�cos�k1x1� + cos�k2x2� � i sin�k1x1�sin�k2x2��
2�1 + cos�k1x1�cos�k2x2��

. �3.12�

As before, we perform a gauge transformation

vi
3�x�� = vi

3�x� − �i��x�, vi
±�x�� = vi

±�x�exp�±2i��x�� ,

�3.13�

in this case with

exp�2i��x�� =
sin�k1x1�sin�k2x2� − i�cos�k1x1� + cos�k2x2��

1 + cos�k1x1�cos�k2x2�
,

�3.14�

and we obtain the remarkably simple form

HOMOGENEOUS VERSUS SPIRAL PHASES OF HOLE-… PHYSICAL REVIEW B 75, 014421 �2007�

014421-5



v1
3�x�� = −

k1

2
sin�k2x2�, v1

±�x�� =
k1

2
cos�k2x2� ,

v2
3�x�� = 0, v2

±�x�� = � i
k2

2
. �3.15�

IV. HOMOGENEOUS VERSUS SPIRAL PHASES

In this section we calculate the fermionic contribution to
the energy density of a configuration with constant vi�x�� in
order to decide which configuration is energetically favored.
It will turn out that this depends on the values of the low-
energy parameters. For large �s the magnon contribution to
the energy density dominates and a homogeneous phase is
favored. In that case, all four hole pockets are equally popu-
lated with doped holes of both spin up and spin down. For
smaller �s, on the other hand, the fermionic contribution to
the energy density dominates and favors a spiral configura-
tion. In this case, only a particular linear combination of
spin-up and spin-down states is occupied by doped holes. If
the spiral is oriented along a crystal lattice axis �a zero de-
gree spiral�, hole pockets of both types �� and �� are filled
with doped holes. On the other hand, if the spiral is oriented
along a lattice diagonal �a 45° spiral�, either three- or one-
hole pockets are populated. As we will see, the zero degree
spiral is realized for intermediate values of �s, while the 45°
spiral is unstable against the formation of inhomogeneities in
the fermion density. Interesting calculations of a similar na-
ture were presented in Refs. 42 and 43 in the context of
microscopic t-J-like models. In these works, in a particular
parameter range a zero degree spiral has been identified as
the most stable configuration. Our effective field theory treat-
ment complements these results in an interesting way. First,
it is model independent and thus applicable to a large variety
of microscopic systems, because the most general form of
the effective action is taken into account. In addition, it is
controlled by a systematic low-energy expansion. Before we
discuss homogeneous versus spiral phases, we address the
issue of phase separation in the context of the t-J model.

A. Stability against phase separation

It is well known that the t-J model shows phase separa-
tion for small values of t. In this case the doped holes are
heavy. Each hole is surrounded by four bonds which, in the
absence of the hole, would carry a negative antiferromag-
netic contribution to the energy. In order to minimize the
number of broken antiferromagnetic bonds, the holes may
accumulate in some region of the lattice, thus leaving an
otherwise undoped antiferromagnet behind; i.e., the system
undergoes phase separation.

The energy density of the undoped antiferromagnet is �0.
In the t-J model, which reduces to the Heisenberg model at
half-filling, the energy density was determined with a very
efficient loop-cluster algorithm as �0=−0.6693�1�J /a2,
where J is the exchange coupling and a is the lattice
spacing.77 A doped hole propagating in the antiferromagnet
has mass M. Hence, to leading order in the fermion density
n, the energy density of a doped antiferromagnet is

� = �0 + Mn + O�n2� . �4.1�

When the system phase separates, the doped holes accumu-
late in some region of volume V�, leaving an otherwise un-
doped antiferromagnet behind in the remaining volume V
−V�. If there are no electrons at all in the hole-rich region,
each hole occupies an area a2 and hence V�=Na2, where N is
the number of holes. In the t-J model, the unoccupied region
of volume V� does not contribute to the energy density, while
in the remaining volume V−V� one has the energy density �0
of an undoped antiferromagnet. Hence, the energy density of
a phase-separated system is

�ps =
�0�V − V��

V
= �0�1 − a2n� . �4.2�

The doped t-J model is thus stable against phase separation
as long as

� � �ps ⇒ M � − �0a2 = 0.6693�1�J . �4.3�

In the t-J model at small t the holes are essentially static,
breaking four antiferromagnetic bonds, while �0 represents
the energy of two intact antiferromagnetic bonds. Hence, for
small t one has M �−2�0a2 which implies phase separation.
However, the hole mass M decreases with increasing t and
can even become negative.41 Hence, for sufficiently large t,
one indeed obtains a doped antiferromagnet which is stable
against phase separation. It should be noted that a negative
rest mass M is not at all problematical from a theoretical
point of view. It only means that the doped antiferromagnet
has a lower energy than the undoped system. Still, since
particle number is conserved, the system cannot lower its
energy by creating fermions.

B. Fermionic contribution to the energy

In this subsection we compute the fermionic contribution
to the energy, keeping the parameters ci

3 and ci
± of the spiral

fixed. For the moment, we ignore the four-fermion cou-
plings. The considerations of this paper are valid only if the
four-fermion couplings are weak and can be treated in per-
turbation theory. Furthermore, we may neglect the hole–two-
magnon vertices proportional to N1 and N2 which involve
two spatial derivatives and are thus of higher order than the
hole–one-magnon vertex proportional to �. The Euclidean
action of Eq. �2.16� then gives rise to the fermion Hamil-
tonian

H =� d2x �
f=�,�

s=+,−

	M�s
f†�s

f +
1

2M�
Di�s

f†Di�s
f

+ � f
1

2M�
�D1�s

f†D2�s
f + D2�s

f†D1�s
f�

+ ���s
f†v1

s�−s
f + � f�s

f†v2
s�−s

f �
 , �4.4�

with the covariant derivative
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Di�±
f �x� = �i�±

f �x� ± ivi
3�x��±

f �x� . �4.5�

Here �s
f†�x� and �s

f�x� are creation and annihilation opera-
tors �not Grassmann numbers� for fermions of flavor f
=� ,� and spin s= + ,− �parallel or antiparallel to the local
staggered magnetization�, which obey canonical anticommu-
tation relations. As before, ��=1 and ��=−1. The above
Hamiltonian is invariant against time-independent U�1�s

gauge transformations

�±
f �x�� = exp�±i��x���±

f �x� ,

vi
3�x�� = vi

3�x� − �i��x�, vi
±�x�� = vi

±�x�exp�±2i��x�� .

�4.6�

Here we consider holes propagating in the background of a
configuration with a spiral in the staggered magnetization.

Based on the considerations in the Appendix, we can then
limit ourselves to

vi
3�x�� = ci

3, vi
±�x�� = ci � R . �4.7�

Hence, after the gauge transformation, the fermions experi-
ence a constant composite vector field vi�x��. The Hamil-
tonian can then be diagonalized by going to momentum
space. Since magnon exchange does not mix the flavors, the
Hamiltonian can be considered separately for f =� and f
=�, but it still mixes spin s=+ with s=−. The single-particle
Hamiltonian for holes with spatial momentum p� = �p1 , p2�
takes the form

Hf�p�� =�M +
�pi − ci

3�2

2M�
+ � f

�p1 − c1
3��p2 − c2

3�
M�

��c1 + � fc2�

��c1 + � fc2� M +
�pi + ci

3�2

2M�
+ � f

�p1 + c1
3��p2 + c2

3�
M�

� . �4.8�

The hole–one-magnon vertex proportional to � mixes the
spin s=+ and s=− states and provides a potential mechanism
to stabilize a spiral phase. The diagonalization of the above
Hamiltonian yields

E±
f �p�� = M +

pi
2 + �ci

3�2

2M�
+ � f

p1p2 + c1
3c2

3

M�

±�� pici
3

M�
+ � f

p1c2
3 + p2c1

3

M�
�2

+ �2�c1 + � fc2�2.

�4.9�

In particular, mixing via the � vertex lowers the energy E−
f

and raises the energy E+
f . It should be noted that in this case

the index � no longer refers to the spin orientation. Indeed,
the eigenvectors corresponding to E±

f are linear combinations
of both spins. The minimum of the energy is located at p�
=0 for which

E±
f �0� = M +

�ci
3�2

2M�
+ � f

c1
3c2

3

M�
± ��c1 + � fc2� . �4.10�

Since ci
3 does not affect the magnon contribution to the en-

ergy density, we fix it by minimizing E−
f �0� which implies

c1
3=c2

3=0. According to Eq. �3.7� this implies that �0= �
2 ; i.e.,

the spiral is along a great circle on the sphere S2. We have
verified a posteriori that putting ci

3=0 is indeed justified. For
c1

3=c2
3=0 the energies of Eq. �4.9� reduce to

E±
f �p�� = M +

pi
2

2M�
+ � f

p1p2

M�
± ��c1 + � fc2� . �4.11�

Consequently, the filled hole pockets P±
f �with M��M�� are

ellipses determined by

pi
2

2M�
+ � f

p1p2

M�
= T±

f , �4.12�

where T±
f is the kinetic energy of a hole in the pocket P±

f at
the Fermi surface. The area of an occupied hole pocket de-
termines the fermion density as

n±
f =

1

�2��2�
P±

f
d2p =

1

2�
MeffT±

f , Meff =
M�M�

�M�2 − M�2
.

�4.13�

The kinetic energy density of a filled pocket is given by

t±
f =

1

�2��2�
P±

f
d2p� pi

2

2M�
+ � f

p1p2

M�
� =

1

4�
MeffT±

f 2.

�4.14�

The total density of fermions of all flavors is

n = n+
� + n−

� + n+
� + n−

� =
1

2�
Meff�T+

� + T−
� + T+

� + T−
�� ,

�4.15�

and the total energy density of the holes is
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�h = �+
� + �−

� + �+
� + �−

�, �4.16�

with

�±
f = �M ± ��c1 + � fc2��n±

f + t±
f . �4.17�

The filling of the various hole pockets is controlled by the
parameters T±

f which must be varied in order to minimize the
energy while keeping the total density of holes fixed. We
thus introduce

S = �h − 	n , �4.18�

where 	 is a Lagrange multiplier that fixes the density, and
we demand

�S

�T±
f =

1

2�
Meff�M ± ��c1 + � fc2� + T±

f − 	� = 0.

�4.19�

One may wonder if the density of holes of flavor � and �
should not be fixed separately. After all, flavor is conserved
due to the accidental U�1�F symmetry. While the U�1�F sym-
metry arises for the leading terms in the effective action, it is
not present at the microscopic level. Although they enter the
effective theory only at higher orders, there are physical pro-
cesses that can change flavor. Despite the fact that such pro-
cesses are rare, it would hence be inappropriate to fix the
fermion numbers of different flavors separately.

C. Four populated hole pockets: Homogeneous phase

We will now populate the various hole pockets with fer-
mions. First, we keep the configuration of the staggered mag-
netization fixed and we vary the T±

f in order to minimize the
energy of the fermions. Then we also vary the parameters ci
of the magnon field in order to minimize the total energy.
One must distinguish various cases, depending on how many
hole pockets are populated with fermions. In this subsection,
we consider the case of populating all four hole pockets �i.e.,
with both flavors f =� ,� and with both energy indices ��. In
this case, Eq. �4.19� implies

	 = M +
�n

2Meff
, T±

f =
�n

2Meff
� ��c1 + � fc2� . �4.20�

The total energy density then takes the form

� = �0 + �m + �h = �0 + 2�s�c1
2 + c2

2� + �+
� + �−

� + �+
� + �−

�

= �0 + 2�s�c1
2 + c2

2� + Mn +
�n2

4Meff
−

1

�
Meff�

2�c1
2 + c2

2� .

�4.21�

For 2��s�Meff�
2 the energy is minimized for ci=0 and the

configuration is thus homogeneous. The total energy density
in the four-pocket case is then given by

�4 = �0 + Mn +
�n2

4Meff
. �4.22�

The homogeneous phase is shown in Fig. 2. For 2��s
�Meff�

2, on the other hand, the energy is not bounded from

below. In this case, c1
2+c2

2 seems to grow without bound.
However, according to Eq. �4.20� this would lead to T+

f �0
which is physically meaningless. What really happens is that
one pocket gets completely emptied and we must thus turn to
the three-pocket case.

D. Three populated hole pockets: 45° spiral

We now populate only three pockets with holes: the two
pockets with the lower energies E−

� and E−
� as well as the

pocket with the higher energy E+
�. Of course, alternatively

one could also fill the �+ pocket. We now obtain

n = n+
� + n−

� + n−
� =

1

2�
Meff�T+

� + T−
� + T−

��, �h = �+
� + �−

� + �−
�,

�4.23�

such that Eq. �4.19� yields

	 = M +
2�n

3Meff
−

�

3
�c1 − c2� ,

T+
� =

2�n

3Meff
− ��c1 + c2� −

�

3
�c1 − c2� ,

T−
� =

2�n

3Meff
+ ��c1 + c2� −

�

3
�c1 − c2� ,

T−
� =

2�n

3Meff
+

2�

3
�c1 − c2� . �4.24�

The total energy density then takes the form

FIG. 2. The homogeneous phase with constant staggered mag-
netization.
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� = �0 + �m + �h = �0 + 2�s�c1
2 + c2

2� + �+
� + �−

� + �−
�

= �0 + 2�s�c1
2 + c2

2� + �M −
�

3
�c1 − c2��n

+
�n2

3Meff
−

2

3�
Meff�

2�c1
2 + c1c2 + c2

2� . �4.25�

For 2��s�Meff�
2 the energy density is bounded from below

and its minimum is located at c1=−c2 with

�c1� = �c2� =
�

2

�n

6��s − Meff�
2 . �4.26�

This represents a spiral in the staggered magnetization ori-
ented along a lattice diagonal—a 45° spiral. When one occu-
pies the �+ instead of the �+ pocket, one finds c1=c2; i.e., the
spiral is then oriented in the orthogonal diagonal direction.
According to Eq. �A19� in the Appendix, the spiral pitch
�i.e., the wave number of the spiral� is given by

k = 2�ci
3ci

3 + cici = 2�c1
2 + c2

2 =
�2��n

6��s − Meff�
2 .

�4.27�

The resulting energy density in the three-pocket case takes
the form

�3 = �0 + Mn +
�

3Meff
�1 −

1

2

Meff�
2

6��s − Meff�
2�n2.

�4.28�

The 45° spiral is illustrated in Fig. 3. It is energetically less
favorable than the homogeneous phase because �3��4 for
2��s�Meff�

2. Only for 2��s=Meff�
2 do both phases cost

the same energy—i.e., �3=�4. For 2��s�Meff�
2 the energy

density of Eq. �4.25� is unbounded from below and c1
2+c2

2

again seems to grow without bound. This, however, would
lead to T+

��0 which is unphysical. In fact, the �+ pocket is
completely emptied and we are thus led to investigate the
two-pocket case.

E. Two populated hole pockets: Zero degree spiral

We now populate only two pockets with holes. These are
necessarily the pockets with the lower energies E−

� and E−
�. In

this case we have

n = n−
� + n−

� =
1

2�
Meff�T−

� + T−
��, �h = �−

� + �−
�, �4.29�

and thus Eq. �4.19� now implies

	 = M +
�n

Meff
−

�

2
��c1 + c2� + �c1 − c2�� ,

T−
� =

�n

Meff
+

�

2
��c1 + c2� − �c1 − c2�� ,

T−
� =

�n

Meff
+

�

2
��c1 − c2� − �c1 + c2�� . �4.30�

The total energy density then takes the form

� = �0 + �m + �h = �0 + 2�s�c1
2 + c2

2� + �−
� + �−

�

= �0 + 2�s�c1
2 + c2

2� + �M −
�

2
��c1 + c2� + �c1 − c2���n

+
�n2

2Meff
−

1

2�
Meff

�2

4
��c1 + c2� − �c1 − c2��2. �4.31�

For 2��s�
1
2 Meff�

2 the energy density is bounded from be-
low and has its minimum at

�c1� =
�

4�s
n, �c2� = 0 or �c1� = 0, �c2� =

�

4�s
n ,

�4.32�

which corresponds to a spiral in the staggered magnetization
oriented along a lattice axis—a zero degree spiral. Again,
according to Eq. �A19�, the wave number of the spiral is
given by

k = 2�ci
3ci

3 + cici = 2�c1
2 + c2

2 =
�n

2�s
, �4.33�

and the resulting energy density in the two-pocket case takes
the form

�2 = �0 + Mn + � �

2Meff
−

�2

8�s
�n2. �4.34�

The zero degree spiral is more stable than the homogeneous
phase if �2��4, which is the case for 2��s�Meff�

2. This
also clarifies the instability of the homogeneous phase in this
parameter regime: it simply turns into the zero degree spiral.
Indeed, ci

3=0 turns out to be a stable minimum for 2��s
�Meff�

2. The zero degree spiral is illustrated in Fig. 4.

FIG. 3. A 45° spiral oriented along a lattice diagonal.
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F. One populated hole pocket: 45° spiral

Finally, let us populate only one hole pocket—say, the
states with energy E−

�. Of course, alternatively one could also
occupy the �− pocket. One now obtains

T−
� =

2�n

Meff
. �4.35�

The total energy density then takes the form

� = �0 + �m + �h = �0 + 2�s�c1
2 + c2

2� + �−
�

= �0 + 2�s�c1
2 + c2

2� + �M − ��c1 + c2��n +
�n2

Meff
,

�4.36�

which is minimized for c1=c2 with

�c1� = �c2� =
�

4�s
n . �4.37�

This again represents a 45° spiral in the staggered magneti-
zation oriented along a lattice diagonal. When one occupies
the �− pocket one finds c1=−c2; i.e., as in the three-pocket
case, the � and � spirals are oriented in orthogonal diagonal
directions. Note that the three-pocket 45° spiral with an oc-
cupied �+ pocket is oriented in a direction orthogonal to the
one of the one-pocket 45° spiral with an occupied �− pocket.
In the one-pocket case, the spiral pitch is given by

k = 2�ci
3ci

3 + cici = 2�c1
2 + c2

2 =
�n
�2�s

�4.38�

and the corresponding energy density takes the form

�1 = �0 + Mn + � �

Meff
−

�2

4�s
�n2. �4.39�

The 45° spiral is energetically more favorable than the zero
degree spiral if �1��2, which is the case for 2��s

�
1
2 Meff�

2. Again, by repeating the whole calculation includ-
ing terms up to O(�ci

3�2), we have verified explicitly that for
2��s�Meff�

2 the assumption of ci
3=0 is justified because it

corresponds to a stable minimum.
However, as already pointed out in Refs. 24, 27, 36, 42,

and 43 the negative coefficient of the term proportional to n2

�i.e., a negative compressibility� leads to an instability of the
45° spiral against increasing the local fermion density by
decreasing the wavelength 2� /k of the spiral. To see this, let
us consider a one-pocket 45° spiral filling a subvolume V�
and leaving an undoped antiferromagnet behind in the re-
maining volume V−V�. The energy density of this configu-
ration with an inhomogeneous fermion density is given by

�inh = �1
V�

V
+ �0

V − V�

V
= �0 + 	Mn + � �

Meff
−

�2

4�s
�n2
V�

V

= �0 + 	M
N

V�
+ � �

Meff
−

�2

4�s
�� N

V�
�2
V�

V

= �0 + 	M + � �

Meff
−

�2

4�s
� N

V�

N

V
. �4.40�

Since the coefficient of the term proportional to 1/V� is
negative for 2��s�

1
2 Meff�

2, the system can minimize its
energy by shrinking V� and thus increasing the fermion den-
sity n in the region of the 45° spiral. The one-pocket 45°
spiral is thus unstable against the formation of inhomogene-
ities in the fermion density. Our basic assumption that the
system is homogeneous is then not satisfied.

G. Symmetry breaking pattern in the spiral phase

As we have seen, for intermediate values of �s a spiral
phase replaces the phase with homogeneous staggered mag-
netization. In the homogeneous phase the SU�2�s spin sym-
metry is spontaneously broken to its U�1�s subgroup. Due to
antiferromagnetism, the displacement by one lattice spacing
is also spontaneously broken. In a spiral phase, on the other
hand, a U�1�s spin rotation that leaves the configuration in-
variant no longer exists. Hence, U�1�s is then also spontane-
ously broken and one may expect an additional massless
Goldstone boson. Furthermore, due to the finite wavelength
2� /k of the spiral, translation invariance �not only by one
lattice spacing� is also spontaneously broken. Only the trans-
lations by an integer multiple of the spiral wavelength re-
main unbroken. Due to the spontaneously broken translation
symmetry, one expects yet another massless Goldstone
boson—a spiral phonon �or helimagnon�—which corre-
sponds to vibrations of the spiral. In order to correctly count
the number of Goldstone bosons one must notice that while
both U�1�s and translation invariance are individually spon-
taneously broken, there is a combination of these two sym-
metries that remains unbroken. In particular, any translation
of the spiral configuration can be compensated by an appro-
priate U�1�s spin rotation. Consequently, there are not two
but only one additional Goldstone boson—the spiral phonon.
Besides this additional massless boson, in the spiral configu-
ration there are still two magnons—a transverse and a longi-
tudinal one. The transverse magnon corresponds to spin fluc-

FIG. 4. A zero degree spiral oriented along a lattice axis.
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tuations out of the spiral plane, while the longitudinal
magnon represents in-plane fluctuations.

It should be noted that the wavelength 2� /k�1/n of the
spiral represents a new length scale in the problem. In par-
ticular, for very small fermion density n this length scale is
arbitrarily long. In that case, the spiral phonon will have very
little effect on the dynamics of the holes. When the fermion
density increases, the spiral wavelength shrinks and the spi-
ral phonon becomes more important. In particular, besides
magnon exchange the exchange of spiral phonons may then
contribute significantly to the long-range interactions be-
tween the holes.

Since the symmetry is no longer broken just from SU�2�s

to U�1�s, one may wonder whether the vector e��x� living in
the coset space SU�2�s /U�1�s=S2 is still an appropriate low-
energy degree of freedom in the spiral phase. Fortunately,
this is indeed the case. Since the spiral phonon arises as an
additional Goldstone boson, one may also wonder whether a
new field must be added to the effective Lagrangian. This is
not necessary because, just like the two magnons, the spiral
phonon arises as a fluctuation of the staggered magnetization
vector e��x� �in this case around the spiral configuration�.
Only if one would construct another effective theory valid
only at extremely long length scales much larger than the
wavelength of the spiral would the basic fields of the theory
have to be redefined. In such an effective theory the spiral
itself would be a short-distance phenomenon and the spiral
phonon would appear explicitly as an independent degree of
freedom. The corresponding physics at extremely low ener-
gies is still contained in our effective theory which is valid at
length scales both longer and shorter than the wavelength of
the spiral.

V. INCLUSION OF FOUR-FERMION COUPLINGS
IN PERTURBATION THEORY

In this section the four-fermion contact interactions are
incorporated in perturbation theory. Depending on the micro-
scopic system in question, the four-fermion couplings may or
may not be small. If they are large, the result of the pertur-
bative calculation should not be trusted. In that case, one
could still perform a variational calculation. In this work we
limit ourselves to first order perturbation theory. We will dis-
tinguish four cases: the homogeneous phase, the three-pocket
45° spiral, the zero degree spiral, and the one-pocket 45°
spiral. Finally, depending on the values of the low-energy
constants, we determine which phase is energetically favor-
able.

A. Four-pocket case: Homogeneous phase

Let us first consider the homogeneous phase. The pertur-
bation of the Hamiltonian due to the leading four-fermion
contact terms of Eq. �2.18� is given by

�H =� d2x �
s=+,−

	G1

2
��s

�†�s
��−s

�†�−s
� + �s

�†�s
��−s

�†�−s
� �

+ G2�s
�†�s

��s
�†�s

� + G3�s
�†�s

��−s
�†�−s

� 
 . �5.1�

It should be noted that �s
f†�x� and �s

f�x� again are fermion

creation and annihilation operators �and not Grassmann num-
bers�. The term proportional to G4 is of higher order and
hence need not be considered here. In the homogeneous
phase the fermion density is equally distributed among the
two spin orientations and the two flavors such that

��+
�†�+

�� = ��−
�†�−

�� = ��+
�†�+

�� = ��−
�†�−

�� =
n

4
.

�5.2�

The brackets denote expectation values in the unperturbed
state determined in Sec. IV C. Since the fermions are uncor-
related, for f � f� or s�s� one has

��s
f†�s

f�s�
f�†

�s�
f�� = ��s

f†�s
f���s�

f�†
�s�

f�� . �5.3�

Taking the four-fermion contact terms into account in first-
order perturbation theory, the total energy density of Eq.
�4.22� receives an additional contribution and now reads

�4 = �0 + Mn +
�n2

4Meff
+

1

8
�G1 + G2 + G3�n2. �5.4�

B. Three-pocket case: 45° spiral

For ci
3=0 the eigenvectors of the single-particle Hamil-

tonian of Eq. �4.8� corresponding to the energy eigenvalues
E±

f �p�� are given by

�̃±
f =

1
�2

��−
f ± �+

f � ⇒ �±
f =

1
�2

��̃+
f � �̃−

f � . �5.5�

Inserting this expression into Eq. �5.1� allows us to evaluate
the expectation value ��H� in the unperturbed states deter-
mined in Sec. IV. In the three-pocket case the states with
energies E−

��p�� and E−
��p��, as well as E+

��p�� �or alternatively
E+

��p���, and with p� inside the respective hole pocket are oc-
cupied and

��̃+
�†�̃+

�� = ��̃−
�†�̃−

�� = �1 −
1

2

Meff�
2

6��s − Meff�
2�n

3
,

��̃−
�†�̃−

�� = �1 +
Meff�

2

6��s − Meff�
2�n

3
, ��̃+

�†�̃+
�� = 0.

�5.6�

As a result the energy density of Eq. �4.28� turns into

�3 = �0 + Mn +
�

3Meff
�1 −

1

2

Meff�
2

6��s − Meff�
2�n2

+
1

4
��G1 + G2 + G3�4��s − G1Meff�

2�

�
4��s − Meff�

2

�6��s − Meff�
2�2n2. �5.7�

C. Two-pocket case: Zero degree spiral

In the zero degree spiral only the states with energy E−
��p��

and E−
��p�� with p� inside the respective hole pocket P−

f are
occupied and hence

HOMOGENEOUS VERSUS SPIRAL PHASES OF HOLE-… PHYSICAL REVIEW B 75, 014421 �2007�

014421-11



��̃−
�†�̃−

�� = ��̃−
�†�̃−

�� =
n

2
, ��̃+

�†�̃+
�� = ��̃+

�†�̃+
�� = 0.

�5.8�

As a result the energy density of Eq. �4.34� turns into

�2 = �0 + Mn + � �

2Meff
−

�2

8�s
�n2 +

1

8
�G2 + G3�n2.

�5.9�
D. One-pocket case: 45° spiral

In the one-pocket case only the states with energy E−
��p��

�or alternatively with E−
��p��� and with p� inside the corre-

sponding hole pocket are occupied such that

��̃−
�†�̃−

�� = n, ��̃+
�†�̃+

�� = ��̃+
�†�̃+

�� = ��̃−
�†�̃−

�� = 0.

�5.10�

In this case the four-fermion terms do not contribute to the
energy density which thus maintains the form of Eq.
�4.39�—i.e.,

�1 = �0 + Mn + � �

Meff
−

�2

4�s
�n2. �5.11�

E. Stability ranges of various phases

Let us summarize the results of the previous subsections.
The energy densities of the various phases take the form

�i = �0 + Mn +
1

2
�in

2. �5.12�

According to Eqs. �5.11�, �5.9�, �5.7�, and �5.4�, the com-
pressibilities are given by

�1 =
2�

Meff
−

�2

2�s
, �2 =

�

Meff
−

�2

4�s
+

1

4
�G2 + G3� ,

�3 =
2�

3Meff
�1 −

1

2

Meff�
2

6��s − Meff�
2�

+
1

2
��G1 + G2 + G3�4��s − G1Meff�

2�
4��s − Meff�

2

�6��s − Meff�
2�2 ,

�4 =
�

2Meff
+

1

4
�G1 + G2 + G3� . �5.13�

The compressibilities �i as functions of Meff�
2 /2��s are

shown in Fig. 5. For large values of �s, spiral phases cost a
large amount of magnetic energy and a homogeneous phase
is more stable. The energy density of the homogeneous phase
is lower than the one of the spiral phases for �4��1 ,�2 ,�3,
which is the case for

Meff�
2 + G1

Meff
2 �2

2�
� 2��s

�four-pocket case: homogeneous phase� . �5.14�

At O�Gi� the three-pocket 45° spiral always costs more en-
ergy than the other phases, except at the specific point

2��s = Meff�
2 + G1

Meff
2 �2

2�

�three-pocket case: 45 ° spiral� . �5.15�

For this particular value of �s the three-pocket 45° spiral
costs the same energy as the homogeneous phase and the
zero degree spiral. For larger values of the four-fermion cou-
plings �not accessible to first-order perturbation theory� it is
conceivable that the 45° spiral becomes energetically favor-
able. This could be investigated, for example, using a varia-
tional calculation. For intermediate values of �s the homoge-
neous phase becomes unstable against the formation of a
zero degree spiral—i.e., �2��4—and we find

1

2
Meff�

2 + �G2 + G3�
Meff

2 �2

8�

� 2��s � Meff�
2 + G1

Meff
2 �2

2�

�two-pocket case: zero degree spiral� . �5.16�

For smaller values of �s the one-pocket 45° spiral becomes
energetically more favorable than the zero degree spiral—
i.e., �1��2—but the one-pocket 45° spiral exists only at the
isolated point

FIG. 5. The compressibilities �i �in the pres-
ence of weak repulsive four-fermion couplings�
as functions of Meff�

2 /2��s determine the stabil-
ity ranges of the various phases. A homogeneous
phase, a zero degree spiral, or an inhomogeneous
phase are energetically favorable, for large, inter-
mediate, and small values of �s, respectively.
Only at the two isolated points separating the
three regimes is a 45° spiral, either with one or
with three populated hole pockets, degenerate
with the other phases. The three- and four-pocket
cases become unstable at Meff�

2 /2��s=1, and
the one- and two-pocket cases become unstable at
Meff�

2 /2��s=2.
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2��s =
1

2
Meff�

2 + �G2 + G3�
Meff

2 �2

8�

�one-pocket case: 45 ° spiral� . �5.17�

It may seem that a repulsive four-fermion interaction
G2+G3�0 stabilizes the 45° spiral, at least in the narrow
parameter range down to 2��s= 1

2 Meff�
2. However, although

we have not yet identified the nature of the inhomogeneous
phase, we expect that it will be energetically more favorable,
such that

2��s �
1

2
Meff�

2 + �G2 + G3�
Meff

2 �2

8�

�inhomogeneous phase of yet unidentified nature� .

�5.18�

At least at O�Gi�, the 45° spiral cannot be realized in this
regime, because for Gi=0 it only exists at the isolated point
2��s= 1

2 Meff�
2 and first-order perturbation theory uses just

the unperturbed wave function. Definitely, the one-pocket
45° spiral becomes unstable when �1�0—i.e., for

2��s �
1

2
Meff�

2

�instability of the 45 ° spiral against

the formation of inhomogeneities� . �5.19�

should be pointed out again that these results apply only if
the four-fermion contact interactions are weak. If the four-
fermion couplings are strong, the approach of filling pockets
with weakly interacting holes is not applicable and the true
ground state of the system may be different. Even if the
four-fermion couplings are small, the present result does not
necessarily reveal the complete nature of the true ground
state. In particular, the configurations of the staggered mag-
netization were restricted to those that imply a homogeneous
composite vector field vi�x��—i.e., to spirals or to configura-
tions that are homogeneous themselves. For example, the
double spiral, which implies an inhomogeneous vi�x��, was
not taken into account. Hence, we cannot exclude that the
phases that we found may still be unstable against develop-
ing inhomogeneities, at least in certain parameter regions.
This shall be explored in the future.

VI. REDUCTION OF THE STAGGERED
MAGNETIZATION UPON DOPING

Until now we have considered the Lagrangian or the
Hamiltonian of the effective theory. Now we will see that
other quantities can be constructed in a similar way. An ob-
servable of particular interest is the staggered magnetization
which is the order parameter for the spontaneous breakdown
of the SU�2�s symmetry. As the antiferromagnet is doped, the
staggered magnetization is reduced until the SU�2�s symme-
try is restored. In the actual materials this happens at rela-
tively small doping, before high-temperature superconduc-
tivity sets in.

In the undoped antiferromagnet the local staggered mag-

netization is given by M� s�x�=Mse��x�. The low-energy pa-
rameter Ms is the length of the staggered magnetization vec-
tor. For the Heisenberg model �or equivalently for the t-J
model at half-filling� this parameter has been determined
with high precision in quantum Monte Carlo simulations re-
sulting in Ms=0.3074�2� /a2 �Refs. 77 and 78�. In a doped
antiferromagnet the staggered magnetization receives addi-
tional contributions from the fermions such that

M� s�x� = 	Ms − m �
f=�,�
s=+,−


s
f†�x�
s

f�x�
e��x� . �6.1�

Here m is another low-energy parameter which determines
the reduction of the staggered magnetization upon doping. It

should be noted that there are further contributions to M� s�x�
which include derivatives or contain more than two fermion
fields. All these terms are of higher order and will be ne-
glected here. Since both the homogeneous and the spiral
phases have a constant fermion density we can use

�
f=�,�
s=+,−

��s
f†�s

f� = n , �6.2�

such that

Ms�n� = Ms − mn . �6.3�

The higher-order terms that we have neglected correct this
equation at O�n2�. A rough estimate of the critical density at
which the SU�2�s symmetry gets restored is nc�Ms /m. It
would be interesting to determine the value of m for the t-J
model, which may be feasible in quantum Monte Carlo cal-
culations.

VII. CONCLUSIONS AND OUTLOOK

In this paper we have used a systematic effective field
theory for antiferromagnetic magnons and holes in order to
investigate the propagation of holes in the background of a
staggered magnetization field. We have limited ourselves to
configurations of the staggered magnetization that are either
homogeneous themselves or that generate a constant com-
posite vector field vi�x�� for the fermions. In both cases, the
resulting fermion density is homogeneous. Our calculations
also rely on the assumption that remnant four-fermion con-
tact interactions between the holes are weak and can be
treated in perturbation theory. This may or may not be the
case for a concrete magnetic material. We like to emphasize
again that the effective theory is universal and makes model-
independent predictions for a large class of magnetic sys-
tems. Material-specific properties enter the effective theory
through the values of low-energy parameters such as the spin
stiffness �s. For large values of �s distortions in the staggered
magnetization cost a large amount of energy and a homoge-
neous phase is energetically favored. In that case, all four
hole pockets are equally populated with doped holes. For
smaller values of �s, on the other hand, the doped holes can
gain energy from a spiral in the staggered magnetization. For
intermediate values of �s a zero degree spiral, in which only
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two hole pockets are populated, is most stable, while a 45°
spiral �with either one or three populated hole pockets� can
exist only at two specific isolated values of �s. It is conceiv-
able that the 45° spirals may be stabilized for larger values of
the four-fermion couplings Gi �inaccessible to first order per-
turbation theory�. For small values of �s a yet-unidentified
inhomogeneous phase is energetically favored. The reduction
of the staggered magnetization upon doping is again con-
trolled by a low-energy parameter m whose value depends on
the material in question.

The results of our investigation provide a basis for further
studies that naturally suggest themselves. Instead of using
first-order perturbation theory, one may want to include the
four-fermion couplings in a variational calculation. This
would eliminate the assumption that these couplings are
small. One should also analyze the stability of the homoge-
neous and spiral phases against developing inhomogeneities
in the fermion density. For example, it is interesting to ask if
a double spiral is energetically more favorable than the spiral
phases considered here. If this were the case, it is conceiv-
able that a lightly doped antiferromagnet without impurities
is an insulator. The real materials are indeed insulators, but
they contain impurities upon which the doped holes may get
localized.

On the other hand, if the homogeneous phase or the
simple spirals considered here turn out to be more stable
than, for example, a double spiral, the effects of magnon
exchange between doped holes would be interesting to study
in detail. In particular, using the effective theory, we have
shown that the one-magnon exchange potential between two
isolated holes gives rise to binding with d-wave
characteristics.71,76 In a spiral phase the exchange of spiral
phonons �i.e., helimagnons� may also be an important dy-
namical mechanism for the binding of hole pairs. Depending
on the size of the pairs and on their density, hole pair forma-
tion may lead to Bose-Einstein condensation or to magnon-
mediated BCS-type superconductivity coexisting with anti-
ferromagnetism. While coexistence of superconductivity and
antiferromagnetism is not observed in the high-Tc cuprates,
this may be due to impurities created by doping upon which
holes may get localized, thus preventing superconductivity.
A clean system like the t-J model, on the other hand, may
superconduct already at small doping within the antiferro-
magnetic phase, although Tc may then be rather small. The
effective theory provides us with a tool that allows us to
address such questions. If there is superconductivity already
within the antiferromagnetic phase in a clean system, the
corresponding mechanism responsible for superconductivity
may persist in the high-Tc cuprates, despite the fact that in
the real materials at small doping superconductivity may be
prevented by the localization of holes on impurities. Of
course, once antiferromagnetism is destroyed, magnons and
spiral phonons no longer exist as massless excitations. How-
ever, antiferromagnetic correlations, although only of finite
range, still exist in high-Tc superconductors and may still
play an important role as relevant low-energy degrees of
freedom. This is similar to nuclear physics where the pion is
not exactly massless �in that case due to explicit chiral sym-
metry breaking� but is certainly relevant at low energies.
Still, whether magnon-mediated binding between holes may

be responsible for high-temperature superconductivity re-
mains a difficult question that may or may not be within the
applicability range of the effective theory. For lightly doped
cuprates the low-energy effective field theory is applicable. It
yields reliable and interesting results and should be pursued
further.
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APPENDIX: MOST GENERAL CONFIGURATION WITH
A HOMOGENEOUS COMPOSITE VECTOR FIELD

In this Appendix we show that the most general configu-
ration with constant vi�x�� corresponds to a spiral in the stag-
gered magnetization. According to Eq. �3.1� we need to con-
sider ��x�, ��x�, and ��x� such that

vi
3�x�� = vi

3�x� − �i��x� = sin2 ��x�
2

�i��x� − �i��x� = ci
3,

vi
±�x�� = vi

±�x�exp�±2i��x��

=
1

2
�sin ��x��i��x� ± i�i��x��exp
�i���x� − 2��x���

= ci
±, �A1�

with ci
± and ci

3 being constant. Introducing ��x�=��x�
−2��x� one obtains

cos ��x��i��x� = sin2 ��x�
2

�i��x� − ci
3,

tan ��x���i��x� − 2ci
3� ± i�i��x�

= 2ci
± exp�±i��x�� = 2ci exp
±i���x� + �i�� . �A2�

Here we have put

ci
± = ci exp�±i�i�, with ci � R, �i � 	−

�

2
,
�

2

 . �A3�

By an appropriate constant gauge transformation, one can
always put �1=0. From Eq. �A2� one infers

tan ��x���i��x� − 2ci
3� = 2ci cos���x� + �i� ,

�i��x� = 2ci sin���x� + �i� . �A4�

Demanding �1�2��x�=�2�1��x� leads to the constraints
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ci

ci
3 = a, �1 = �2 = 0, �A5�

which imply

�i��x� = 2ci
3�1 + a cot ��x�cos ��x�� ,

�i��x� = 2ci
3a sin ��x� . �A6�

These equations can be satisfied only if � and � are functions
of z=ci

3xi—i.e., if they are plane waves with

�z��z� = 2�1 + a cot ��z�cos ��z�� ,

�z��z� = 2a sin ��z� . �A7�

Since both � and � depend on z only, we may also consider
� as a function of � which then leads to

������ =
1

a sin ����
+ cot � cot ���� . �A8�

This can be cast into the form

− �� cos ���� =
1

a
+ cot � cos ���� �A9�

and is solved by

cos ���� =
cos � − �

a sin �
, �A10�

where � is an integration constant. Inserting this result in Eq.
�A7� one obtains

− �z cos ��z� = ± 2�a2�1 − cos2 ��z�� − �cos ��z� − ��2,

�z��z� =
2�cos ��z� − ��

sin2 ��z�
. �A11�

The equation for �z��z� results by combining Eq. �A2� with
Eqs. �A7� and �A10�. The above equation for cos ��z� can be
integrated in a straightforward manner, and one obtains

cos ��z� =
1

1 + a2 
� + a�1 + a2 − �2 cos�2�1 + a2�z − z0���

=
1

�1 + a2

cos � + a sin � cos�2�1 + a2�z − z0��� .

�A12�

Here we have expressed the integration constant as

� = �1 + a2 cos � . �A13�

It will turn out that � is the angle between the direction j�

perpendicular to the spiral plane and the 3-axis. Furthermore,
one obtains

sin ��z�cos���z� − ��z0��

=
1

�1 + a2

sin � − a cos � cos�2�1 + a2�z − z0��� ,

sin ��z�sin���z� − ��z0�� =
a

�1 + a2
sin�2�1 + a2�z − z0�� ,

�A14�

and thus

��z� − ��z0� = atan� a sin�2�1 + a2�z − z0��

sin � − a cos � cos�2�1 + a2�z − z0��
� .

�A15�

Differentiating this equation with respect to z, it is straight-
forward to show that Eq. �A11� is indeed satisfied.

We now form the scalar product of the unit vector

e��z� = „sin ��z�cos ��z�,sin ��z�sin ��z�,cos ��z�… ,

�A16�

describing the staggered magnetization, with the unit vector

j� = „sin � cos ��z0�,sin � sin ��z0�,cos �… , �A17�

which yields

e��z� · j� = sin ��z�sin ��cos ��z�cos ��z0� + sin ��z�sin ��z0��

+ cos ��z�cos �

= sin ��z�sin � cos���z� − ��z0�� + cos ��z�cos �

=
1

�1 + a2
, �A18�

i.e., a constant �z-independent� scalar product. This finally
proves that e��z� indeed describes a spiral in a plane perpen-
dicular to j�. Replacing z=ci

3xi and using Eq. �A5�, the wave
number of the spiral �i.e., the spiral pitch� can be identified
as

k = 2�1 + a2�ci
3ci

3 = 2�ci
3ci

3 + cici. �A19�

The particular spiral configuration considered in Eq. �3.4�
has �=0 such that

cos ��z� =
1

�1 + a2
= cos �0,

sin ��z�sin���z� − ��z0��

=
a

�1 + a2
sin�2�1 + a2�z − z0�� ⇒

��z� − ��z0� = − 2�1 + a2ci
3xi = kixi. �A20�

This is indeed consistent with Eq. �3.8� which implies

a = − tan �0, ki = −
2ci

3

cos �0
. �A21�
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