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We show that magnetic materials made of chains of small magnetic particles display many unusual proper-
ties. This is associated mainly with a variety of stable different magnetic structures which can arise there. In
particular, there arises a magnetic glass, which may be characterized by a whole set of hysteresis loops and by
a large variety of Barkhausen jumps arising in the returned branches of the hysteresis loops. We consider in
detail a simple example of such a system—a chain of magnetic nanoparticles. To describe such a single chain
first we use numerical micromagnetic simulations. On the basis of these simulations, with the use of a
perturbation theory, we derive an analytical model which is an anisotropic Heisenberg model. This is a
Heisenberg model with an additional anisotropy term arising due to the shape of the particles. Such a term also
arises naturally in some classical magnetic materials such as Mn2Ni chains. We describe all possible stable
states of the system as well as transitions between the states induced by magnetic field. Each of these transi-
tions is arising a la the spin flop transition. It may be displayed and detected in experiments as a Barkhausen
jump in a hysteresis loop. The series of described spin flop transitions will lead to the formation of different
types of returned branches in hysteresis loops. We present exact analytical and numerical results describing the
energy spectrum and the magnetization of such systems. The results may be used in the design of nanomate-
rials as well as for magnetic random access memory and magnetic quantum cellular automata elements.
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I. INTRODUCTION

The nanocomposite materials consisting of small mag-
netic nanoparticles are novel types of materials which dis-
play many useful features unusual for conventional magnetic
materials.1 Their magnetic responses depend on the particle
sizes, particle shapes, as well on as the distance between
particles.2,3 In many situations magnetic particles may have
at least two well-defined magnetic states. Therefore such
nanocomposite materials could serve as building blocks for
new nanoscale magnetoelectronic devices and data storage
media. Indeed, recently, Zhu et al. have produced a film
made of small magnetic nanodots. Such a film may operate
as a powerful magnetic storage device on the scale of bil-
lionths of a meter.4 On the other side, Cowburn and Welland
proposed the use of a chain of magnetic nanoparticles depos-
ited on a nonmagnetic substrate as a room temperature mag-
netic quantum cellular automata �MQCA�.5,6 Such automata,
made of magnetic nanodots, are capable of data handling.
The silicon microchip, the single electron transistor �SET�
may generate the next revolution in data processing and stor-
age. Arrangements of SETs have recently shown their ability
to perform logic operations. They were called quantum cel-
lular automata �QCA� because they use quantum mechanical
tunneling of charge between quantum dots to change a logic
state. Currently, the electronic QCA will only work at
milliKelvin temperatures. Therefore the attention is now fo-
cused on magnetic QCAs instead, which can operate at room
temperatures. The MQCA networks are typically built up of
magnetic dots that are 110 nm across and 10 nm thick with a
pitch of 135 nm and they are made from a common magnetic
alloy on a silicon substrate. It was found that such a MQCA

was able to work even at room temperature.5,6 At low tem-
peratures the ferromagnetic exchange interaction between
spins in a single dot is forming a single giant classical spin.
Magnetic interactions between nearest neighbors along the
chain of dots allow the propagation of information, but also
force the magnetization to point along one of the directions
of the main anisotropy of the chain, producing a natural bi-
nary logic system. The direction of the dot’s magnetization
vector is supposed to indicate a logic state. The logic state
can be set by applying a single magnetic pulse at the first
input dot. An oscillating microwave magnetic field can then
reverse the magnetic state of the chain of dots, changing the
logic state, as a magnetic soliton propagates along the chain.
This soliton or better to say the kink, like a domain wall in a
bulk material, separates regions of left and right magnetiza-
tion. Normally in homogeneous media solitons propagate
without loss. However, small fluctuations in the shape of the
dots are forming inhomogeneities and will cause the soliton
to dissipate energy as it propagates. We believe that the mag-
netic QCA “has enormous potential” to meet the require-
ments of digital processing of the future.5 Cowburn et al.
have realized various linear chains where all particles were
ferromagnetically or antiferromagnetically coupled. There
magnetic moments were oriented along or perpendicular to
the chain. The orientation of the magnetic moments has been
controlled by a particle, deposited at the beginning of the
chain, which was different �larger or more elongated� than
the other particles. Normally this first particle had a distin-
guished ellipsoidal or cigar shape. It was shown5 that by
using a slightly biased, pulsed magnetic field that the mag-
netic moments associated with these individual particles are
flipped coherently, in a fashion comparable to a “domino”
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effect. In the magnetic automata the value +1 corresponds to
one spin orientation of the single particle, while the value −1
corresponds to the opposite spin orientation. Moreover, it
was demonstrated that it is possible to form logic chains
from such particles.8,9

Recently a temperature dependence of the magnetization
reversal of an analogous system such as a single-chain mag-
net has been studied.10 This single-chain magnet is a hetero-
metallic chain of MnIII and NiII metal ions called an Mn2Ni
chain �see Ref. 10 for details�. Such a chain consists of fer-
romagnetically coupled S=3�MnIII−NiII−MnIII� units and is
naturally described by an anisotropic Heisenberg model. It
was found that the shape of the hysteresis loop and the nucle-
ation energy for a domain wall creation depend on the mag-
netic field and its sweep rate as well as on the temperature T.
At very low temperatures the reversal of the magnetization is
induced by a quantum nucleation of a domain wall that
propagates due to the applied field.

We have shown that all these systems display a variety of
unusual features not present in bulk magnetic systems asso-
ciated with the formation of the domain structures. In the
framework of the anisotropic Heisenberg model we describe
analytically and numerically a formation of an arbitrary
number of domain walls. Obviously if all these spins are
originally ferromagnetically oriented, then the switch or a
spin flip of one element corresponds to a creation of two
domain walls �domain and antidomain walls�. In particular,
we show that all relevant physical quantities such as the val-
ues of magnetic moments of the particles, the energy spec-
trum, coercive forces, and hysteresis loops may display frac-
tal structures, similar to those found for the Ising chain.11

The formation of fractal structures is very subtle. It is mostly
related to a competition between anisotropy and interparticle
interactions of the associated semiclassical magnetic mo-
ments forming the chains.

II. NUMERICAL MODELING

First of all we would like to make micromagnetic simu-
lations to investigate real monodomain magnetic particles,
the distribution of magnetic fields around these particles, and
the characteristic energies of their interaction. Having this in
mind we consider a few magnetic particles made from Fe
deposited on Si substrate, on the X-Y plane, see Fig. 1. The
Si substrate is denoted by a gray color while the Fe particle
by a darker color. Let us assume that all these particles are
disk-shaped ellipses, see Fig. 1. Such a setup was used in
experiments.5,6,9 The size of the particles is so small that they
can be considered as having a single domain. Their magne-
tization M is polarized along the main axes of their aniso-
tropy which is oriented along the main axis of the ellipses,
let us say along the Y axes. We would like to investigate the
distribution of magnetic fields associated with these particles
as well as how the magnetization of these particles will be
changed when a magnetic field is applied. Then we apply a
magnetic field in the X-Y plane oriented along the �1,1,0�
direction. As in past experiments �Refs. 5, 6, and 9� each
particle is a disk which has a geometrically elliptical shape.
Along the main axis of the ellipse the length is 135 nm, the

width is equal to 70 nm, and height is 30 nm. The separation
between the centers of each pair of particles is taken to be
135 nm in the x-direction of the model, see Fig. 1. The dis-
tribution of the vector potential A�r� and stray magnetic field
in a space within and between the particles may be found
from the numerical solution of the following system equa-
tions.

� � ��0
−1�r

−1�� � A − M�� = 0, �1�

where A is a vector potential, M is a magnetization, �0 is the
permeability of free space equal to 4��10−7 N /A2, and �r
is the relative permeability which is material dependent �we
have taken it to be 4000 for iron�. On the boundary of each
particle the tangential component of magnetic field is a con-
tinuous function that results in the following boundary con-
ditions

� � A � n��� = H � n , �2�

where n is the normal vector defined on the boundary ��
associated with all particles. Here H is the value of the ap-
plied field, while the value B�r�=��A�r� is the field result-
ing from the external field and the magnetization of particles.

The magnetic field distributions associated with these par-
ticles of nanoscale proportions are investigated numerically.
This is done with the use of finite element methods in
FEMLAB. First we solve the equations �1� with the use of the
boundary conditions, Eq. �2�. Then we calculate the total
energy and the total magnetization of the system as a func-
tion of magnetic field strength H. The models mesh consists
of 12,425 bulk elements.

Next, to estimate the magnetic energy we use the follow-
ing equation:

Emag = �
space

B2

8�
dV , �3�

where the integration is taken over the space around these
particles. We consider an example of five particles made
from Fe and arranged in a linear array as depicted in Fig. 1.

FIG. 1. �Color online� Five elliptically shaped magnetic par-
ticles in a linear chain. The particles are made from iron and are
deposited upon a silicon substrate. As in past experiments �Refs. 5,
6, and 9� each particle has an elliptical geometry. Along the main
axis of the ellipse the length is 135 nm, the width is equal to 70 nm,
and height is 30 nm. The separation between the centers of each
pair of particles in the x-direction is taken to be 135 nm.
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Without an external magnetic field each particle may have
two stable states when the magnetization of this particle is
oriented along the Y-direction. From first glance one may
notice that these particles have a dipole-dipole type of inter-
particle interaction. In the absence of an external magnetic
field different locally stable states correspond to the different
configurations of magnetization of these particles. Here the
total number of configurations will be 25=32. The low en-
ergy state should correspond to antiferromagnetic ordering of
these particles. The excited states will correspond to situa-
tions when one or a few of these particles will flip its mag-
netic moment.

Now let us apply an external magnetic field and calculate
the magnetic flux density by solving the equations �1� with
the boundary conditions, Eq. �2�. The result of these calcu-
lations is presented in Fig. 2 where the particles are illus-
trated by ellipses. There we present the distribution of the
magnetic flux density calculated at six different values of
magnetic field applied in the �1,1,0� direction. At zero field
the particles are in a ground state, i.e., in an antiferromag-
netic configuration. We choose the elliptical shape of the

nanoparticles disks to ensure that shape anisotropy dictates.
The magnetizations find preference in aligning themselves
along the long axes of the particles as a result. The stray field
surrounding the ellipses indicates clearly the antiferromag-
netic interaction between the particles. When the magnetic
field is applied at an angle of 45°, in the X-Y plane, one may
notice how the stray field is deformed. The individual par-
ticles have uniform magnetizations. A simple interpretation
may be done with the use of imaginable “magnetic”
charges.12 So even with no external magnetic field the ellip-
tical shape provides for surface “magnetic” charges to appear
at the extremities of the longitudinal axes. Consequentially
these charges are a source of a magnetic field. As the mag-
netic field strength increases the magnetic flux density asso-
ciated with these particles becomes more and more polarized
along the external field direction of application. In Fig. 2 we
present six images of the magnetic flux distribution. In the
first image there is no external field. It shows perfect antifer-
romagnetic ordering. As the magnetic field equal to
100 A/m is applied the magnetic configuration is still the
same. However, at the next magnetic field equal to

FIG. 2. �Color online�. The field lines of magnetic flux density calculated at six values of the magnetic field strength H equal to: �a� zero
field, �b� 100 A/m, �c� 1000 A/m, �d� 104 A/m, �e� 105 A/m �f� 2�105 A/m. At H=0 the magnetic flux density is at its highest level deep
inside the particles, illustrated by ellipses. As we step out from the core of the particles this high flux density begins to scale down, as can
be seen around their elliptical perimeters, until we reach the flux density in the surroundings. The highest value of magnetic flux density is
around 0.5 T in the particles, dropping to a minimum marginally larger than zero in the outer environment. As the magnetic field strength
is ramped upwards these values remain fairly consistent, up to much higher field levels, except that we see an aligning of the flux density
with the field strengths direction. As the field continues to elevate the second and fourth particles, originally magnetized against the field,
experience a slight drop in their flux densities, whereas their neighbors begin to compensate by taking higher ones. In the final diagram in
the depicted sequence, at 2�105 A/m, the outer particles and the central one find their highest magnetic flux densities while the others have
their lowest. Finally, the system has undergone a complete ferromagnetic polarization.
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1000 A/m one sees that the antiferrimagnetic ordering is
weakened, although it still exists. At the next magnetic field
equal to 104 A/m the particles are very weakly antiferro-
magnetically coupled. Finally at the field 105 A/m all mag-
netic moments of particles are flipped and they are in the
ferromagnetic state. The forthcoming increase of magnetic
field sees the particles remain in the ferromagnetic state.

Now let us estimate the energy of these particles for dif-
ferent �32� configurations of their magnetic moments. This
energy as a function of external magnetic field is presented in
Fig. 3. At zero field one may notice five equidistant energy
levels. These levels are transformed into the bands if we also
take into account nonzero field. The lowest two energy
branches correspond to the antiferromagnetic ordering
whereas the top two relate to the ferromagnetic ordering of
the magnetic moments of these particles. The first “band”
associated with the first excited group of branches is repre-
sentative of one antiphase domain boundary in the antiferro-
magnetic ground state ordering. The second excited group of
branches �the second band� corresponds to two antiphase do-
main boundaries in the antiferromagnetic ordering. The third
excited group of energy branches are in turn associated with
three antiphase domain boundaries in the antiferromagnetic
ordering. Finally, four antiphase domain boundaries in the
antiferromagnetic ordering correspond to the ferromagnetic
ordering. For each of these 32 configurations the energy of
the system is found to respond to field strength as shown in
Fig. 3. All the particles interact with one another but from the
analysis of the energy spectrum we may conclude that the
strongest is the interaction between the nearest neighbors.
This constant may be estimated from the obtained energy of
the antiphase domain boundary.

Now let us estimate the energy separation between the
energy bands calculated at zero field. From Fig. 3 we see that
it is equal to 0.6 eV. It is now necessary to remember that in

the magnetic automata the value Si= +1 corresponds to one
spin orientation of the single ith particle, while the value Si
=−1 corresponds to the opposite spin orientation. Such a
choice of spins is convenient for the construction of different
magnetic logic.8,9 Therefore the interaction between two
neighboring particles in such magnetic cellular automata will
be equal to J0SiSi+1. Thus when there is no externally applied
magnetic field, we have defined J0 as the nearest neighbor
coupling constant of the spin one particles forming magnetic
cellular automata. If the ground states of such automata are
of an antiferromagnetic type, as in the considered example,
i.e., J0�0 then the cost of one antiphase domain boundary
will be equal to 2J0. Then, from the energy spectrum pre-
sented in Fig. 3 we obtain that the nearest neighbor coupling
constant J0 is around 0.3 eV. From the analysis of the energy
spectrum presented in Fig. 3 we may obtain the coupling
constant between next nearest neighbors and all other con-
stants of interaction between all particles. However, they are
significantly smaller than the constant of nearest neighbor
interaction J0. The proximity of the particles generates the
characteristic that there is not simply a dipole-dipole rela-
tionship and the interaction has a much more complicated
form, i.e., other multipoles should exist. On the other hand,
our micromagnetic investigation indicates that the interaction
between nearest neighbors is the most important. This allows
us to derive a simple model which may have an analytic
solution for any number of particles. This model will be
derived in the next section and is called an anisotropic
Heisenberg Hamiltonian.

III. PERTURBATION THEORY AND ANALYTICAL
MODEL

Let us consider a linear chain made of small magnetic
particles. To describe this very complicated system in a
straightforward way is to use micromagnetic simulations in a
manner as was used for many complicated systems. This is
done by taking into account all existing interactions such as
an interaction between quantum magnetic moments inside
the particles, the surface effects, and the interaction between
the particles. Such numerical simulations have always been
useful ever since the invention of the computer. Indeed there
recently appeared many such useful simulations, like the one
made above. However, one may obtain a more extensive
picture of the behavior of the system in an even more simple
and elegant way if we notice that there is a hierarchy of
existing interactions. The strongest interaction is the ex-
change ferromagnetic interaction Jinside between quantum
magnetic moments inside single particles. Due to this inter-
action all magnetic moments inside the particle are oriented
in the same direction forming a single large classical mo-
ment. For small particles the surface effects form the second
level of this hierarchy of interactions. The surface and the
shape of the particle give rise to the shape anisotropy of a
single particle described by a large shape anisotropy constant
K. Obviously the value of K is much smaller than Jinside. Due
to this anisotropy the total magnetic moment of a single par-
ticle may have some preferred directions. For example, for
elongated particles it will be directed along the main axes of

FIG. 3. �Color online� The magnetic energy of the system of
particles E as a function of external magnetic field strength H. The
bands directly correspond to the different number of antiphase do-
main boundaries �or domain walls in antiferromagnetic ordering�
that arise for different magnetization orientations in the system as a
whole.
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symmetry. Finally, the third level of the hierarchy is formed
by an interaction between particles. The type of this interac-
tion depends mostly on their surroundings. If the surrounding
material is a metal then it will be an RKKY interaction as the
dominant one, otherwise only dipole-dipole and other multi-
pole interactions remain. The latter depends on the orienta-
tion of the particles and obviously is significantly weaker
than the other two types of interactions described above,
such as the exchange interaction within a particle and the
anisotropy constants. This hierarchy of interactions allows
the derivation of the model describing the system of mag-
netic nanoparticles by the anisotropic Heisenberg Hamil-
tonian. With the use of the perturbation theory, making an
expansion with the parameter K /Jinside�1, we reduce the
number of relevant parameters and finally the chain of mag-
netic particles is described by an anisotropic Heisenberg
Hamiltonian. The zero approximation gives that small par-
ticles are single domain objects and therefore each particle
may be characterized by a large magnetic moment. The first
approximation gives the anisotropic Heisenberg model. Thus
the model has been derived with the use of the perturbation
theory, which is justified on the basis of a hierarchy of exist-
ing interactions. This model describes a realistic system con-
sisting of a chain of magnetic particles on an equal footing
with micromagnetic simulations.

Such linear chain systems have already been produced
from small ferromagnetic particles made, for example, of Fe
�see also, Refs. 5, 6, and 13�. If all spins within a single
particle are ferromagnetically ordered, then each particle

may be considered as a single classical spin S� . Then the
chain of magnetic particles having a disk or elliptic shape
can be described by a model of interacting classical spins,
that is by the anisotropic Heisenberg Hamiltonian:

E = − �
�i,j	

JijS� iS� j − g�B�0�
i

H� Si
� + �

i�

K�Si�
2 . �4�

Here we assume that magnetic moments associated with in-
dividual magnetic disks are interacting via dipole-dipole in-
teraction characterized by the constants Jij, which also de-
pend on the orientation of the appropriate magnetic moments

Si
� and Sj

� , where S� = �Sx ,Sy ,Sz�; and magnetic field H�

= �Hx ,Hy ,Hz�. Each magnetic disk is characterized by aniso-
tropy constants K�, where �=x ,y ,z. We also assume that the
disks are located in the �x ,y� plane of a substrate, so that the
z-axis is perpendicular to the disk plane. The value of the
configurational anisotropy constant Kz associated with the
disk shape is the largest. It is much larger than the constants
of in plane anisotropy, Kx and Ky, i.e., Kz /Kx	1 and
Kz /Ky 	1. We also assume that Kx	Ky, that is the particles
have the shape of ellipses �see Fig. 1�.

Within each particle all magnetic moments are ferromag-
netically aligned but with an orientation differing from par-
ticle to particle the system can be modeled as a collection of
N elementary classical magnetic moments, which can be de-
scribed by a classical Heisenberg Hamiltonian. For the disk

shaped particle the value of S� i= �s cos�xi� ,s sin�xi� ,0�, where
xi is an angle describing an orientation of magnetic moments
within the plane. Below we use notations and units where

H=g�B�0hs with h=
Hx
2+Hy

2+Hz
2, K=2Kys

2, and we only
take into account the nearest neighbor interaction Ji,i+1s2

=J
i,i+1. Then, the total energy of such a spin chain is given
by the N-particle Hamiltonian

E = �
i=1

N �− J cos�xi − xi−1� − H cos�xi − �� +
K

2
sin2�xi�� ,

�5�

where, for simplicity, periodic boundary conditions are im-
posed. Here, the variables xi specify the angles between the
magnetizations of the individual particles and the axis of
symmetry of the individual single particles. Depending on
the orientation of the magnetic moments the dipole-dipole
coupling constant J may take positive or negative values.
Suppose that all particles having the shape of ellipses are
oriented perpendicular to the chain as in Fig. 1. Then due to
the shape anisotropy the leading term of the dipole-dipole
type of interaction between particles associated with the
value of J is antiferromagnetic, i.e., J�0. The Zeeman en-
ergy, defined by the strength of an external magnetic field H,
favors the alignment of the moments along the field direc-
tion. The quantity � defines the angle between the reference
symmetry axis of individual particles and the external mag-
netic field, while the quantity K specifies the strength of the
particle anisotropy. Besides the energy, another important
macroscopic quantity of interest is the total magnetization m
taken along the direction of the magnetic field. Defined as

m =
1

N
�
i=1

N

cos�xi − �� , �6�

this quantity specifies an average over the magnetic moment
directions of the individual magnetic particles with respect to
the magnetic field orientation. Locally stable equilibrium
configurations obey the set of N nonlinear coupled equations

J�sin�xi − xi−1� + sin�xi − xi+1��

+ H sin�xi − �� +
K

2
sin�2xi� = 0. �7�

As noted before magnetic submicron particles are typi-
cally characterized by a high value of the anisotropy constant
K associated with their shapes. It is normally much larger
than the absolute value of the interparticle spin-spin interac-
tion J. The large number of experimentally possible observed
locally stable spatial structures in the magnetic chains is a
simple consequence of the variety of possible magnetic do-
main structures. By the transformation into two mappings
these equations at zero field, H=0, have been studied in Ref.
14. The existence of a rich diversity of domain wall solutions
related in a bifurcation scenario was proven there. Magnetic
domains and solitons result from the balance of several com-
peting energy contributions, where the system tries to com-
promise between all the competing forces. When the three
control parameters H, K, and � vary, the energy balance is
changed such that a rearrangement of the domain structure
can take place.
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IV. THE ENERGY SPECTRUM AS A FUNCTION OF THE
MAGNETIC FIELD

In order to get some first insight into the structure of the
energy spectrum let us first consider the system at zero mag-
netic field H=0, where Eq. �4� reduces to

J�sin�xi − xi−1� + sin�xi − xi+1�� +
K

2
sin�2xi� = 0,

i = 1,2, . . . ,N . �8�

For sufficiently large values of K this set of equations has
exactly 2N distinct locally stable solutions consisting of “bi-
nary” vectors x*= �x1

* ,x2
* , . . . ,xN

* � with xi
*� 0,��. These so-

lutions are associated with spin up and spin down orienta-
tions of magnetic moments of individual particles.

Accordingly, for H
K �1, in zero order approximation, the

energy Em associated with local minima takes the simple
form

Em = − J�
i=1

N

cos�xi
*�cos�xi−1

* � − H cos����
i=1

N

cos�xi
*� , �9�

with xi
*0,��. Note that the first sum is related to the number

of domain walls Nd via

�
i=1

N

cos�xi
*�cos�xi−1

* � = N − 2Nd, �10�

while the second sum is related to the zero order magnetiza-
tion m0 via

�
i=1

N

cos�xi
*� = m0. �11�

In contrast to the total magnetization m, defined in Eq. �6�,
the quantity m0 is measured with respect to the easy axis and
is not normalized per particle as m. Due to our periodic
boundary conditions the number of domain walls Nd is an
even number satisfying the inequality 0NdN−1 for N
odd, and 0NdN for N even. The number of distinct val-
ues of the zero order magnetizations m0 depends linearly on
the number of domain walls Nd. For the two homogeneous
configurations with all spins up �xi=0� and all spins down
�xi=��, where Nd is zero, m0 can only take the two values, N
and −N, respectively. For the other antiferromagnetic limit,
Nd=N−1 for N odd as well as Nd=N for N even. Here we
have the maximum number of domain walls associated with
the antiferromagnetic order and the value m0=0 for N even,
and there are two values m0= ±1 for N odd. For all other
domain wall configurations with Nd�0 it is easy to verify
that the number of distinct possible values for m0 is
N−Nd+1 for N odd and N−Nd+2 for N even.

Eventually, for fixed Nd and m0, the zero order energy Em
is a linear function of the magnetic field H and can be written
in the more compact form

Em = − J�N − 2Nd� − m0 cos���H . �12�

levels is N2 /4+2 for N even and �N2−1� /4+1 for N odd. In
general terms, each energy level of the system corresponds to

a configuration associated with a local minimum, a different
number of domain walls Nd and different value of the total
magnetization of the chain m0=N+−N−, where N+ is the
number of spin-up particles while N− is the number of spin-
down particles. So the magnetization m0 may be viewed as
the total magnetic moment of the chain. It is an integer num-
ber being even for N even and odd for N odd.

− �N − Nd� � m0 � N − Nd. �13�

The corresponding linear energy spectrum, as a function
of the external magnetic field H, for N=13 is depicted in Fig.
4. For H=0 we find exactly seven distinct energy values. The
energy of the lowest minimum corresponds to the configura-
tion with 12 domain walls, followed by the configurations
with 10, 8, 6, 4, and 2 domain walls, while the highest en-
ergy is occupied by the two homogeneous configurations
with no domain walls at all.

For H�0 the number of possible distinct magnetizations
m0 comes into play such that according to the number of
domain walls the seven energy levels split into 2, 4, 6, 8, 10,
12, and 2 sublevels, respectively. The two ferromagnetic en-
ergy configurations without domain walls �Nd=0� represent
an exception from this scheme. From Eqs. �9� and �10� one
may see that the chain behaves as a giant quantum particle,
where the moment is quantized in units of two with the ex-
ception that the maximum momentum m0max

= ±N is not
quantized and takes only these two values.

Note that the linear energy spectrum does not give us any
insight into the local stability or existence of these energy
levels for arbitrary values of H. Therefore, to find the critical
stabilities for the individual local minima we have to solve
the full set of coupled, nonlinear relaxation equations

FIG. 4. Normalized linear energy spectrum of local minima E as
a function of H for the value �= �

4 and K=5.5J. The number of
magnetic particles in the chain is equal to N=13. The energy asso-
ciated with a vertical axes is measured in the units of the interpar-
ticle interaction constant J=Jds2, where Jd is a constant of the
dipole-dipole interaction and s is the total spin momentum of an
individual particle. The magnetic field H is measured in the units of
J. The real value of magnetic field may be obtained from the value
of H by the multiplication of J /g�B�0s, where g is the Lande
splitting factor and �B is the Bohr magneton.
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ẋi = − �
�E

�xi
�14�

with a sufficiently small relaxation parameter �. In our next
numerical simulations we perform iterative solutions of Eqs.
�7�. In order to relax to the closest local minimum for H
�0 in these iterations we choose the 2N asymptotic configu-
rations x*= �x1

* ,x2
* , . . . ,xN

* � as initial conditions for H=0. For
increasing values of the external field we always use the
previous configuration as the initial condition. In contrast
with the first order approximation �see, Eq. �12��, with in-
creasing field two features appear here: �1� a termination of
the energy levels; and �2� a fractality of the energy spectrum.
The termination of the energy level is arising at an inflection
point when an appropriate minimum coalesces with a saddle
point. The fractality of the energy spectrum is arising in a
similar manner as was described in our previous paper,11 see
also Refs. 15–19.

The full energy spectrum for N=13 particles is depicted in
Fig. 5. From a comparison of Figs. 4 and 5 we observe that
for intermediate strength of the external field H /J�1 the
zero order energy spectrum is an excellent approximation
explaining the appearance of the splitting band structures.

The energy spectrum presented in Fig. 5, the “crab,” shows
that there are seven branches of local minima associated with
a different number of domain walls �see, also for compari-
son, Fig. 4�. There are the following configurations: two fully
polarized states; there are also states associated with two,
four, and six domain walls and further other states up to 12
domain walls. As in Fig. 4 the states with different fixed
numbers of domain walls Nd correspond to one of seven
branches of the spectrum �see Fig. 5�. Each separate energy
level in the single branch corresponds to a different value of
the projection of the total magnetic moment m0. At zero
magnetic field all states with the same number of domain
walls and different possible values of m0 are degenerate. At
switching on of the magnetic field this degeneracy is lifted
and leads to the “Crab” picture presented in Figs. 4 and 5.

Thus the energy spectrum has an amazing structure. We
find termination points arising at some critical fields, where
certain branches become unstable. Furthermore, there are de-
generacy points at level crossings when the energy associ-
ated with a different number of domain walls coincides. Any
of these termination points arise when a local minimum coa-
lesces with a saddle point and disappears. The large variety
of these termination points indicates that there is a very com-
plicated energy landscape associated with this system. The
shape of this energy landscape is also very sensitive to the
magnetic field H. With changing magnetic field the position
of local minima or sadddle points changes. Surprisingly at
certain values of the magnetic field we have other degenerate
sets of states. Figure 5 reveals that at this degeneracy point,
arising at the finite value of magnetic field, the number of
branches is different from the set associated with zero mag-
netic field. Note that this degeneracy already arises in the
linearized zero order spectrum, see Fig. 4. Using Eq. �9� for
the zero order spectrum, one can predict the values of the
critical field when these degeneracies occur. That is a degen-
eracy arises at the inflection points20–23 when

H =
2J

cos���
p

q
�15�

with the restriction −p�q� p. Here p and q are given by
p=Nd1

−Nd2
and q=m01

−m02
, respectively, where Nd1

and
Nd2

are specified by all possible domain numbers of two
arbitrary domain configurations. The quantities m01

and m02
are specified by all possible corresponding magnetizations.

V. THE ENERGY BARRIERS AND RELAXATION
TIMES

The important feature of the system is the energy barriers
which are separating the local minima. Their number is very
large, �22N, as described in the previous section. Each of
these barriers is associated with a saddle point of the energy
landscape, presented by Eq. �5�. Let us consider the lowest
saddle points, which could play a role in a transition between
these local minima. For sufficiently large values of K /J	1
these saddle points can be described analytically. Its num-
ber is exactly equal to 2N−1N distinct configurations
and they are described by the “binary” vectors x*

FIG. 5. The spectrum of energies E associated with local
minima as a function of magnetic field H for the value �= �

4 and
K=5.5J. The number of particles in the anisotropic Heisenberg
chain is equal to N=13. Each energy point presented in this figure
has been obtained by numerical iterative solutions of Eq. �7�. The
energy E associated with the vertical axis is measured in the units of
the interparticle interaction constant J=Jds2, where Jd is a constant
of the dipole-dipole interaction and s is the total spin momentum of
an individual particle. The magnetic field H is measured in units of
J. The real value of magnetic field is expressed from the value of H
by the multiplication by factor J /g�B�0s, where g is the Lande
splitting factor and �B is the Bohr magneton.
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= �x1
* ,x2

* , . . . ,xm−1
* ,ym

* ,xm−1
* , . . . ,xN

* � with xi
*� 0,�� and ym

*

=� /2. These strings are natural solutions of the Euler-
Lagrange equation �7�. Accordingly, for H

K �1, in zero order
approximation, the energy of a barrier EW associated with the
lowest saddle points takes the simple form

EW =
K

2
+ H sin � + ��

i=1

m−1

+ �
i=m+1

N ��− J cos�xi
*�cos�xi−1

* �

− H cos���cos�xi
*�� �16�

with xi
*0,��. Note that if we relate the first term of the sums

�similarly to the previous section� to the number of domain
walls Nd� in this saddle point configuration via

��
i=1

m−1

+ �
i=m+1

N �cos�xi
*�cos�xi−1

* � = N − 1 − 2Nd� �17�

and the second term of the sums to the zero order magneti-
zation m0� via

��
i=1

m−1

+ �
i=m+1

N �cos�xi
*� = m0� �18�

we obtain the zero order energy of the barrier EW associated
with a saddle point of the energy landscape as a linear func-
tion of the magnetic field H

EW =
K

2
+ H sin � − J�N − 1 − 2Nd�� − m0� cos���H . �19�

Note that the numbers of the domain walls Nd� and the
spin number m0� are specific for this saddle point and may be
different from a configuration associated with a local mini-
mum.

From the comparison of Eqs. �19� and �12� one may see
that at zero field the energy positions of all these barriers are
significantly higher �by the value K /2� than the positions of
the local minima. That is, in other words such an energy
landscape consists of many locally stable minima separated
by large barriers. Moreover, such a landscape, in which the
system evolves, exhibits an extremely complicated multival-
ley structure with a rapidly increasing number of local
minima and saddle points �N4 that also allows the appear-
ance of structural disorder. This is precisely the situation
arising in a glassy system and therefore we may conclude
that this system is some kind of magnetic glass associated
with the creation of domains �see also Refs. 24 and 25�. Each
of these minima corresponds to the state with some fixed
number of domains, see Eq. �12�. Even if such a number is
fixed the states associated with different configurations or
rearrangement of these domains will correspond to a differ-
ent or the same degenerate minima. These energy levels do
not differ much from each other; however, the barrier height
between the corresponding minima increases with increasing
values of K /2. Since all these configurations are locally
stable and are separated from each other by large barriers we
may conclude that some kind of a glassy state should arise
here.24,25

Recent low temperature experimental studies of the field
driven magnetization reversal of the MnNi chain indicate

that the thermal dependence of the relaxation time followed
an Arrhenius law. At high temperatures T�K /2 the activa-
tion energy is equal to 74 K, while with decreasing tempera-
ture a smaller activation energy of 55 K was observed. This
crossover was ascribed to finite size effects.26 According to
our results the activation energy �E should be equal to the
difference between the energy associated with the saddle
point EW and an energy associated with a local minima Em
�see, Eqs. �19� and �12��, that is �E=EW−Em. There are a
whole set of activation energies depending on the state in
which the system is originally located. It is also clear that it
is not possible to observe the magnetization reversal at very
low temperatures and zero field since the barrier between any
of these two states associated with different domain configu-
rations is much too high. But the barriers can be lowered by
applying magnetic field. For example, in the vicinity of the
termination points of the energy spectra described in the pre-
vious section the position of the saddle point is very close to
the energy minima. There the thermal fluctuations are able to
nucleate a pair of the domain walls which upon propagation
may eventually lead to a magnetization reversal. The sto-
chastic nucleation process is normally studied via the relax-
ation time method.10 The relaxation time can be expressed by
the Arrhenius law as

��T,H,Nd,Nd�,m0,m0�� = �0 exp��EW − Em�/kBT� , �20�

where EW and Em are defined by Eqs. �19� and �12�, while
the numbers Nd ,Nd� ,m0, and m0� describe the number of the
domain walls and values of total magnetic moments in the
states associated with the minimum and a saddle point in-
volved in the thermally activated transition. According to this
formula one may find a very large number of the relaxation
times, �N4 associated with activation processes described by
the numbers Nd ,Nd� ,m0, and m0�. Note that the formula �20�
has been received in the limit of the small magnetic field,
i.e., H�J�K. Nonetheless, the multiplicity and the com-
plexity of the energy landscape remain beyond this approxi-
mation. It is important to note that some of these activation
processes associated with different relaxation times are more
probable than the others. This is mostly related to the basin
of the attraction of the state. Large broad minima of the
configurational space have obviously large basins of attrac-
tion, while small shallow minima probably will be less oc-
cupied. Of course because of such complicated energy land-
scapes we expect that the system may display a large variety
of coercive fields, or “mean nucleation fields,”10 which can
be associated with a large variety of hysteresis loops. Indeed
it was found that Mn2Ni chains display smooth hysteresis
loops which are strongly temperature and field sweep rate
dependent.10

VI. COERCIVE FIELDS AND HYSTERESIS LOOPS

Usually any magnetic system is characterized by the de-
pendence of the total magnetization on the magnetic field
when the magnetic field is varying in a large range. A closed
cycle of such dependence is known as a magnetization loop.
Averaged over many cycles obtained with increasing and de-
creasing magnetic field it is known as a hysteresis loop. Any
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magnetic system is characterized by its own hysteresis loop
which may be temperature and field sweep rate dependent or
independent. Let us now continue to consider our linear
chain and study possible hysteresis loops which could arise
there. For the linear chain consisting of a finite number of
magnetic particles the studies of the magnetization loops are
especially important. They may provide information about
the interaction between particles and give some characterisa-
tion of a glassy state arising in such systems. The hysteresis
loops of course may characterize a nonequilibrium state and
may reveal many additional features of our system such as
the scale and variety of the barriers, their dependence on
magnetic field, and others. In fact we found here that many
types of magnetization loop are possible, which may give
rise to many types of hysteresis loop, including a large vari-
ety of minor loops and returned branches associated with
different coercive forces.20–23 The existence of these loops is
related to the complex energy landscape having very many
local minima separated by large barriers. The application of a
magnetic field will destabilize such configurations associated
with locally stable minima in a way that the number of the
minima decreases. Each of all these instabilities corresponds
to a termination point of the energy spectrum or an inflection
point as discussed in Sec. III �see Fig. 2�. For such instability
different configurations will have different critical fields. In
the limit of zero magnetic field the coercive fields or the
values of magnetization at zero field are described by the
following analytic expression:

M�H = 0� =
m0

N
cos � =

N+ − N−

N
cos � . �21�

In analogy to the spectrum of the energy dependencies on
external magnetic field H, depicted in Fig. 5, we now present
the spectrum of magnetization dependencies on external
magnetic field H, i.e., all possible total magnetizations M as
a function of the external magnetic field H for fixed values of
K and �. For the number of particles N=13 this spectrum of
magnetizations is presented by discrete points in Fig. 6. The
presentation in the form of points is used just for conve-
nience since the results are obtained numerically with dis-
crete steps in magnetic field. Each point has been obtained
by numerical solutions of the Eq. �7� and then the value of M
has been calculated with the aid of Eq. �6�.

It is obvious from Fig. 6 that there are many branches of
m�H� which should be a continuous function of magnetic
field. However, similar to the energy spectrum presented in
Fig. 5 with increasing field there are two similar features
here: �1� a termination of the magnetization branches M�H�
at some critical fields, Hci; and �2� a fractality of the magne-
tization values or bifurcations of branches leading to a fractal
arising at nonzero field only. The termination of magnetiza-
tion branches is arising exactly at the points when a termi-
nation of the energy level is arising, that is at an inflection
point when an appropriate minimum coalesces with a saddle
point. The bifurcations of branches leading to a fractality of
the magnetization branches is arising in a similar manner as
was described in our previous paper.11 For N=13 and H=0
we find exactly 13 distinct magnetization values described

by Eq. �21�. The highest magnetization corresponds to the
homogeneous configuration with all 13 spins up N+=N=13
and N−=0, followed by the configurations with
12,11,10, . . . ,2 ,1 and eventually all spins down, where N+
=0 and N−=13. Note also that in contrast to the energy
spectrum, where the distribution of the magnetizations
has the symmetry E�H�=E�−H�, we have the symmetry
M�H�=−M�−H�.

Comparable to the energy spectrum depicted in Fig. 5 the
magnetization is also a multivalued function of the magnetic
field H �see Fig. 6� suggesting that a variety of different
hysteresis loops are theoretically possible. Indeed this sug-
gestion is in strong agreement with recent experimental stud-
ies of Mn2Ni.10 However, we would like to look on this set
of magnetization values from a different point of view. We
are interested to determine from the magnetization depen-
dence how transitions between the different minima may
arise. In particular, the change of the magnetization m as a
function of the field H may not necessarily be smooth but
can increase in steps that are associated with the transitions
from one minimum into another one. This fundamental
mechanism giving rise to a series of minute jumps in the

FIG. 6. Distribution or a spectrum of the total magnetizations M
associated with local minima as a function of the magnetic field H
for K=5.5J, N=13, and �= �

4 . Each point has been obtained by
numerical solutions of Eq. �7� and then the value of M has been
calculated with the aid of Eq. �6�. At nonzero magnetic field the
magnetization set displays some features of a fractal, see, for de-
tails, Ref. 11. The magnetization M associated with a vertical axes
is measured in the units of g�B�0s /N. The magnetic field H is
measured in the units of J. The real value of magnetic field may be
obtained from the value of H by the multiplication of J /g�B�0s,
where g is the Lande splitting factor and �B is the Bohr magneton.
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magnetization is the so-called Barkhausen effect.21 It was
discovered in 1919 and gave the first experimental evidence
of these magnetic instabilities. In order to illustrate how
these discontinuities in the hysteresis curve may emerge we
choose an arbitrary initial configuration specified by the
number of domain walls Nd and the zero order magnetization
m0 such that we are in a specific subbranch of the energy or
in the corresponding magnetization m=m0 /N cos �, respec-
tively. Then we drive the magnetic field slowly up with a
constant sweep rate. This results in a slight change of the
energy landscape. With such changes of magnetic field some
minima become deeper. Some other minima are getting more
shallow and at some critical field disappear. Whenever such a
returned branch of magnetization loses stability the system
will immediately relax or jump to a still existing local mini-
mum “nearby.” Note that the nature of these jumps, and the
number and the range of magnetic field between the jumps,
depends on the stepsize �or sweep rate� with which the ex-
ternal field increases as well as on the accuracy of the calcu-
lation. The influence of thermal fluctuations existing in real
experiments in the measurements of hysteresis loops might
be comparable to the change of the step size in our numerical
experiments. The results of such numerical experiments are
depicted in Fig. 7, which illustrates how the magnetization of
the chain changes on the returned branch of a hysteresis
when the magnetic field increases slowly from zero. The
initial value for the magnetization was taken as m�0�
=m0 /N cos�

4 =−5/13
2. We observe that with increasing
magnetic field the magnetization is always increasing. More-

over, we notice that with increasing field there appears five
critical fields Hci �see Fig. 7�, where the magnetization sud-
denly jumps to a higher value. The corresponding energy
dependence is shown in Fig. 8. It is interesting to compare
Figs. 7 and 8. We may see there that the discontinuous
changes in the energy are arising at the same critical fields
Hci as the discontinuous changes in the magnetization. We
also see that during the first continuous interval of the slow
increase of the magnetization that the energy also increases
continuously. This means that the system remains topologi-
cally in the same local minimum which continuously
changes its position. However, at the first jump in magneti-
zation the energy jumps to a lower value. In this moment a
dramatic change in the energy landscape occurs. Namely this
local minimum with which this energy level was associated
ceases to exist. This happens just at the inflection point and
the system jumps into another nearby local minimum with a
lower energy.

In a similar manner, as we can see from Figs. 7 and 8,
with increasing external field H more and more domain wall
configurations, corresponding to locally stable energy
minima, cease to exist. The system is forced to jump into
another local minimum each time when it reaches an inflec-
tion point. Depending on the degree of stability these energy
minima exist even during large changes of the magneticfield.
Eventually, at a very large field the system will inevitably
relax to the global minimum �ground state� associated with
the fully polarized configuration �see Figs. 7 and 8�. Due to a
highly complicated energy landscape many different series of
jumps can occur. This primarily depends on the initial con-

FIG. 7. �Color online� The returned branch of the magnetiza-
tions M as a function of the magnetic field H for K=5.5J, N=13,
and �= �

4 presented by a bold line with discontinuous jumps. The
full magnetization spectrum represented with dots serves as a guide
for the eye and as an illustration of how the returned branch �the
bold discotinuous line� is formed from the whole magnetization set
presented in the background. Each point or dot has been obtained
by numerical solutions of Eq. �7� and then the value of M has been
calculated with the aid of Eq. �6�. The magnetization M associated
with a vertical axes is measured in the units of g�B�0s /N. The
magnetic field H is measured in the units of J. The real value of
magnetic field may be obtained from the value of H by the multi-
plication of J /g�B�0s, where g is the Lande splitting factor and �B

is the Bohr magneton.

FIG. 8. �Color online� The energy E associated with a returned
branch of a hysteresis loop as a function of H for N=13, �= �

4 , and
K=5.5J represented by a bold discontinuous line with jumps. The
full energy spectrum is represented in the background of the figure
by dots and serves as a guide for the eye. Each dot has been ob-
tained by numerical solutions of Eqs. �7�. The energy E associated
with a vertical axes is measured in the units of the interparticle
interaction constant J=Jds2, where Jd is a constant of the dipole-
dipole interaction and s is the total spin momentum of an individual
particle. The magnetic field H is measured in the units of J. The real
value of magnetic field is expressed from the value of H by the
multiplication of the factor J /g�B�0s, where g is the Lande split-
ting factor and �B is the Bohr magneton.
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figuration from which the system evolves. Choosing the ini-
tial condition for the magnetization randomly, one may reach
many different series of jumps in the magnetization of the
system. In Figs. 7 and 8, for example, we have only pre-
sented one possible series of jumps. The structure and se-
quence of the experimentally observed series of jumps may
be different from what we have presented in Fig. 8 since it
would be difficult to choose exactly the same initial condi-
tions as we have. Nonetheless such studies may reveal many
interesting characteristics of the interaction arising between
magnetic particles as well as their other physical properties.
Additional factors which can stimulate such Barkhausen
jumps can be thermal fluctuations as well as various noises
existing in the system.

In another series of our computer experiments we study
the influence of noise. After each step where the field is
increased we put some moderate noise into the configuration
specifying the last locally stable minimum such that the ini-
tial configuration for the next value of external field is mod-
erately disturbed. Figure 9 depicts these jumps arising at the
presence of noise on a returned branch of the hysteresis
curve. One may notice that with the presence of the noise the
number of such jumps increases. The jumps also may lead
not only to the increase of the magnetization but also to a
decrease of it. Such behavior can be also found in real ex-
perimental measurements of the returned branches at finite
low temperatures. The corresponding energy spectrum asso-
ciated with the presented returned branch is depicted in Fig.
10.

A fluctuation associated with the noise may create its own
jump which may arise not only at the inflection point. As a
result the number of jumps increases, as we see, in Figs. 9
and 10. When such fluctuations are present a jump in mag-

netization and in the energy is definitely possible, even if the
local minimum does not disappear. Such jumps can already
arise when the minimum is shallow enough. Then thermal
fluctuation will push the system into another local minimum.
In such a series of steps it is not necessarily that the energy
always decreases at each step. There may arise steps when
the energy will increase and the magnetization will be de-
creased, see Figs. 9 and 10, respectively. Only at very large
fields will the system be thermalized to the global minimum.
Thus the existence of the noise and thermal fluctuations will
lead to an increase in the variety of the series of Barkhausen
jumps in magnetization, which we expect to be observed in
future experiments. Note that when the magnetization in-
creases continuously the system is in a specific domain struc-
ture, i.e., it is trapped in a specific local energy minimum. If
thermal fluctuations are neglected and the energy barriers
separating this minimum from neighboring ones are large
enough, that arises here at zero field, H=0 and K	J, the
system will indefinitely remain in such a metastable state.
However, a slight change of the strength of the applied field
H can decrease the barrier height and therewith destabilize a
specific domain structure. For that it is sufficient that, due to
the increase of the magnetic field, a local minimum of the
energy landscape is transformed into a saddle point such that
the system can evolve toward some other metastable con-
figuration. These rearrangements can be quite localized in
space or may involve even the whole domain structure.
However, it is important to note the studies of such jumps
may reveal many useful facts about the interaction, about the
energy landscape, as well as about the glassy character of the
behavior of the chains made of magnetic particles.

FIG. 9. The magnetic field dependence of magnetization M�H�
associated with a returned branch of a hysteresis loop for K=5.5,
N=13, and �= �

4 and represented by a bold discontinuous line with
jumps. The full magnetization spectrum is represented in the back-
ground of the figure by dots and serves as a guide for the eye. Each
point dot has been obtained by numerical solutions of Eqs. �7� and
then the value of M has been calculated with the aid of Eq. �6�.
Here we present only one returned branch from very many possible.
Due to fluctuations there are transitions both with increasing and
decreasing magnetization.

FIG. 10. The energy of local minima E as a function of H
associated with a returned branch of a hysteresis loop presented in
Fig. 6 represented by a bold discontinuous line for N=13, �= �

4 , and
K=5.5J. The full spectrum is represented with dots and serves as a
guide for the eye. Each point has been obtained by numerical solu-
tions of Eq. �7�. The energy E associated with a vertical axis is
measured in the units of the interparticle interaction constant
J=Jds2, where Jd is a constant of the dipole-dipole interaction and s
is the total spin momentum of an individual particle. The magnetic
field H is measured in the units of J. The real value of magnetic
field is expressed from the value of H by the multiplication of the
factor J /g�B�0s, where g is the Lande splitting factor and �B is the
Bohr magneton.

MAGNETIC CELLULAR AUTOMATA AND THE FORMATION… PHYSICAL REVIEW B 75, 014416 �2007�

014416-11



VII. SUMMARY

In the present work we have developed a theory describ-
ing a chain of monodomain magnetic particles in an external
magnetic field. The theory is in excellent agreement with our
numerical experiments which we have performed for five
nanoparticles made from Fe deposited on a Si substrate. Our
theory describes well the energy spectrum and energy land-
scape of the system consisting of any number of single do-
main magnetic particles. We have found that this energy
landscape has a very peculiar structure that is associated with
exponentially many minima separated by large barriers. The
minima correspond to different stable domain configurations
which may be useful for a construction that performs logic
within a MQCA scheme.7–9 Moreover, the described energy
landscape, associated with the creation of such domains as
well as fractal values of the total magnetization, may also be
useful for other various applications. Because the energy sur-
face consists of many locally stable minima that are sepa-
rated by very large barriers, the chains of magnetic particles
have a strong memory effect and therefore may operate as
data storage. For typical chains used in the constructions of
MQCA7–9 we have estimated the heights of these barriers.
So, with the use of our numerical modeling we got that the
constant of the interparticle interaction is about 0.3 eV. The
heights of these barriers are of the order of J0, thus corre-
sponding to around 3000 K. Such high values of the barriers
indicate that if we store any information in the form of a
particular magnetic �domain� configuration, then at room
temperatures it will be preserved forever. Only the applica-
tion of an external current or field can decrease the heights of
these barriers and allow the change of or the clearance of the
stored information. Such a property in a system of magnetic
particles may be very useful for various magnetic devices. In
particular this may stabilize the work of MRAM and QMCA
made of chains of magnetic particles.

Each of these minima corresponds to the state with some
fixed number of domains or domain walls. Even if such a
number is fixed the states associated with different configu-
rations or rearrangements of these domains will correspond
to different or the same minima. This is the situation, which
is precisely arising in glassy systems. Such shapes of the
energy landscape led us to the conclusion that the systems
formed from magnetic particles are some kind of magnetic
glass. Such a glass is related to the creation and the localiza-
tion of domains. We propose to make a detailed experimental
investigation of these chains, made of small magnetic par-
ticles, to identify this glassy character and fractal features
associated with the interaction between domains and their
domain structure as well as the influence of the fractal struc-
ture on the operation of these chains. In this respect it might
be useful to measure the magnetization at zero field as well
as in cooled regimes as is commonly practiced in experi-
ments on spin glasses. Due to the energy landscape described
above the corresponding magnetic structure at very low tem-

peratures are very stable with respect to thermal as well as to
quantum fluctuations. To reveal these fractals experiments
associated with fast cooling should be set up. The repetition
of the fast cooling from high temperatures at different mag-
netic field strengths may drive the system to settle in the
different valley of the energy landscape. The next slow in-
crease of magnetic field may reveal a series of Barkhausen
jumps displayed on returned branches of the hysteresis loops.
The measuring of the total magnetization at each lap of cool-
ing, with the same and different cooling rates, may provide
the set of values of magnetization which can be reminicent
of some bits of a fractal. The latter will depend on the shape
and the number of particles of which the nanostructure is
formed. Since the different clusters will be associated with
different fractals then in general these studies may lead to the
development of a new type of spectroscopy where with the
aid of the fast cooling and slow field changes magnetization
measurements, especially on the returned branches of the
hysteresis, the structure of small clusters may be identified.11

This is especially very convenient to do with the use of the
newly developed air liquid pulse tube coolers.27 A similar
glassy structure may arise in granular high temperature su-
perconductors where classical orbital moments are arising
due to circular persistent currents flowing between the grains
�see, for details, Ref. 28�. This current is due to a Josephson
effect and is flowing between the grains forming a Josephson
network with �-junctions or a network of �-rings. The latter
are arising due to the d-wave symmetry of the superconduct-
ing order parameter. Such orbital magnetic moments give
rise to a paramagnetic response of the superconductor, i.e., to
the paramagnetic Meissner effect28 originally observed in
Refs. 29 and 30. A chain or a planar array of electrically
isolated �-rings could be treated as a set of magnetic mo-
ments oriented perpendicular to the plane �Ising spins� and
interacting via magnetic dipole forces. The properties of such
one-dimensional chains now attract widespread attention
�see, for example, Refs. 31–33� and are very similar to the
properties of the magnetic chain described in the present pa-
per. The found phenomena of the fractal and glass formation
have a very general character and may arise in many differ-
ent systems, ranging from chains of spins embedded in mag-
netic semiconductors to the chain of magnetic particles. The
described phenomena must definitely be taken into account
in the design of any MQCA system made of small magnetic
particles having the potential for technical applications.
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