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The low-energy physics of three-leg frustrated antiferromagnetic spin-S tubes in the vicinity of the upper
critical field are studied. Utilizing the effective field theory based on the spin-wave approximation, we argue
that in the intermediate-interchain-coupling regime, the ground state exhibits a vector chiral order or an
inhomogeneous magnetization for the interchain (rung) direction and the low-energy excitations are described
by a one-component Tomonaga-Luttinger liquid (TLL). In both chiral and inhomogeneous phases, the Z, parity
symmetry along the rung direction is spontaneously broken. It is also predicted that a two-component TLL
appears and all the symmetries are restored in the strong-rung-coupling case.
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I. INTRODUCTION

Frustrated spin systems' have been continuously explored
for more than five decades. Frustration is considered as an
important keyword to generate exotic, unconventional mag-
netic orders, disorders, and excitations including even spin-
liquid states. Actually, frustrated systems have provided sev-
eral peculiar concepts and phenomena so far: resonating-
valence-bond picture, noncollinear orders, symmetry-
unrelated degeneracy, order-by-disorder mechanism, etc.

In recent years, frustrated magnets containing four-spin
exchanges as well as standard two-spin ones have been in-
tensively studied.? In such magnets, fascinating magnetic or-
ders (nematic, chiral, dimer orders, etc.), which order param-
eter is defined by products of spin operators, are shown to be
present. In a sense, these new orders are a natural conse-
quence of the four-spin exchange because for such an inter-
action, it is possible to perform a mean-field approximation
SPSES)S) — (S{SSYSP+S7SHS)S))~(SSPNS]S]). Further-
more, it is well known that effects of four-spin exchanges are
fairly small in a large number of real magnets. Thus, to dis-
cover intriguing magnetic orders within spin systems con-
taining only two-spin exchanges could stimulate many ex-
perimentalists and would be theoretically a more challenging
issue.

In one dimension, as representatives of geometrically
frustrated spin systems with only two-spin exchanges, one
can consider zigzag spin chains and three-leg antiferromag-
netic (AF) spin tubes—i.e., ladders with a periodic boundary
condition (PBC) along the interchain (rung) direction. In this
paper, we study the latter model in a magnetic field. The
Hamiltonian is written as

3
H=EE[JSl,j'Sl,j+1+JLSl,j'Sl+1,j_HSij]a (1)

=1
where §l,j is spin-S operator on site j of the Ith chain (I
=1,2,3), />0 (J,>0) is the intrachain (interchain) cou-

pling, and the PBC S, ;=S ; is imposed. Focusing on the
vicinity of the upper critical field and applying an effective
field theory approach, we show the possibility of two inter-
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esting long-range-ordered states: for a certain high-magnetic-
field area, a vector chirality (V' )=((S;; XSy ;)?) or an in-
homogeneous magnetization along the rung direction occurs
in a one-component Tomonaga-Luttinger-liquid (TLL) state.
In the chiral phase, the Z, rung-parity symmetry S’ S}, ;,
by which Vlofj changes its sign, is spontaneously broken,
while the inhomogeneous magnetization in another phase
breaks the one-site translational symmetry for the rung as
well as the rung-parity one. We also predict that a two-
component TLL emerges and all the symmetries are pre-
served in the strong-rung-coupling regime. Recently a spin
tube material [(CuClytachH);CI]Cl, (Ref. 3) has been syn-
thesized, and its magnetic properties could be described by a
three-leg frustrated spin-tube model.*-® This also promotes
the motivation of studying the spin tube (1).

Existing results of the model (1) are summarized here. In
the S=% case, the zero-field ground states are gapped and
doubly degenerate with spontaneously breaking the one-site
translational symmetry along the chain, at least when J
=0.5J.7 In addition, a semiquantitative ground-state phase
diagram in the J | -H plane (J, >0), which only shows gap-
less and gapful regimes, is constructed in Ref. 8; there exists
an intermediate magnetization plateau with M=(S;)=1/6.
In the case of S=integer and H=0, the system is predicted to
be always gapful and to conserve all symmetries.’

Before analyzing the quantum spin tube (1), to discuss its
classical version is instructive. The classical ground state is
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FIG. 1. (Color online) Classical ground state of the spin tube
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FIG. 2. (Color online) Magnon bands in Eq. (2).

an umbrella structure as in Fig. 1. In this state, symmetries of
the U(1) spin rotation around the spin z axis, one-site trans-
lations, and parity transformations along both the chain and
the rung directions are all broken. Consequently, the system

H2

(- 5a57)-
From this result, the vector chiral order is expected to exist
even in the quantum version. However, since generally quan-
tum fluctuation is quite strong in one dimension and tends to
destroy any ordering, it is nontrivial whether or not the chiral
order remains and broken symmetries are restored in the
model (1).

exhibits a finite vector chirality <V1,j>—

II. EFFECTIVE THEORY

Here we construct the effective theory for the quantum
spin tube (1) in a high magnetic field. Let us begin with the
fully polarized state with M=S. For the state, the energy
dispersion of one magnon with AS*=-1 is exactly calculated
as

ex(k)=H-2S(J+J,)+2S8Jcosk+28J, cosK, (2)

where K (= =0, i?) is the wave number for the rung and that
for the chain, k, is in |k| <. The lowest bands €,,,/; are
always degenerate due to the rung-parity symmetry, the
transformation of which induces K— —K. As we explain in
Fig. 2, when H becomes lower than the upper (lower) critical
value H"=4S8J+3SJ, (H.=3SJ,), magnons of the lowest
bands begin to condense (are fully condensed). Moreover, as
H<H!=4SJ, magnons in the remaining band €, are also
condensed.

Supposing that multimagnon bound states are absent or
their excitation energies are higher than those of one-magnon
states (this is highly expected in antiferromagnetic systems
and we have numerically verified it near the saturation), we
may describe the low-energy physics around H~ H.. using
one-magnon excitations. A suitable method for such a de-
scription is spin-wave theory (1/S expansion). It makes spins
bosonize as

Sii=S=ny. S;;=bN25-n, (3)
where b;; is the magnon annihilation operator and n;;
= b1; denotes the magnon number. Substituting Eq. (3) in
the model (1) and introducing the Fourier transformation of
b, ; for the rung as
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eiKll;K’j, (4)

we obtain the bosonic spin-wave Hamiltonian. As expected,
the bilinear part of b ; reproduces the free-spin-wave disper-
sion ex(k). In order to study the low-energy and long-
distance properties of the spin tube, we further introduce
continuous boson fields ¥, as follows:

by, — (- l)j\‘";oq’o(x), barmaj— (= l)j\*"a—o‘l’i(x), (5)

where a is the lattice spacing and x=ja,. Using these and
taking into account the magnon interaction terms up to the
lowest order of the 1/S expansion, we arrive in the following
effective Hamiltonian:

1
Heffzfdx > [Z—&X‘P;&X‘Pq—,quq +goPs

q=0.+- L =My
+81(ps+ p-)* + fopolps + p-) + f1p.p-
+ N(WEW W 4 He) + N (W2WiWT + w2 iwt
+Hc)+ -+ (6)

\I’ is the magnon-density field. (This Hamil-

where P
Pa="a 10)

tonian can also be derived via the path-integral approach.
The first two terms correspond to the free-spin-wave part,
and if the chemical potential u, is positive, the magnon V¥ is
condensed.!" We set uy=4S/-H and u.=u= S(4J+3JL)
—H so that H! and H| are fixed. Other parameters in Eq. (6)
are evaluated as 1/m =2SJa} (my,=m), go=2Jay/3, g;=(4J
+3J)ayl6, fo= 8]a0/3 fi= 4Ja0/3 No=(8J=3J)ay/6, and
Ni=(16J-3J)ay/12. These values would be somewhat
changed due to high-energy modes, the curvature of the dis-
persion, higher-order interactions, and the hard-core property
of magnons neglected in the spin-wave theory.

III. LOWEST-BAND-MAGNON CONDENSED STATE

Based on the effective theory (6), we investigate the spin
tube near saturation. In this section, we consider the lowest-
magnon-condensed case, where >0, uy<0, and
max[H',H!]<H<H". For this case, the low-energy physics
must be governed by two condensed fields V.. The effective
theory is derived by integrating out the massive magnon WV,
via the cumulant expansion in terms of the free-spin-wave
part of W in the partition function. The main effect of the
W, sector is that an attractive interaction between p, and p_
originates from the second cumulant of the A, term. As a
result, the coupling constant f| is changed as

2 -2

_ - ™)

\r

fi—=h

where C is a positive dimensionless constant of O(1). Here,
we have approximated the Matsubara Green’s function
(T Vo(x,NW}(0,0)) as 1/aqy (zero) when |x| and Jayr are
smaller (larger) than the correlation length (m|ug|)~"">
(7: imaginary time) and assumed that (m|u,|)~"? is at most
O(ay)."? For the resultant Hamiltonian H.[W.],
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Haldane’s harmonic-fluid approach (i.e., bosonization) (Refs.
13-15) could be applicable. Using the bosonization formu-
las pi(x)z{5:"'ax(ﬁi/W}E::—oceizn(d)fﬂﬁix) and q’iw{ﬁi
+ 0o/ THPEE oSN emi0:  where p,=(p.), we ob-
tain a bosonized Hamiltonian of the phase ﬁelds (¢, 0.).
Introducing _the new fields ¢, ,=(¢ =)/ V2 and bs.4
=(6,+£60.)/\2 further, we can represent the phase-field
Hamiltonian as

v
H[¢,ﬁ] = f dx E #T[Kq(axgq)z + K;1(0x¢q)2]

g=s.a
+8¢ COS(Z\Ed)a) + gacos(3 \Ega) oo, (8)

where we have assumed p,=p_=p (see below) and dropped
terms with spatially oscillating factors ™. The g, and g,
terms for example originate from p,p_ and the third cumu-
lant, respectively. Unfortunately, the values of g, , cannot be
evaluated quantitatively within the present approach. In the
phase-field picture, a spin rotation around the S° axis S+
— €Sy '» the one-site translation along the chain S;’;— S}";, .
that along the rung S;';— S}, ;, and the site-parity transfor-

. Y a w .
mation along the chain S;’;— S;"_; are, respectively, expressed
as

0. — 0.+,

(¢1(x)7 et(x)) - (¢1(x + aO) — TP+Ao, 01()( + aO) - 77),

0, — 60,x2m/3,

and

(¢+(x), 0.(x)) = (= ¢u(=x), 6.(=x)).

Furthermore, the rung-parity transformation SY ]<—>S3 may
be realized by p,=p_ and (¢,,0,)— ()=, 6+). meg to
these symmetries, in all vertex operators without oscillating
factors, only cos[2n(¢,—¢_)] and cos[3n(0,—6_)] are al-
lowed to exist in Eq. (8). The most relevant n=1 terms in-
deed appear in Eq. (8).

The bosonization approach for Heff evaluates the velocity

v, as v, =~ (=f,p/m)"2. Therefore, if f, >0, then v, becomes
imaginary and it means that the bosonization is invalid. To
understand the physical meaning of this instability,'® we
should consider the magnon-density part in H_; and then
define the following Ginzburg-Landau (GL) potential:

F=gilps+p)* + fipep-— lps+p.). )

It is clear that as fl >0, the potential is minimized by impos-
ing p, # p_. Moreover, it is found that

3
o= P DYy Do j =Dl Bor > Vi (10)
=1

We thus conclude that for fl >0, a finite long-range vector
chiral order (V];) exists and the rung-parity symmetry is
spontaneously broken. For J, <J (i.e., >J
[i.e., N\o~—0(J )], f; <O generally holds,'>!7 while for J,
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~0(J) (i.e., N\g~0), when H becomes closer to H., fl in-
creases and tends to be positive. Consequently, the chiral
phase is present in an intermediate-rung-coupling regime.
Supposing that p,>p_ holds in the chiral phase, we can
speculate that the W_ mode constructs a massive spectrum,
whereas the W, part provides a TLL state.'” Namely, the
coexistence of the chiral order and the TLL is predicted. The
presence of the TLL is also supported by the previous study
in Ref. 8. If H~ H", the TLL parameter would be close to the
universal value 1. The correlation function of the chirality
might exhibit a power decay: (V ijVi(,)%(Vzl’j)z—const/ 72
+--at j—oo 10

Let us now discuss the case of fl<0, where p,=p_ is
restored and the bosonization is available. The ¢, sector in
Eq. (8) yields a TLL, which is strongly stabilized by symme-
tries, while the low-energy physics of the ¢, sector depends
on whether cos(2y2¢,) and cos(3426,) are relevant or not:
the scaling dimensions of these two are 2K, and 9/(2K,),

respectively. The Hamiltonian M/ leads to K, (—p/f;)".
Therefore, when f,~0 and p is large enough, K, is always
much larger than 1. In this case, cos(3126,) and cos(2\2¢a)
are, respectively, highly relevant and irrelevant, and then the
¢, sector obtains a massive spectrum. If g,>0 (<0),
the phase field 6, is pinned on lines 6,=2(2n
+1)7/6 (N2nw/3) in the 6,—6_ plane. Among these lines,
only six lines intersect the physically relevant “Brillouin”
zone, —m< 6@, < and —7=< A_<. This result implies that
the ground states possess the sixfold degeneracy. To investi-
gate the physical meaning of locking 6, and the ground-state
degeneracy, let us focus on the magnetization per site. The
bosonization represents it as

2 4
<Sij> ~M - gﬁa0<cos<\,60a+ 577[>> +o0 0 (11)

One can see that the second term in Eq. (11) causes a down-
down-up magnetization structure in the case of g,>0, while
for g,<<0 an up-up-down structure occurs: for instance, if 6,
is locked to zero for g,<0, (S5 } (S5, ,) M+ 6 and (S5 )
=M-28 5 {cos(126,))]. We thus conclude that an mhomo—
geneous magnetization for the rung is induced by pinning 6,.
Obviously, the parity and translational symmetries for the
rung direction are spontaneously broken in this state. Three
of the sixfold-degenerated states are indeed explained by this
inhomogeneous distribution. The meaning of the remaining
two-fold degeneracy is unknown.'® Remarkably, the inhomo-
geneously magnetized phase is not at all expected from the
classical tube system (see Fig. 1). We note that this inhomo-
geneous_ distribution might slightly be modified if
cos(3n126,) with n=2 are also relevant.'® From the predic-

tions of the chiral order for f1>0 and the inhomogeneous
phase under the condition f;<0 and |f;|~0, the boundary
f1=0 is expected to be a first-order transition.

When —f,/p increases so that K,<9/4, cos(3126,) be-
comes irrelevant and the low-energy physics of the ¢, sector
is described by a Gaussian model. This transition must be of
a Beresinskii-Kosterlitz-Thouless (BKT) type.?? After the
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transition, the system is in a two-component TLL phase with

all symmetries enjoying. If —f1/ p is further increased due to
the growth of J, or the decrease of p, cos(2v 2¢a) seems to
become relevant. However, the exact results for the inte-
grable Bose gas?! imply that in a one-dimensional Bose sys-
tem with a short-range repulsive interaction, the TLL param-
eter is not usually smaller than 1 even when the interaction
becomes extremely strong. The two-component TLL is hence
expected to continue even when J, >J or p is small (see
Endnote 17). The prediction of the two-component TLL in
the strong-rung-coupling regime is in agreement with a pre-
vious study applying the strong-rung-coupling approach to
the S=1 tube.??

IV. THREE-BAND-MAGNON CONDENSED STATE

Here, we consider the case where all three kinds of mag-
nons W, _, are condensed. This situation could be realized
under the condition of x>0, uy>0, H.<H<H/, and J,
<4J/3. This means that the three-band-magnon condensed
state is allowed to exist only in the weak-rung-coupling re-
gime. Like Eq. (9), let us introduce the GL potential for the
present case as follows:

G=280P5+ 81(ps + p)* + fopolps + p_) + f1P1p- — HoPo
— wlp,+po). (12)

To find the stable magnon density profile (py,p,,p-), the
Hessian matrix H,; ; ] is useful. At the local minimum
point (pgy,p,p) satlsfymg oG/ dp;=0, the eigenvalues of H,;
are —4J/3, C, and C, (-4J/3<C,;<0 and C,>0). The cor—
responding eigenvectors are (Spy, Sp,,Op_) < (0,1,-1),
(=C5,1,1), and (C;,1,1), where C;>0. The negative eigen-
value —4J/3 and its eigenvector indicate that the ground state
takes p,—p_ # 0. Moreover, a positive eigenvalue C, implies
the existence of the TLL. We therefore predict that the chiral
order (p, # p_) and a one-component TLL state still remain
when the system moves from the lowest-magnon-condensed
regime to all-magnon-condensed one.”>?* At the boundary
between these two regime, one might observe a weak singu-
larity such as a magnetization cusp.

V. SUMMARY AND DISCUSSIONS

We have studied the three-leg frustrated spin tube (1) near
the upper critical field. It has been predicted that the vector
chiral order or the inhomogeneously magnetized order
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FIG. 3. (Color online) Schematic ground-state phase diagram of
the S=% spin tube (1). The area away from the saturation is dis-
cussed elsewhere (Ref. 24). See Endnotes 12 and 17.

emerges in the magnetic-field-driven TLL phase in the
intermediate-rung-coupling regime. It is remarkable that in
these two phases, the TLL criticality (massless modes) and
the spontaneous breakdown of discrete parity or translational
symmetries for the rung direction coexist. We have also
shown that when the rung coupling becomes strong enough,
the inhomogeneous phase vanishes and instead the two-
component TLL occurs with preserving all the symmetries.

Combining our results and the existent ones,”® we can
draw the ground-state phase diagram for the S =% tube as in
Fig. 3. The global phase structure near the saturation would
be common to all the cases with arbitrary S, as far as S
=< O(1). Although in general the spin-wave approach used in
this paper is not very reliable for small-S cases, we believe
that it is valid if we consider the region where M is suffi-
ciently close to the saturation value: in such a region, multi-
magnon scattering processes are expected to be negligible.
When J, is changed from +0 to +% with M fixed near the
saturation, the following scenario is expected: TLL plus
chirality — [first-order transition] = TLL plus inhomoge-
neous magnetization— [BKT transition]— two-component
TLL.

We finally note that the predicted first-order and BKT
transitions could not be detected by observing the magneti-
zation M because H couples to d,¢, and p,+p_, but it does
not directly interact ¢, and p,—p_. A specific-heat measure-
ment would be efficient in the detection.
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