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We calculate the real space and time formation of a polaron quasiparticle from a bare electron. The time-
dependent Schrödinger equation for the Holstein model of electron-phonon coupling is numerically integrated
in a large Hilbert space to obtain the time evolution of the electron and phonon densities and the electron-
phonon �el-ph� correlation functions. The quantum dynamical nature of the phonons is preserved. As the el-ph
coupling increases, qualitative changes in polaron formation occur when the one-phonon polaron bound state
forms. A potential barrier between the quasifree and heavy polaron states exists in dimensions D�2, consistent
with earlier adiabatic theory. We compare to recent experiments.
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The dynamics of quasiparticle formation is fundamental
to several branches of physics. In condensed matter, the for-
mation of a polaron quasiparticle determines the electronic
and optical properties of materials including manganites1 and
conducting organic polymers.2 Recent advances in ultrafast
time-resolved spectroscopy have made it possible to investi-
gate physical phenomena on the time scale of a molecular
vibration or optical phonon in crystals. Important aspects of
chemical reaction dynamics have been revealed by observing
the motion of oscillating atoms.3 Observations of the femto-
second dynamics of polaron formation, and the closely re-
lated problem of the dressing of excitons by phonons4 have
recently been reported.5–9 In contrast, theoretical develop-
ment in this subject lags somewhat behind. The theory of
polarons spans over six decades.10,11 Theoretical studies of
the dynamics of polaron formation have found that in dimen-
sions 2 and above, a potential barrier between a delocalized
electron and a “self-trapped” polaron substantially increases
the polaron formation time.12–14 Some issues, however, re-
main unresolved.15 We take a different approach. We turn the
initial wave function loose in an enormous fully quantum
many-body Hilbert space of well over a million basis states,
and time evolve it essentially without approximation. The
resulting dynamics are unconstrained by any a priori notion
of how polarons should form.

The polaron formation time has been measured in recent
experiments.5–9 The time is found to be less than a picosec-
ond, on the order of a phonon period. Our goal is to provide
a theory for the following fundamental questions: �i� How
are phonon excitations triggered and how do they evolve into
the correlated phonon cloud of the polaron quasiparticle? �ii�
How much time does it take to form a polaron? �iii� What is
the effect of dimension on the dynamics of polaron forma-
tion?

To understand the process of polaron formation, we ex-
amine how the bare particle wave function time evolves into
a polaron quasiparticle. One approach is to construct a varia-
tional many-body Hilbert space including multiple phonon
excitations, and to numerically integrate the many-body
Schrödinger equation, i d�

dt =H� in this space.16 The full
many-body wave function can be obtained at early times.
The main approximation is the size of the variational space,
which can be increased systematically until convergence is

achieved. This method includes the full quantum dynamics
of electrons and phonons. Alternative treatments, such as the
semiclassical approximation,15,17 can be inaccurate when ap-
plied to the present problem. We solve for the dynamics of
the Holstein Hamiltonian

H = Hel + Hel-ph + Hph = − t�
�i,j�

�ci
†cj + H.c.�

− ��
j

cj
†cj�aj + aj

†� + �0�
j

aj
†aj , �1�

where cj
† creates an electron and aj

† creates a phonon on site
j. The parameters are the nearest-neighbor hopping integral t,
the el-ph coupling strength �, and the optical phonon fre-
quency �0. Strong coupling is defined as ��1, where �
��2 / �2Dt�0�, when a polaron confined to one site has a
lower energy than a free electron. D is the spatial dimension.
Weak coupling is �	1.

Figure 1 shows snapshots of polaron formation at weak
coupling. An initial bare electron wave packet is launched to
the right as shown in panel �a�. �This initial condition is
relevant to the recent experiments,5–9 and to electron injec-
tion from a time-resolved scanning tunnel microscope �STM�
tip18,19�. In panel �b� the electron is not yet dressed and thus
is moving roughly as fast as the free electron �dashed line�.
In addition, there exists a backscattered current �which later
evolves into a left-moving polaron� on the left side of the
wave packet �green and black curves�. In panel �c� after an
elapsed time of one phonon period, the electron density con-
sists of two peaks. The peak on the right �black arrow� is
essentially a bare electron. The peak on the left is a polaron
wave packet moving more slowly. As time goes on, the bare
electron peak decays and the polaron peak grows. Some
phonons are left behind �blue line�, mainly near the injection
point. These phonons are of known phase with displacement
shown in red. Some phonon excitations travel with the po-
laron �magenta�. Finally, a coherent polaron wave packet is
observed when the polaron separates from the uncorrelated
phonon excitations. The velocity operator is defined as Vj
�2Jj,j+1 / �e�cj

†cj +cj+1
† cj+1��, where j is the site index and J is

the current operator, Jj,j+1=−iet�cj
†cj+1−H.c.�. �Vj� is shown

in green.
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There are regimes where the polaron formation time is a
calculable constant of order unity times a phonon period T0,
as seen in some experiments and in Fig. 1, but there are other
regimes where the phonon period is not the relevant time
scale. The limit hopping t→0 is instructive.20,21 After a time
T0 /4, the expectation of the lattice displacement �Xj� on the
electron site has the same value as a static polaron. It is
tempting �but we would argue incorrect� to identify this as
the polaron formation time. At later times, �Xj� overshoots by
a factor of two, and after time T0, �Xj� and all other correla-
tions are what they were at time zero when the bare electron
was injected. The system oscillates forever. In general an
electron emits phonons enroute to becoming a polaron, and
we propose that the polaron formation time be defined as the
time required for the polaron to physically separate from the
radiated phonons. The polaron formation time for hopping
t→0 is thus infinite, because the electron is forever stuck on
the same site as the radiated phonons.22

An electron injected at several times the phonon energy
�0 above the bottom of the band is another instructive ex-
ample. The electron radiates successive phonons to reduce its
kinetic energy to near the bottom of the band, and then forms
a polaron. For very weak el-ph coupling �
1, the rate for
radiating the first phonon can be computed by Fermi’s
golden rule, �FGR

−1 =�2 / ��t sin�kf��, where kf is the electron
momentum after emitting a phonon. The phonon emission
time can be arbitrarily longer than the phonon period T0 for
small �. For strong coupling, the rate approaches �SC

−1 =� /�
because the spectral function smoothly spans numerous nar-
row bands and its standard deviation is equal to �. For �

1, our numerical results agree with perturbation theory
�not shown�.

We now consider polaron formation in more detail. After

injecting a bare electron at time zero, the wave function at
later times � is

	����� = �
j=1



e−iEj�	� j��� j	ck
†	0� , �2�

where 	� j� are a complete set of total momentum k eigen-
states of the system of one electron coupled to phonons.23

There are several distinct types of states contributing to the
sum: �A.1� The state 	k� of a momentum k polaron, corre-
sponding to the smallest eigenvalue Ej. �A.2� The states
	k−q ;q� corresponding to a polaron of momentum k−q and
an unbound phonon of momentum q. The energy difference
between the polaron state 	k−q� and the continuum state
	k−q ;q� is �0, since the phonon is unbound. Therefore, the
full width of the continuum is the same as the polaron band.
Similarly for two unbound phonons, etc. If the electron-
phonon coupling is sufficiently strong, there are additional
states in the sum: �B.1� A polaron excited state consisting of
a polaron and an additional bound phonon of total momen-
tum k, designated 	k�I��.25 This quasiparticle excited state is
also split off from the continuum. �B.2� The states
	�k−q��I� ;q� corresponding to an excited state polaron of mo-
mentum k−q and an unbound phonon of momentum q. Simi-
larly for two unbound phonons, etc. For stronger el-ph cou-
pling �larger ��, more highly excited polaron states
corresponding to bound states of a polaron and two or more
additional phonons, 	k�II�� , . . . enter the sum.26

From Eq. �2�, the amplitude to remain in the initial state
after time �, �����	ck

†	0�, is given by the Fourier transform of
the spectral function

A�k,�� = �
j=1



	�� j	ck
†	0�	2��� − � j� . �3�

The numerically determined spectral function at weak cou-
pling is shown in Fig. 2.27,28 There is an isolated delta func-
tion corresponding to state �A.1� above, and a group of states
that is approaching an approximately Lorentzian continuum
as the number of sites increases, corresponding to �A.2�
above. The coupling � /�0=0.8 is too weak to form bound
quasiparticle excited states 	k�I��. If the spectral function were
a pure Lorentzian, a measurement would yield an exponen-
tial decay of the initial state, with the polaron formation time
�p the inverse width of the Lorentzian. Since the spectral
function has an isolated delta function as well, an experiment
would measure the probability P����	�����	ck

†	0�	2 to re-
main in the initial bare particle state as follows:

P��� = a1
2 + a2

2e−2b� + 2a1a2e−b� cos���1 − �2��� . �4�

This form already shows some complications, with an addi-
tive constant, a pure exponential decay, and an exponential
decay half as fast multiplied by a cosine oscillating at the
energy difference between the delta function and the center
of the Lorentzian. Decaying oscillations in polaron formation
�actually the formally equivalent problem of an exciton
coupled to phonons4� have been observed in a pump-probe
experiment6 that measures reflectivity after a bare exciton is
created. The observed oscillatory reflectivity was interpreted

FIG. 1. �Color� Snapshots of the polaron-formation process, for
hopping t=�0=1, and �=0.4. The calculation is performed on a
30-site periodic lattice. Time is measured in phonon periods. Black:
electron density �cj

†cj�; Blue: phonon density �aj
†aj�; Red: lattice

displacement �Xj���aj +aj
†�; Green: velocity in units of lattice con-

stant per phonon period; Magenta: el-ph correlation function
�cj

†cjaj
†aj�; Dashed: free-electron wave packet for reference. For

clarity, the origins of the red and green curves are offset by 0.1 and
their values are rescaled by a factor of 0.2 and 0.05/ �2��, respec-
tively. The blue curve has been rescaled by a factor of 0.5.
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as the lattice motion in the phonon-dressed �or self-trapped�
exciton level. Assuming the modulation in the exciton level
goes as �E=−�cj

†cjXj, where Xj = ��aj +aj
†�� is lattice dis-

placement, the model Hamiltonian applies directly to the ex-
periment. We calculate the corresponding el-ph correlation
function in Fig. 3. In this regime, the polaron formation time
�damping time� increases as the electron-phonon coupling �
increases, and also as the initial electron �exciton� energy
approaches the band bottom. We find satisfactory agreement
when compared to Fig. 2�b� of Ref. 6. Both show a damped

oscillation with a delayed phase. �Numerical calculations in
Figs. 3–5 are performed on an extended system, not a finite
cluster.�

Figure 4 shows the spectral function at stronger coupling
than Fig. 2. Three delta functions are shown, corresponding
to polaron ground and excited states, along with three con-
tinua containing unbound phonons. There is additional struc-
ture at higher energy �not shown�. The probability decay
P��� for this spectrum is considerably more complicated, and
includes oscillating terms that do not decay to zero at zero
temperature from the polaron ground and excited states beat-
ing against each other. The branching ratios into the various
channels are calculated in Ref. 29.

Next we discuss the role of dimensionality. The effect of
dimensionality on static properties has been studied
previously.13,24 The eigenvalues of the low-lying states �with
zero total momentum� are shown as functions of � in Fig. 5.
The energy spectra in D�1 are qualitatively different than in
one dimension �1D�. The 1D polaron ground state becomes

FIG. 2. Spectral function at weak coupling for two system sizes.
�p is the polaron formation time. About 10% of the total spectral
weight is at energies beyond the range plotted. At the present reso-
lution, the quasiparticle peaks at �=−1.63 of the two calculations
are essentially identical.

FIG. 3. The on-site electron-phonon correlation function �
= �cj

†cj�aj +aj
†�� as a function of time measured in phonon periods.

For all curves, �0=0.5 and hopping t=1. The solid line is for a bare
electron injected with nonzero initial momentum at energy Ei=
−0.7, where the bottom of the bare band is at energy −2. The pho-
non displacement is larger and more weakly damped for larger
electron-phonon coupling �, dotted line. In contrast to a bare elec-
tron, an exciton �bound particle-hole pair� is generally created with
an initial momentum zero, corresponding to Ei=−2, dashed line.

FIG. 4. Panel �a�: spectral function at strong coupling. There are
three quasiparticle excited states split off from the continua. Shaded
areas �1� and �2� correspond to continuum states �A.2� and �B.2�,
respectively. �b�: Quantum beat formed by multiple excited states
and continua.
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heavy gradually as � increases. However, in D�2, the
ground state crosses over to a heavy polaron state by a nar-
row avoided level crossing, which is consistent with the ex-
istence of a potential barrier.13 In the lower panel of Fig. 5,
�1 and �4 are nearly free electron states; �2 and �3 are heavy

polaron states. The inner product 	��1 	�4�	 is equal to 0.99.
Just right of the crossing region the effective mass �approxi-
mately equal to the inverse of the spectral weight� of the first
excited state can be smaller than the ground state by 2 or 3
orders of magnitude, while their energies can differ by much
less than �0. As a result, there is no optical phonon of the
correct energy for the light electron to emit and become a
heavy polaron, and the polaron formation time at T=0 would
be infinite unless low energy acoustic modes are included in
the model. The narrow avoided crossing description works
less well for larger �0.

In summary, we have calculated the time evolution of the
many-body wave function and find that the bare electron
evolves into a polaron quasiparticle by emitting phonons.
The excess kinetic energy excites uncorrelated phonons. The
question “How long does it take a polaron to form?” may not
have a simple answer, given the potentially complicated form
of P���: there are multiple time scales in the dynamics. This
function has been calculated numerically, and at zero tem-
perature depends on the parameters of the Hamiltonian, the
spatial dimension, the initial bare electron momentum, the
final polaron momentum, and the possible existence of
bound polaron-phonon excited states. A further complication
is that decay out of the initial state need not be synonymous
with decay into a polaron final state. In addition, we confirm
that a tunneling barrier between the quasifree and heavy po-
laron state exists in both two and three dimensions �when
0	�0
2Dt�. As a consequence, the tunneling barrier inhib-
its the formation of a polaron in the crossover regime, in
agreement with the conventional description. Our approach
can be extended to other types of quasiparticle formation,
such as the vibrational exciton30 and the spin polaron.
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