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I. INTRODUCTION

The study of the dynamics of waves, even in simple linear
media, initiated hundreds of year ago, ever and ever leads to
surprisingly new results and insights. One of such “sur-
prises” was the discovery of band gaps in the propagation of
light in materials with the refraction index periodically
modulated on the scale of the optical wavelength, the so-
called photonic crystals.1 The theory of wave propagation in
periodic materials was developed a long time ago by Bloch
and Floquet, and it found many applications in solid-state
physics, in particular in the studies of electronic properties of
semiconductors �calculation of valence and conduction
bands, etc.�. Nevertheless, the advent of photonic crystals
initiated a revival of the theory of wave propagation in peri-
odic media. The creation and control of photonic band gaps,2

the slowing down of light,3 and the photonic crystal
waveguides are the main applications to date. Most of these
studies concern the propagation of plane waves �not beams�
and result in a modification of the temporal dispersion rela-
tion �frequency versus propagation wavenumber�. Later,
strong analogies between the propagation of light and sound
�which obey similar wave equations� motivated the study of
sound propagation in periodic acoustic media, the so-called
sonic or phononic crystals �SC’s�. Many of the results ob-
tained in the photonic case have been reported in the sonic
case. For a review on this topic, see, e.g., Ref. 4.

Most of the studies reported above concern one-
dimensional �1D� periodic structures, as the 1D case, being
relatively simple, allows an analytical treatment. The multi-
dimensional cases �the 2D case as in our present study or
even the 3D case� are much more difficult to be accessed
analytically. The majority of these studies in the multidimen-
sional case are numeric, as using plane-wave expansion, or
finite-difference time-domain �FDTD� schemes. These stud-
ies also mostly concern the modification of the temporal dis-
persion characteristics.

It has come out recently that the spatial periodicity can
affect not only temporal dispersion, but also the spatial
one—i.e., the dependence of the longitudinal component of
the propagation constant versus the transverse component.
These results �again predominantly numeric� lead to the so-

called management of spatial dispersion—i.e., to the man-
agement of diffraction properties of narrow beams. This idea
led to a prediction of the negative diffraction of light beams
in photonic crystals,5 of sound beams in sonic crystals,6 and
of coherent atomic ensembles in Bose-Einstein condensates
in periodic potentials.7 In particular it has been found re-
cently that between the normal diffraction and negative dif-
fraction regimes a strong reduction of the diffraction can be
achieved, leading to the so-called self-collimating, or nondif-
fractive light beams. These studies consist of the initial pro-
posal of the idea of self-collimation,8 of its experimental
demonstration,8,9 the issues of light coupling to the self-
collimating crystal,10 the calculation of asymptotic �long-
distance� properties of the propagation of self-collimated
light,11 and others.

The geometrical interpretation of wave diffraction is as
follows: wave beams of arbitrary shape can be Fourier de-
composed into plane waves, which in propagation acquire
phase shifts depending on their propagation angles. This
dephasing of the plane-wave components results in a diffrac-
tive broadening of the beams. Figure 1�a� illustrates normal
diffraction in propagation through an homogeneous material,
where the longitudinal component of the wave vector de-
pends trivially on the propagation angle, k� =kz

=��k�2− �k��2, where k�= �kx ,ky�. In general, the normal or
positive diffraction means that the surfaces of constant fre-
quency are concave in the wave vector domain k
= �kx ,ky ,kz�, as illustrated in Fig. 1�a�. The negative diffrac-
tion, as illustrated in Fig. 1�b�, geometrically means that the

FIG. 1. Geometrical interpretation of diffraction of waves
propagating along the z axis: �a� positive, or normal diffraction in
propagation through homogeneous materials; �b� negative, or
anomalous diffraction; �c� zero diffraction. The area of negligible
diffraction �for evaluation of the minimum size of the nondiffractive
beam� is indicated.
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surfaces of constant frequency are convex in the wave vector
domain. The intermediate case of the vanishing diffraction is
illustrated in Fig. 1�c�, where the zero diffraction is supposed
to occur at a particular point in the wave vector domain
where the curvature of the surfaces of constant frequency
becomes exactly zero. Zero diffraction physically means that
beams of arbitrary width can propagate without diffractive
broadening or, equivalently, that arbitrary wave structures
can propagate without diffractive “smearing.”

The present study concerns the nondiffractive propagation
of sound in periodic acoustic materials �sonic crystals�. We
found, by applying the plane-wave expansion method, the
existence of nondiffractive regimes similar to those in optics,
or to those expected from Fig. 1�c�. We check the nondiffrac-
tive propagation by integrating the wave equations by means
of the FDTD technique. Moreover, we also present an ana-
lytical treatment of the problem, leading to analytic relations,
which among others are useful for the planning of the corre-
sponding experiment and for designing the possible applica-
tions.

In Sec. II of the article the propagation of sound is ana-
lyzed by plane-wave expansion, leading to the spatial disper-
sion curves and in particular resulting in straight �nondiffrac-
tive� segments of the spatial dispersion curves. In this way
the nondiffractive propagation regimes are predicted. In the
next section III the FDTD calculations are performed in the
predicted nondiffractive regimes and the nonspreading
propagation of narrow beams is demonstrated. Section IV is
devoted to the analytical study, to the derivation of analytical
relations between parameters for the nondiffractive propaga-
tion. The last section contains the concluding remarks, where
the results are summarized and also the minimal size of the
beams propagating nondiffractively is evaluated.

II. DISPERSION IN SONIC CRYSTALS

The propagation of sonic waves is determined by the fol-
lowing linear system equations:

�
�v

�t
= − �p , �1a�

�p

�t
= − B � v , �1b�

where B�r� is the bulk modulus, ��r� is the density �both
dependent in space�, p�r , t� is the pressure �which are scalar
fields�, and v�r , t� is the velocity vector field.

We define the relative values of the bulk modulus B̄�r�
=B�r� /Bh and the density �̄�r�=��r� /�h, normalizing to the
corresponding parameters in the host medium. Then, elimi-
nating the velocity field in Eqs. �1�, we obtain a wave equa-
tion describing the propagation of sound in the inhomoge-
neous medium,

1

B̄�r�

�2p�r,��
��2 − �� 1

�̄�r�
� p�r,��� = 0, �2�

where �=cht is a normalized time, which makes the velocity
of sound in the host medium ch equal to unity, where ch

=�Bh /�h.
We consider sound beams with harmonic temporal depen-

dence. Then, the steadily oscillating solution has the form
p�r , t�= p�r�ei��, which substituted in Eq. �2� leads to the
eigenvalue equation

�2

B̄�r�
p�r� + �� 1

�̄�r�
� p�r�� = 0. �3�

For the subsequent analysis we consider a concrete geom-
etry, where acoustic waves propagate in a two-dimensional
medium, formed by an squared array of solid cylinders, with
the axis along the y direction and radius r0, in a host fluid
medium. The coordinate r in Eq. �3� depends now on longi-
tudinal �z� and transverse �x� directions, and �
= �� /�x ,� /�z�.

The lattice defined though the centers of cylinders is
given by the set R= �R=n1a1+n2a2 ;n1 ,n2�N	 of two-
dimensional lattice vectors R, which are generated by the
primitive translations a1 and a2. The corresponding recipro-
cal lattice is defined though G= �G :G ·R=2�n ;n�N	.

A possible way of solving Eq. �3� is by means of the
plane-wave expansion �PWE� method, which converts the
differential equation into an infinite matrix eigenvalue prob-
lem, which is then truncated and solved numerically. By
solving this eigenvalue problem the frequencies correspond-
ing to each Bloch wave can be obtained, providing the dis-
persion relationship and band structure of the periodic me-
dium.

The bulk modulus and density are periodic functions with
the periodicity of the lattice and therefore contain all the
information of the phononic crystal. This implies that the
material parameters can be represented by their Fourier ex-
pansions on the basis of the reciprocal lattice,

�̄�r�−1 = 

G

�G
−1eiG·r, �4�

B̄�r�−1 = 

G

bG
−1eiG·r. �5�

On the other hand, the solutions p�r� of Eq. �3� must be
also periodic with the periodicity of the lattice �Bloch-
Floquet theorem� and can be expanded as

p�r� = eik·r

G

pk,GeiG·r, �6�

where k is a two-dimensional Bloch vector restricted to the
first Brillouin zone and G denotes a reciprocal lattice vector.
For a square lattice, G= �2� /a��n1e1+n2e2� with n1 and n2

integers and a being the lattice constant �minimal distance
between the centers of neighbor cylinders�.
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The coefficients in expansions �4� and �5� can be obtained
from the inverse Fourier transform. For the inverse of mass
density the coefficients result12

�G
−1 =

1

a2�
U
�

C

1

�̄�r�
dr =

�h

�c
f + �1 − f�, for G = 0, �7�

which represents the average value of the density, and

�G
−1 =

1

a2�
U
�

C

eiG·r

�̄�r�
dr = ��h

�c
− 1�2f

J1��G�r0�
�G�r0

, for G � 0,

�8�

where the integration extends over the two-dimensional unit
cell, J1�x� is the Bessel function of the first kind, and f
=��r0 /a�2 is the filling fraction. Exactly the same expres-
sions follow for the coefficients of bulk modulus bG

−1, since
the expansion has an analogous form.

In terms of the coefficients of the previous expansions,
Eq. �3� becomes



G�

��2bG−G�
−1 − �G−G�

−1 �k + G� · �k + G��pG� = 0. �9�

Equation �9� has been numerically solved considering 361
plane waves in the expansion. The number of plane waves
has been chosen in order to ensure convergence. Figure 2
shows the band structure for a square lattice of steel cylin-
ders ��c=7.8�103 kg m−3, Bc=160�109 N m−2� immersed
in water ��h=103 kg m−3, Bh=2.2�109 N m−2�. The dimen-
sionless �reduced� frequency �=�a /2�ch is plotted in terms
of the dimensionless wave number of Bloch vector K
=ka /2�.

From the solutions of Eq. �9� we can also compute the
isofrequency contours. In Fig. 3 the results for the first and
second bands are shown. In both cases, the curves show a
transition from convex to concave at a particular frequency.
The isofrequency contours at the transition point acquire, as
shown in the figure, the form of squares with rounded cor-
ners. Consequently, there exist locally flat segments of the
curve, where, in other words, the spreading of the beam will
be counteracted by the crystal anisotropy. Similarly as for
photonic crystals in optics the nondiffractive propagation oc-
curs along the diagonals of squares in the first propagation
band and along the principal vectors of the lattices in the
second band. The “rounded nondiffractive square” is situated

around the corner of Brillouin zone �denoted by M� for the
first band and around the center of the Brillouin zone �de-
noted by �� in the second band.

III. NUMERICAL RESULTS

In order to prove the nondiffractive propagation of sound
in the sonic crystal, Eqs. �1� have been numerically inte-
grated using the finite-difference time-domain method. The
FDTD method is nowadays a standard technique13 for solv-
ing partial differential equations by integrating in time and
by approximating the spatial derivatives by finite differences.
The incident acoustic beam has been simulated by a plane
vibrating surface radiating a harmonic wave with variable
frequency �, describing an acoustic transducer with a diam-
eter of 3 cm. The front face of the crystal is located close to
the source, where the wave front is nearly plane. The me-
dium parameters were chosen to correspond to numerically
evaluated zero diffraction point �by inspecting the isofre-
quency curves� in the previous section. For the first band
�Fig. 3�a� the isofrequency curve becomes locally flat for
��0.54, which corresponds to a real frequency of 	

FIG. 2. Band structure for steel cylinders in water, for r
=1 mm and a=5.25 mm, as calculated by the expansion into Bloch
modes �4�–�7�. The solid squares mark the nondiffractive points
�see Fig. 3�.

FIG. 3. Isofrequency lines, evaluated for a=5.25 mm and r
=1 mm, for the first �a� and second �b� bands, centered at the �
point, as calculated by the expansion into Bloch modes �4�–�7�.
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=�ch /a�154 kHz and for an incidence along the �1,1 di-
rection. Under these conditions, nondiffractive propagation is
predicted to occur. The result of the numerical simulation for
these parameters is shown in Fig. 4 �left column�. As ex-
pected, the beam propagates through the crystal without a
visible divergence. For the second band, the theory predicts
that the frequency for nondiffractive propagation increases
roughly by a factor of �2 with respect to the first band and
then occurs at 	�217 kHz.

We note that whereas the beam in homogeneous media
broadens sensibly over the propagation distance, the same
beam in the sonic crystal propagates without sensible broad-
ening over much longer distances. Diffractive broadening in
a homogeneous medium is quantified by the Rayleigh dis-
tance Ld=ka2 /2, where a is the radius of the source and
corresponds to the distance from the source after which the
beam broadens by a factor of �2. For the two nondiffractive

frequencies evaluated above, the Rayleigh distances are
7.3 cm for the first case and 10.3 cm for the second case.

IV. ANALYTICS FOR NONDIFFRACTING BEAMS

The precise analysis of an arbitrary field structure inside
the crystal can only be performed by considering the field
expansion into an infinite set of modes of the crystal �as
stated by the Bloch theorem�. The form given by Eqs. �4�–�6�
must be assumed, whose unknown amplitudes can be nu-
merically evaluated. This is the basics of the PWE method
used in Sec. II for evaluate the band structure and dispersion
curves of the crystal. However, it is possible to develop an
analytical theory if we consider the particular case of a non-
diffractive beam, since this nondiffractive solution appears
mainly due to the coupling of three modes, the homogeneous
one and the next low-order modes. This situation is illus-

FIG. 4. Numerical FDTD simulation of the nondiffractive beam, for the first two bands. Upper row corresponds to the field radiated by
the source without crystal, lower row to the nondiffractive propagation in the �1,1 �left� and �1,0 �right� directions, at the frequencies equal
to 	=154 kHz and 	=217 kHz as predicted by the theory. Gray levels are in decibel scale and the coordinates in meters. The other
parameters are as in Figs. 2 and 3; i.e., steel cylinders in water are simulated with r=1 mm and a=5.25 mm.
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trated in Fig. 5, where the three intersecting circles, corre-
sponding to the spatial dispersion curves of the three modes
�those with wave numbers k, k+G1, and k+G2� give rise to
the nondiffractive effect. Due to the interaction between the
different spatial modes, the degeneracy at the intersections of
the spatial dispersion curves is lifted and the flat areas in the
dispersion curve can develop. The radiation belonging to
these interacting modes is the most relevant for the deforma-
tion of the dispersion curves and to the appearance of the flat
segments—i.e., is responsible for the nondiffractive propaga-
tion. Therefore the other modes are irrelevant in the “nondif-
fractive” area �shadowed region in Fig. 5�, and the Bloch
expansion can be simplified as

p�r� = �p0 + p1eiG1·r + p2eiG2·r� , �10�

where G1 and G2 are the basis vectors of the reciprocal
space.

Note that since the nondiffractive beam is expected to be
highly directive, only G vectors directed to the same direc-
tion as the wave vector k are relevant in the analysis. The
material parameters �being real functions� must be, however,

expanded into at least five modes. In particular, the inverses
of density and bulk modulus will be assumed to be of the
form

�̄�r�−1 = ��0 + �+1eiG1·r + �+2eiG2·r + �−1e−iG1·r + �−2e−iG2·r� ,

�11a�

B̄�r�−1 = �b0 + b+1eiG1·r + b+2eiG2·r + b−1e−iG1·r + b−2e−iG2·r� ,

�11b�

where the notation �±j =�±Gj
, with j=1,2, has been used.

Substituting Eqs. �11� into Eq. �3� and collecting the terms at
the same exponents �those with wave vectors k, k+G1 and
k+G2�, we obtain the following coupled equation system:

0 = �2�p0b0 + p1b−1 + p2b−2� − k2p0�0 − k�k + G1�p1�−1

− k�k + G2�p2�−2, �12a�

0 = �2�p1b0 + p0b+1� − �k + G1�2p1�0 − k�k + G1�p0�+1,

�12b�

0 = �2�p2b0 + p0b+2� − �k + G2�2p2�0 − k�k + G2�p0�+2.

�12c�

Equations �12� are still too complex to lead to analytical
results. However, for small values of the filling fraction f the
solid inclusions can be considered as a perturbation of the
homogeneous fluid medium and an asymptotic analysis near
the band gap is justified. Next we show that, in this limit, it
is possible to obtain a simple relation between the frequency
and wave number of the nondiffractive beam and the filling
fraction f characterizing the crystal.

First, note that in the case of small f �i.e., when r0
a�
and materials with high contrast, where �h
�c and Bh
Bc
�as occurs, e.g., for steel cylinders in water�, the coefficients
of the medium expansions in Eqs. �7� and �8� simplify to
�0=b0=1− f and �i=bi=−f , for i= ±1, ±2. Then, Eqs. �12�,
expressed in matrix form, read

� �1 − f���2 − k2� f�k�k + G1� − �2 f�k�k + G2� − �2
f�k�k + G1� − �2 �1 − f���2 − �k + G1�2 0

f�k�k + G2� − �2 0 �1 − f���2 − �k + G2�2
��p0

p1

p2
� = 0. �13�

The aim is to obtain the values of � and k for which the
beam propagates without diffraction. For a crystal with
square symmetry, the direction of the nondiffractive propa-
gation with respect the crystal axes can be obtained from the
isofrequency curves evaluated in Sec. II. For the first band
�Figs. 3�a� and 4 nondiffractive propagation occurs for
beams propagating at 45° with respect to the crystal axes—
i.e., in the1,1 direction. For our analysis, is convenient to
consider the beam axis to be coincident with the z direction
and define a set of unitary basis vectors as G1= �−1,1� /�2

and G2= �1,1� /�2. In this way, all magnitudes in reciprocal
space are normalized by � /a.

For small f , one also expects that the parameters corre-
sponding to the nondiffractive regime take values close to
those in the band gap �near the corner of the first Brillouin
zone; see Fig. 2�. The wave number corresponding to the first
band gap is then KB= �0,1� /�2 �recall that, in normalized
reciprocal space, K=ka /2��. In order to investigate the be-
havior of dispersion curves close to this point, we consider
waves with wave vector K=KB�1−�K� with �K

FIG. 5. Schematic picture showing the nondiffractive region
�shadowed area� resulting from the interaction of three modes. The
square represents the limits of the first Brillouin zone. The inset
illustrates the lift of the degenerancy at the cross sections of the
dispersion curves and the formation of the Bloch modes. The upper
Bloch mode can develop flat segments depending on the interaction
strength, as the degree of the lift of degenerancy is proportional to
the interaction strength.

THEORETICAL PREDICTION OF THE NONDIFFRACTIVE… PHYSICAL REVIEW B 75, 014304 �2007�

014304-5



= ��Kx ,�Kz� representing small deviations. We further as-
sume that the frequency is close to �but less than� that cor-
responding to the band gap, �=�B�1−���, with the nor-
malized gap frequency given by �B=1/�2.

The solvability condition of Eq. �13� results from equat-
ing to zero the determinant of the matrix and leads to the
relation in the form F��� ,�Kz ,�Kx ; f�=0. Expanding for
small �K= ��Kz ,�Kx�, an analytical transversal dispersion re-
lation �Kz��Kx� is obtained, which allows one to calculate
the diffraction coefficient as the curvature of the transverse
dispersion curve—i.e., D= �1/2��2�Kz /��Kx

2. The nondif-
fractive point corresponds to D=0. This expression is ana-
lytical but still cumbersome. However, assuming that f
�O��2� and ���O���, where � is a smallness parameter,
the following simple analytical relation is obtained at the
leading order:

��ND
�1� = f2/3 + O�f4/3� . �14�

Also the wave number of the nondiffractive beam can be
analytically evaluated. Substituting Eq. �14� into the solv-
ability condition of Eq. �13� and assuming the above small-
ness conditions, it follows that

�KND
�1� = f2/3 − f4/3 +

3

4
f2 + O�f7/3� . �15�

For the second band, a similar analysis can be performed.
The three-mode expansion is illustrated in Fig. 6. In this case
it is more convenient to use the vector basis G1= �1,0� and
G2= �0,1�, and now the nondiffractive beam propagation oc-
curs in a direction coincident with one of the lattice vectors.
The parameters of the gap are in this case KB= �1,0� and
�B=1. An asymptotic analysis similar to that performed
above for the first band shows that ��ND

�2� =��ND
�1� and �KND

�2�

=�KND
�1� . Then, from the analytics follows that, under the

limit of the weak modulation that f �O��2� and ���O���,
the zero diffraction points for both bands are situated equally,
however with respect to the corresponding band gap: the
diffraction in the first band disappears just below the first
band gap �by ��ND= f2/3� and in the second band just below
the second band gap by the same value �by ��ND�. The wave
vector shifts are also equal for both cases. As a consequence,
Eqs. �14� and �15� are valid for both bands.

These analytical predictions have been checked numeri-
cally. In Fig. 7 the analytical results given by Eqs. �14� and
�15� are compared with the corresponding numerical results

�with symbols� obtained with the PWE method using 361
modes. The curve labeled �a� corresponds to the normalized
frequency shift, measured with respect to the band gap, and
the curve labeled �b� to the wave number shift, for zero dif-
fraction point in the first band �circles� and the second band
�squares�. The simple expressions obtained under the three-
mode expansions are in very with good agreement with the
numerical results, even for moderate �not very small� values
of the filling factor f .

V. CONCLUSIONS

Concluding, we have demonstrated theoretically the pos-
sibility of nondiffractive propagation of acoustic beams
through sonic crystals. We show nondiffractive propagation
for both propagation bands: for the first band, where the
nondiffractive propagation occurs along the diagonals of the
lattice, and for the second band, where diffraction disappears
along the principal vectors of the lattice. The diffraction dis-
appears for frequencies just below the corresponding band
gaps, with equal frequency shift for both cases given, for not
large values of the filling ratio, by a universal and very
simple expression ��ND= f2/3.

Relation �15�, for the shift of the wave number, which in
simplified form reads �kND= f2/3, allows one to evaluate the
width of the nondiffractively propagating beams. Indeed the
half-width of the platean of spatial dispersion curve is
roughly equal to �slightly less than� �kND. This means that
beams with normalized size d�2� /�kND�2�f−2/3 can
propagate nondiffractively over large distances �comparing
with the diffraction length of the corresponding beam in the
homogeneous materials�. In terms of nonnormalized coordi-
nates, the minimum size of the beam corresponds to d

FIG. 6. Schematic picture showing the nondiffractive region
�shadowed area� in the second propagation band. Everything as in
Fig. 5. Here the most relevant modes are k+G1 and k±G2.

FIG. 7. Dependence of the frequency �a� and wave number of
nondiffractive beam, measured with respect to the band gap values,
as results from numerical calculation �symbols� and the analytical
expressions given in Eqs. �14� and �15�. The open circles and
squares correspond to the parameter values used for FDTD calcu-
lation of nondiffractive propagation �Fig. 4� in the first and second
bands, respectively.
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��2af−2/3. For a filling factor f =0.114, corresponding to the
numerical simulation in Fig. 4, the width of the nondiffrac-
tive beam predicted by this expression results in d�6a—i.e.,
in six spatial periods of the lattice. This result is in good
agreement with the width of the beam observed in Fig. 4.
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