
Solid-liquid phase diagrams for binary metallic alloys: Adjustable interatomic potentials

H.-S. Nam,1,* M. I. Mendelev,2 and D. J. Srolovitz1,3

1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
2Materials and Engineering Physics, Ames Laboratory, Ames, Iowa 50011, USA

3Department of Physics, Yeshiva University, New York, New York 10033, USA
�Received 11 August 2006; published 8 January 2007�

We develop an approach to determining Lennard-Jones embedded-atom method potentials for alloys and use
these to determine the solid-liquid phase diagrams for binary metallic alloys using Kofke’s Gibbs-Duhem
integration technique combined with semigrand canonical Monte Carlo simulations. We demonstrate that it is
possible to produce a wide range of experimentally observed binary phase diagrams �with no intermetallic
phases� by reference to the atomic sizes and cohesive energies of the two elemental materials. In some cases,
it is useful to employ a single adjustable parameter to adjust the phase diagram �we provided a good choice for
this free parameter�. Next, we perform a systematic investigation of the effect of relative atomic sizes and
cohesive energies of the elements on the binary phase diagrams. We then show that this approach leads to good
agreement with several experimental binary phase diagrams. The main benefit of this approach is not the
accurate reproduction of experimental phase diagrams, but rather to provide a method by which material
properties can be continuously changed in simulation studies. This is one of the keys to the use of atomistic
simulations to understand mechanisms and properties in a manner not available to experiment.
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I. INTRODUCTION

Atomic-scale simulations have become an indispensable
tool for modern materials research. For example, molecular
dynamics �MD� and Monte Carlo �MC� simulations are rou-
tinely used to investigate phenomena that are not easily ac-
cessible via experiment or to interpret experimental results.1,2

The fundamental input to such simulations is a description of
the interactions between atoms. While first-principles meth-
ods accurately describe atomic bonding through quantum-
mechanical treatments, they are usually limited to a rela-
tively small number of atoms. Semiempirical or empirical
interatomic descriptions are often motivated by quantum-
mechanical ideas but represent different materials through
parametrization schemes in which the constants are fit to
experimental �and/or first-principles� data. While this ap-
proach has significant problems when the resultant potentials
are employed under conditions for which they were not fit-
ted, they can provide accurate results when applied carefully.
Such potentials have the advantage that they can be easily
used for simulations involving a very large number of atoms
�currently up to 109�. Since few interesting materials are
pure, we focus on potentials for metallic alloys in this paper.
In order to determine the utility of potentials for alloys, we
should insure that the potentials lead to the correct phases at
temperatures and compositions of interest. In this paper, we
describe the determination of binary phase diagrams for a
particularly flexible choice of potentials for metallic alloys.

While there has been a long tradition of modeling mate-
rials using potentials that can be adjusted to represent differ-
ent types of materials, such readily adjustable potentials are
commonly pairwise. As such, they do not provide a reason-
able description of metals �e.g., surface relaxation�. Ideally,
we will be able to easily adjust a potential to give the desired
metallic phase diagram.

Examples of easily adjustable pairwise interatomic poten-
tials include the Lennard-Jones3 �LJ� and Morse4 potentials.

Because of their simplicity and applicability to systems with
a wide range of properties, these potentials have been widely
used, both for elemental and multicomponent systems.5,6

However, such potentials are only realistic for very simple
materials, such as noble gases. In other materials, bonding is
more complex. For example, for metals and alloys, it is well
known that many-body effects play an important role.7,8 For
such materials, potentials of the embedded-atom method9

�EAM� type are widely used. Holian et al.10 proposed an
extension of the Lennard-Jones potential that allows for
many body interactions, like in EAM-type potentials. This
idea was further pursued by Baskes11–13 to treat a broad
range of metallic systems including alloys resulting in a po-
tential known as the Lennard-Jones embedded-atom method
�LJ-EAM� potential. This potential represents a readily ad-
justable description of atomic interactions in metals and me-
tallic alloys. Because of the relatively simple analytical form
of the adjustable LJ-EAM potential, it can be used as a de-
scription of atomic interactions in systems with different,
controllable thermodynamics properties. As such, it provides
a ready means to test the influence of thermodynamic prop-
erties on materials behavior without the complexity of first-
principles approaches or all of the oversimplifications inher-
ent in pairwise potentials.

In this paper, we focus on the systematic determination of
binary phase diagrams for LJ-EAM potentials. The ability to
predict phase diagrams for such adjustable interatomic po-
tentials is an important first step in identifying a set of atomic
interactions required to reproduce the requisite phases
needed to describe specific phenomena and systems at non-
zero temperature. This is also important for determining
which thermodynamic properties are important in a particu-
lar type of phenomena observed experimentally. We were
motivated to pursue this study through our own attempts to
perform molecular dynamics simulations of liquid-metal em-
brittlement in alloys.14 There have been several contradictory
suggestions as to what type of thermodynamic behavior is
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necessary for this phenomenon to occur. Therefore, we spe-
cifically consider the solid-liquid regions of the phase dia-
grams for a wide range of metallic binary alloys. We focus
on two main parameters in describing the alloys—relative
atomic size and the strength of the chemical bonds. Of
course, this is not the first attempt to systematically describe
binary phase diagrams from an atomistic view. Earlier at-
tempts have examined the phase diagrams of hard sphere15

and Lennard-Jones materials.16,17 The methods employed to
determine the phase behavior range from density-functional
theory18 to Gibbs-Duhem integration methods.19,20 We com-
bine LJ-EAM potentials, molecular dynamics, and Gibbs-
Duhem integration methods in a Monte Carlo framework to
develop a systematic understanding of the relationship be-
tween potential properties and the solid-liquid phase dia-
gram.

II. POTENTIALS

In this section, we outline the form of the LJ-EAM model
used in this work. For a binary material described by classi-
cal LJ pair potentials, the interatomic potential between at-
oms i and j takes the form

�sisj

LJ �r� = 4�sisj
���sisj

r
�12

− ��sisj

r
�6� , �1�

where �sisj
and �sisj

are the attractive well depth and the

diameter for the LJ potential describing the interactions be-
tween species si and sj �s=A or B�. The total energy of a
binary LJ-EAM system is given by the usual EAM form

E = �
i
�Fsi

��̄i� +
1

2�
j�i

�sisj
�rij�� , �2�

where Fsi
��̄i� is the embedding energy and �sisj

�rij� is the
pair interaction between atoms i and j separated by a dis-
tance rij. The embedded function is commonly chosen as11

Fsi
��̄i� =

1

2
Âsi

Z1�sisi
�̄i�ln��̄i� − 1	 , �3a�

where the electron density at the site of the atom is

�̄i =
1

Z1
�
j�i

� j�rij� �3b�

and

� j�rij� = exp��̂sj� rij


6 2�sisj

− 1�� . �3c�

Here, the dimensionless parameter Âs represents the strength

of the many-body term, the parameter �̂s quantifies the dis-
tance over which the electron density decays away from an
atom position, and Z1 is the coordination number of the ref-
erence state �e.g., face-centered cubic�.

We can combine the EAM form of the total energy appro-
priate for metals with the convenience of the adjustable LJ
pair potential by choosing the pairwise term in Eq. �2� in

such a way that the total energy of the reference structure as
a function of dilation is described by a LJ potential. If we
include interactions up to second-nearest neighbors, the like-
atom pair potential �AA�r� for species A is given by

�AA�r� + �Z2

Z1
��AA�ar� = �A�r� �4a�

or

�AA�r� = �A�r� + �
n=1

N ��− 1�n�Z2

Z1
�n

�A�anr�� , �4b�

where

�A�r� = �AA
LJ �r� − � 2

Z1
�FA„�̄A

0�r�… �4c�

and

�̄A
0�r� = �A�r� + �Z2

Z1
��A�ar� . �4d�

Here, Z2 is the number of second-nearest-neighbor atoms and
a is the ratio of the second-to first-nearest-neighbor distance.
The summation of N terms is carried out until �AA�r� con-
verges.

Because this potential was fitted to a LJ form, it has only

four adjustable parameters, ÂA, �̂A, �A ���AA�, and �A

���AA� for the single component material, A. This potential
form can be easily extended to multicomponent systems. For
EAM binary alloys, we must fix seven functions �A�r�, �B�r�,
FA�r�, FB�r�, �AA�r�, �BB�r�, and �AB�r�. The first six of
these are transferable from the two monatomic systems. Fol-
lowing Baskes and Stan,13 we can obtain the remaining func-
tion, �AB�r�, by fitting to a particular alloy structure. Like
them, we focus on the ordered L10 compound �after correct-
ing a small error in Ref. 13�, as described in Appendix A,

�AB�r� = �AB
LJ �r� −

1

8
�FA„�̄A

L10�r�… + FB„�̄B
L10�r�…	 −

1

4
��AA�r�

+ �BB�r� − �AA
LJ �r� − �BB

LJ �r�	 −
3

8
��AA�ar�

+ �BB�ar�	 . �5�

If we set ÂA=0 and ÂB=0, �AA and �AB take exactly the
same form as the LJ potential.

�AB�r� is fully determined by Eq. �5�, except for �AB
LJ �r�.

Therefore, we need two parameters, �AB and �AB, to describe
the cross interaction between species A and B �in addition to
the eight parameters needed to describe pure A and pure B�.
The cross-species interaction parameters � and � are, there-
fore, the knobs we use to control alloy properties. The
Lorentz-Bertholet mixing rules21 are widely used for obtain-
ing alloy parameters in LJ systems; i.e., �AB= ��A+�B� /2
and �AB=
�A�B. However, applying the Lorentz-Berthelot
mixing rules to determine �AB and �AB results in phase dia-
grams that do not correspond to those observed for metallic
alloys �i.e., the solid-liquid two-phase region is quite square
with very limited solubility in the solid and the liquid	. Even
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though the Lorentz-Berthelot mixing rules may be appropri-
ate for LJ potentials, there is no reason to expect this to be
true for LJ-EAM potentials. This is because in the LJ-EAM
potentials the pairwise interaction represents just part of the
bonding and it is the total LJ-EAM potential that must repro-
duce the LJ potential for dilation. Therefore, to construct the
pairwise interaction term in LJ-EAM, we apply the Lorentz-
Berthelot mixing rule to �AB�r� in Eq. �5�, rather than to
�AB

LJ �r� itself. Doing this, we find the well depth �AB should
be

�AB =
1

2
�ÂA�A + ÂB�B� + 
��1 − ÂA��A�1 − ÂB��B� . �6�

The derivation of this rule is given in Appendix B.
Although LJ-EAM potentials are not as widely used as

the classic LJ potential, the LJ-EAM potential has already
been widely applied in the literature.11–13,22–25 The equilib-
rium structure of a LJ crystal at 0 K is face centered cubic
�fcc� and the melting point depends solely on the cohesive
energy and the interaction range of the potential.26 However,
both the ground-state structure and melting temperature of
the single-component LJ-EAM system are strongly depen-

dent on the two many-body interaction parameters Â and �̂.11

As the strength of many-body interaction Â increases, the
melting points of the pure elements decrease although the
cohesive energy remains unchanged.11 Experimentally, most
fcc metals exhibit normalized melting temperatures kBTm /E0
in the range from 0.025 to 0.04, where kB is the Boltzmann
constant and E0 is the cohesive energy of the solid at zero

pressure. If we set Â=0.7 and �̂=7 in the LJ-EAM potentials
for both components, pure A and pure B will be fcc at T=0
and the normalized melting points fall within this tempera-
ture range for fcc metals.12

The melting point of an elemental fcc solid is strictly

proportional to the well depth � �for any choice of Â and �̂�.
For the reference element A, we set �=0.6 eV and �
=2.5 Å with which the melting point Tm=1405 K was ob-
tained. However, this choice of � and � is rather arbitrary,
since only the ratios of well depths �B /�A and diameters
�B /�A are relevant in determining the binary phase diagrams
for LJ-EAM potentials. The potential interactions were trun-
cated between the second- and third-nearest neighbors such
that the relaxed cohesive energy is E0=6.0� for the fcc ref-
erence state �see Eq. �4a�	.

Table I shows a comparison of the basic properties of the

LJ-EAM material with those of several fcc noble metals. For
the LJ-EAM parameters employed in Table I, the LJ-EAM
potential yields reasonable properties for the fcc metals ex-
cept for the bulk modulus. Unlike other properties, the bulk
modulus is solely determined by the second derivative of the
energy as a function of lattice dilation �regardless of the
many-body interactions�. Since the LJ-EAM potential was
fitted to a LJ form �by definition�, both the LJ and LJ-EAM
models yield similar bulk moduli. The bulk modulus of LJ
systems is known to be too large compared with the fcc
metals.11 One could obtain better bulk modulus values by
fitting the pair interactions to another form, e.g., the univer-
sal binding-energy relation.27

III. GIBBS-DUHEM INTEGRATION METHOD

There are several computational methods that can be used
to determine the phase diagram of a system described by any
choice for the interatomic potentials.19,28 Here, we directly
construct the phase diagram using the Gibbs-Duhem integra-
tion technique proposed by Kofke.19,20 In this method, two or
more coexisting phases are simulated �semigrand canonical
Monte Carlo simulations� independently at the same tem-
perature and pressure. Once a single point of the coexistence
curve between two phases is known, the rest of the curve can
be computed �without any free-energy calculations� by inte-
grating the equivalent of the Clausius-Clapeyron equation for
coexistence during the course of the simulations. The Clap-
eyron equation for equilibrium between two binary phases
�e.g., liquid and solid� at constant pressure is given by

d�

d�B
=

�xB
l − xB

s �
�B�1 − �B��Hl − Hs�

, �7�

where � is the reciprocal temperature, 1 /kBT, and T is the
absolute temperature, �B is the fugacity fraction of species B,
�B= fB / fA, f i is the fugacity of species i in solution, xB is the
mole fraction of species B, and H is the molar enthalpy. The
right-hand side of Eq. �7� can be integrated numerically to
find an equation for � as a function of �B if we have an initial
condition describing the temperature, fugacity fraction, en-
thalpies, and compositions at one coexistence point.

The Gibbs-Duhem integration method is a more efficient
approach to determining phase equilibrium in solid systems
than the Gibbs-ensemble method,2,28 because the important
Monte Carlo move is changing the elemental identity of a
particle rather than inserting or removing a particle from the

TABLE I. A comparison of several key properties for the LJ-EAM potential model �for Â=0.7, �̂=7� and
several fcc metals. All properties are normalized by using E0�=6��, r0�=
62��, and ��=r0

3 /
2�.

Property Normalized quantity LJ LJ-EAM Cu Ag Au fcc metals

Bulk modulus B� /E0 8.5 8.5 3.0 3.92 5.05 2.0–6.0

Melting point kBTm /E0 0.082 0.033 0.033 0.037 0.029 0.024–0.041

Cauchy discrepancy �c12−c44� /B 0 0.48 0.30 0.425 0.69 −0.4–0.7

Vacancy-formation energy Ev
f /E0 1.0 0.31 0.37 0.39 0.23 0.2–0.5

�100� surface energy E�100�r0
2 /E0 0.67 0.26 0.24 0.23 0.22 0.15–0.25

SOLID-LIQUID PHASE DIAGRAMS FOR BINARY… PHYSICAL REVIEW B 75, 014204 �2007�

014204-3



system �inserting a particle is a low acceptance probability
event�. The Gibbs-Duhem integration approach has been
used to tackle a number of multicomponent, multiphase equi-
librium problems including calculating the phase diagram of
a binary Lennard-Jones fluid,17 and calculating phase dia-
grams for colloids in polymer solutions.15

In this paper, we determine the initial coexistence point by
performing a microcanonical ensemble molecular-dynamics
simulation of an elemental system containing both a solid
and liquid.29 Using this approach, we directly measure the
melting temperature of pure A or B �the solid and liquid
fractions in the simulation cell evolve until the system
reaches the equilibrium melting point�. Using this data as the
starting point, we employ Kofke’s Gibbs-Duhem integration
technique2,17 within the framework of semigrand canonical
Monte Carlo simulations.

IV. GENERIC BEHAVIOR OF BINARY PHASE DIAGRAMS
FOR LJ-EAM MATERIALS

In this section, we investigate solid-liquid phase diagrams
for binary LJ-EAM systems. All of the temperature-
composition phase diagrams reported below are for binary
alloys at atmospheric pressure. In particular, we focus on �a�
cases where the melting points of the two elemental systems
are identical and �b� cases in which the elemental systems
have very different melting points. The former �similar melt-
ing points� is a relatively common case while the latter is
more rare �although common for systems exhibiting liquid-
metal embrittlement14�. In each case, we examine how varia-
tions of the ratio of Lennard-Jones diameters �B /�A and well
depth �B /�A affect the phase diagrams. We also compare ma-
jor trends observed in the simulated phase diagrams with
those measured experimentally �in order to evaluate the ap-
propriateness of the LJ-EAM alloy model to mimic behavior
in real metallic systems�.

A. Equal melting points

Figure 1 shows three types of binary phase diagrams com-
monly observed in metallic alloys; we refer to these as azeo-
tropes �Fig. 1�a�	, simple eutectics �Fig. 1�b�	, and liquid-
phase miscibility gap systems �Fig. 1�c�	 of which there are
several types. We explicitly omit consideration of systems
exhibiting compounds �for now�. It is the atomic-size mis-
match and the cross-species pair interaction that determine
which phase diagram type pertains. To investigate the effect
of both atomic-size mismatch and cross-species pair interac-
tions, we considered three series of cases: �1� like bonding
��AB=�A=�B� with different atomic-size ratios �B /�A, �2�
equal atomic sizes ��B=�A=�AB� and equal well depths for
the elements ��B=�A� but vary the well depth describing the
AB interactions �AB, and �3� vary both �B /�A and �AB /�A.

The other parameters, Â and �̂, are fixed at reference values
0.7 and 7 as mentioned in Sec. II.

Figure 2 shows temperature-composition phase diagrams
for a series of binary systems of type �1� �variation of atomic
size�. When the atomic-size difference is small �less than
8%�, the solid region of the phase diagram is a solution �for

the temperature range examined�. However, as the atomic-
size difference increases, the degree of phase separation in-
creases and the solid forms a miscibility gap that leads to a
eutectic phase diagram starting at an atomic-size difference
between 8% and 10%. This crossover from solid solution to
eutectic phase diagrams occurs at a size difference that is
much smaller than reported for LJ �Ref. 17� �14–15 %� or
hard sphere systems15 �12.5%�. Moreover, the range of size
difference for this type of simple eutectic phase diagram is

FIG. 1. Schematic phase diagrams for metallic binary alloys of
comparable melting points: �a� azeotrope, �b� simple eutectic, and
�c� a combination of a eutectic, a monotectic, and a liquid-phase
miscibility gap. The symbols are as follows: L refers to a liquid
solution of A and B, S to a solid solution of A and B, SA to a solid
solution rich in A, and SB to a solid solution rich in B.

FIG. 2. Solid-liquid phase diagrams with various atomic-size
differences. Model alloys have the same melting point with zero
heat of mixing ��B /�A=1.0, �AB /�A=1.0�. Solid-liquid phase dia-
grams were calculated with a variation of atomic-size difference
��B /�A=1.05, 1.08, and 1.1�. In this and subsequent phase dia-
grams, we estimate that each data point in the phase diagram has
error bars of 10° in temperature and 3% �although these errors
have some variation depending on the relative stability of the dif-
ferent phases at each point along the phase boundaries�.
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very narrow; further increase in this difference leads to a
miscibility gap in the liquid. When a miscibility gap exists in
the liquid, the phase diagram becomes more complex �simi-
lar to Fig. 1�c�	, with negligible solubility in solid phases.
Therefore, eutectic phase diagrams with a deep eutectic point
cannot be obtained by increasing the size difference in the
LJ-EAM model. This is not the case for LJ or hard sphere
materials.

Figure 3 shows temperature-composition phase diagrams
for binary mixtures with the same atomic size ��B /�A=1�
and different values of cross-species interaction parameter.
When �AB /�A	1, heat of mixing is negative �exothermic
solid solution� and A and B atoms “like each other.” In these
cases, the phase diagrams form continuous solid solutions
over the whole composition range and the liquidus appears to
be parabolic. The maximum temperature for which the solid
and liquid coexist increases as �AB /�A increases �the heat of
mixing is more negative the larger the �AB /�A ratio�. For a
binary mixture with a well-depth ratio of unity �AB /�A=1, all
of the atoms are indistinguishable—hence, the phase dia-

gram would simply be a horizontal line at T=1405 K. On the
other hand, when �AB /�A
1, the heat of mixing is positive
�endothermic solid solution� and the A-B atoms “dislike each
other.” Under this circumstance, the liquidus curve is con-
cave for 1
�AB /�A
0.95 �not shown�. For �AB /�A�0.95,
the two species are no longer miscible at all compositions
and a large miscibility gap appears in both the solid- and
liquid-phase regions, as shown in the phase diagram in Fig.
3.

These results suggest that the heat of mixing alone does
not control the melting point �liquidus�. Rather, atomic-size
difference also plays an important role, especially for form-
ing eutectic phase diagrams. However, both the size differ-
ence and heat of mixing affect the tendency towards mixing
and can act to compensate each other. Therefore, controlling
atomic-size difference together with the heat of mixing can
lead to a wide range of types of binary phase diagrams. For
example, increasing the liquidus temperature by increasing
�AB /�A can be compensated by increasing the atomic size
difference. When large atomic-size differences are combined
with relatively large �AB /�A, eutectic phase diagrams with
deep eutectics can be formed, as shown in Fig. 4. This trend
is quite interesting because it seems to be related with the

FIG. 3. Solid-liquid phase diagrams for different values of �AB.
The pure metals A and B have the same melting point and the same
atomic size ��B /�A=1.0, �B /�A=1.0�. The solid-liquid phase dia-
grams were calculated with different values of the cross-species
interaction parameter ��AB /�A=1.1, 1.05, and 0.95�.

FIG. 4. Solid-liquid phase diagrams for binary alloys with
atomic-size differences of 10%–13% and �AB /�A=1.03.

FIG. 5. Schematic phase diagrams of binary alloys where the
two components have very different melting points. Two such cases
are �a� a eutectic with significant solubility in the solid and �b� a
diagram with two eutectic points and a miscibility gap in the liquid
phase.

FIG. 6. Solid-liquid phase diagrams for binary alloys with dif-
ferent melting points of component B, as controlled by different
choices of �B /�A �=0.06, 0.5, and 0.4�. These alloys have the same
atomic sizes ��B /�A=1.0, and the parameter �AB is described by Eq.
�6�	.
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rule of thumb for making metallic glasses. In metallic glass
systems, it has been established, empirically, that the ability
to form glasses is greatest in multicomponent systems in
which the atomic-size difference is large and the heat of
mixing is strongly negative �large �AB /�A�.30 The present
phase diagram results suggest that this is also the description
of the condition for the formation of deep eutectics. Deep
eutectics are also known as systems for which glass forma-
tion is particularly easy.

B. Phase diagrams of large melting-point difference

Solid-liquid coexistence is a key to many materials pro-
cessing strategies involving solidification and in-service con-
ditions where a solid metal is in contact with another, liquid
metal. In many of the latter cases, the liquid phases consist of
low melting-point species such as Hg, Ga, Bi, Pb, and Sn.
Metallic binary systems in which the melting points of the
two components differ greatly typically show one of two
types of simple solid-liquid phase diagram �provided no in-
termetallic compounds form�: these are eutectics phase dia-
grams with or without a liquid-phase miscibility gap, as
shown in Fig. 5. When there is a liquid-phase miscibility
gap, the solubility of the minority species in the solid phase
is usually very small �although it often appears exaggerated
in schematic phase diagrams such as Fig. 5�b�	. However, in
other binary systems, such as Al-Ga and Zn-Ga, the solubil-
ity in the solid phase can be significant over the entire tem-
perature range, in spite of the large melting-point difference
�see Fig. 5�a�	.

Phase diagrams were calculated for several different bi-
nary systems, where we varied the melting point of species
B. Figure 6 shows the temperature-composition phase dia-
grams for systems with the atom-size ratio fixed as �B /�A
=1 and well-depth ratios of �B /�A=0.6, 0.5, and 0.4. When
the melting point of B is comparable to A, the system forms
a solid solution with a spindle-shaped solid-liquid two-phase
region. As �B /�A decreases, A-B become weaker and the
phase diagram evolves to a eutectic diagram. It is difficult to
see the solid-liquid two-phase region at the B-rich side of the
phase diagram in Fig. 6 because the eutectic point is close to
pure B. Nonetheless, we assure the reader that this is indeed
a eutectic, just like in Fig. 5�a�. As �B /�A decreases further,
the solubility of B in the solid phase and the solubility of A
in the liquid phase decrease. This trend agrees with the ob-
servation that eutectic phase diagrams determined from ex-
periment tend to show smaller solubilities as the ratio of the
melting points of the two species deviates further from unity.

Phase diagrams were also determined for binary systems
with different atomic-size ratios. Figure 7 shows the
temperature-composition phase diagrams for binary mixtures
with a fixed well-depth ratio, �B /�A=0.5, and several diam-
eter ratios, �B /�A=0.9, 1.0, and 1.1. When there is no
atomic-size mismatch, the solubilities in the solid and liquid
phases are quite large, despite the large melting-point differ-
ence. But, as the atomic-size mismatch decreases, these solu-
bilities decrease. Interestingly, when the atomic size of B is
larger than that of A, the size effect is dominant �i.e., the
solubility is negligible over the entire temperature range and
a miscibility gap appears in liquid phase�.

TABLE II. Cohesive energy E0, lattice parameter a0, and melting point Tm for column IB fcc metals

�Refs. 31 and 32� and the corresponding potential parameters �, �, and Â.

Element E0 �eV� a0 �Å� Tm �K� � � Â

Cu 3.54 3.62 1357 0.59 2.277 0.7

Ag 2.85 4.09 1235 0.475 2.573 0.66

Au 3.93 4.08 1392 0.655 2.570 0.8

FIG. 7. Solid-liquid phase diagrams with different atomic-size
ratios ��B /�A=0.09, 1.0, and 1.1�. The melting point of B was held

constant by fixing �B /�A=0.5 and ÂB=0.7�.

FIG. 8. Solid-liquid phase diagrams with different atomic-size
ratios ��B /�A=0.09, 1.0, and 1.1�. The melting point of B was held

constant by fixing ÂB=0.9 and �B /�A=1.
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The melting point of B can be set by the choice of the

many-body interaction parameter ÂB �in addition to choosing
the well-depth ratio �B /�A�. The melting point of B decreases

with increasing ÂB even though the cohesive energy remains
unchanged. Figure 8 shows the solid-liquid phase diagram

with ÂB=0.9 for several different atomic-size ratios. The ef-
fect of atomic-size mismatch is still valid for this kind of
solid-liquid pairs. The trends in the phase diagrams with
atomic-size mismatch are similar in this case to those shown
in Fig. 7.

C. Comparison with real binary-alloy systems

Since the phase diagrams shown above were determined
within the framework of generic interatomic potentials LJ-
EAM, it is interesting to inquire to what degree choosing
parameters in the potential can lead to phase diagrams that
are consistent with those found experimentally in real metal-
lic systems. We can compare the simulation data to experi-
mental results to verify the ability of the LJ-EAM model to
mimic behavior in real metallic systems. The elements found
in column IB of the periodic table, copper, silver, and gold,
are common fcc metals that are well described with the
embedded-atom-method framework. We determine the LJ-

EAM parameters, �, � and Â, to reproduce the cohesive en-
ergy, lattice parameter, and melting temperatures of these
column IB elements �see Ref. 12�, as shown in Table II.

We employ these parameters within the LJ-EAM frame-
work to calculate the corresponding Ag-Cu, Cu-Au, and
Ag-Au binary-phase diagrams �Fig. 9�. By only adjusting the
ratio �AB /�A �note, the final values were very close to those
predicted by Eq. �6�	, we are able to reasonably reproduce
the experimental phase diagrams �each with a unique topol-
ogy�. Although the agreement certainly is not perfect, the
phase-diagram type, the temperature ranges of the features of
the diagrams, and solubilities are in good agreement with
experiment. This is remarkable given that only one param-
eter was varied �and the atomic sizes and cohesive energies
are available from experiment�. This type of agreement is
possible for many binary systems, provided that they do not
exhibit intermetallic compounds.

V. CONCLUSION

We developed an approach to determining LJ-EAM po-
tentials for alloys and used these to determine the solid-
liquid phase diagrams for binary-metallic alloys using
Kofke’s Gibbs-Duhem integration technique combined with
semigrand canonical Monte Carlo simulations. Inclusion of
many-body interactions led to phase diagrams, which can be
quite different from those determined using LJ or hard
sphere materials. We demonstrated that it is possible to pro-
duce a wide -range of experimentally observed binary-phase
diagrams �with no intermetallic phases� by reference to the
atomic sizes and cohesive energies of the two elemental ma-
terials and by judicious choice of a single parameter that
controls the pairwise interactions of these two elements. In
addition, we provided a formula that leads to good choices
for this one free parameter. Within this framework, we per-

formed a systematic investigation of the effect of relative
atomic sizes and cohesive energies of the elements on the
binary-phase diagrams. Finally, we demonstrated that this
approach leads to good agreement with several experimental
binary-phase diagrams. The main benefit of this approach is
not, in our opinion, to accurately reproduce the phase dia-
grams of real materials. Rather, it is to provide a method by
which material properties can be continuously changed in

FIG. 9. Solid-liquid phase diagrams for �a� Ag-Cu, �b� Cu-Au,
and �c� Ag-Au. Cohesive energy and LJ diameter were fitted to real
properties of materials and �AB /�AB

0 was adjusted in the LJ-EAM
binary-alloy model. �AB /�AB

0 =1.03 for Ag-Cu, �AB /�AB
0 =1.03 for

Cu-Au, �AB /�AB
0 =1.0 for Ag-Au, where �AB

0 is given in Eq. �6�.
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simulation studies in order to develop understanding of
mechanisms and properties in a manner not available to ex-
periment. To this end, the relationship between the adjustable
potentials and the phase diagrams they imply is central.
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APPENDIX A: DERIVATION OF �AB„r…

To derive a formulation for ��r�, L10 structure with c /a
=1 was considered as a reference state. In LJ-EAM formal-
ism, the energy per atom of this structure as a function of
dilation is given by

EL10

LJ-EAM�r� =
1

2
�FA„�̄A

L10�r�… + FB„�̄B
L10�r�…	 + ��AA�r�

+ 4�AB�r� + �BB�r�	 +
3

2
��AA�ar� + �BB�ar�	 ,

�A1�

where

�̄A
L10�r� =

1

3
�2�B�r� + �A�r�	 +

1

2
�A�ar� �A2�

and

�̄B
L10�r� =

1

3
�2�A�r� + �B�r�	 +

1

2
�B�ar� . �A3�

If we rewrite the energy of this system in terms of LJ pair
potentials,

EL10

LJ �r� = �AA
LJ �r� + 4�AB

LJ �r� + �BB
LJ �r� . �A4�

By setting EL10

LJ−EAM�r�=EL10

LJ �r�, we can derive Eq. �5�.

APPENDIX B: MIXING RULE FOR �AB

In this appendix, we show the derivation of the expression
we employ for describing the interaction between unlike spe-
cies. Given Eq. �5�, this reduces to the determination of �AB

LJ .
The length-scale parameter �AB

LJ is simply the arithmetic av-
erage of those for the elements. Therefore, we only require a
mixing rule for the well-depth parameter �AB. In this appen-
dix, we show the origin of the choice for this parameter that
was quoted in Eq. �6�.

In order to keep this analysis simple, we rewrite Eq. �A1�
for the special case of nearest-neighbor interactions, �A=�B

and �̂A= �̂B,

EL10
�r� =

1

2
�FA„�̄A

0�r�… + FB„�̄B
0�r�…	

+ ��AA�r� + 4�AB�r� + �BB�r�	 = �AA
LJ �r� + 4�AB

LJ �r�

+ �BB
LJ �r� . �B1�

In equilibrium at zero pressure, r=req�=
62�A=
62�B�,
�A

0�req�=�B
0�req�=1, �AA

LJ �req�=�A, �BB
LJ �req�=�B, and

�AB
LJ �req�=�AB. Substituting these expressions into Eqs. �3a�

and �4a� yields

FA„�̄A
0�req�… =

1

2
ÂAZ1�A = 6ÂA�A,

FB„�̄B
0�req�… =

1

2
ÂBZ1�B = 6ÂB�B, �B2�

and

�AA�req� = �AA
LJ �req� − � 2

Z1
�FA„�̄A

0�req�… = �A − ÂA�A

= �1 − ÂA��A,

�BB�req� = �1 − ÂB��B. �B3�

The energy per atom at r=req then becomes

EL10
�req� =

1

2
�6ÂA�A + 6ÂB�B	 + ��1 − ÂA��A

+ 4�AB�r� + �1 − ÂB��B	 = �A + 4�AB + �B.

�B4�

Solving this for �AB yields

�AB =
1

2
�ÂA�A + ÂB�B� + �AB�req� . �B5�

Now, determining �AB is a matter of determining �AB�req�. As
described in the text, we obtain �AB�req� by applying the
Lorentz-Bertholet mixing rule to ��req� rather than to �
�these are equivalent for the pairwise potentials�.

�AB�req� = 
��AA�req��BB�req�� = 
��1 − ÂA��A�1 − ÂB��B� .
�B6�

Substituting this into Eq. �B5� gives the modified mixing rule
�Eq. �6�	

�AB =
1

2
�ÂA�A + ÂB�B� + 
��1 − ÂA��A�1 − ÂB��B� . �B7�
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