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To enable the determination of detailed structures of nanomaterials, we extend the theory of low-energy
electron diffraction �LEED� to become more efficient for complex and disordered systems. Our new cluster
approach speeds up the computation to scale as n log n, rather than the current n3 or n2, with n the number of
atoms, for example, making nanostructures accessible. Experimental methods to measure LEED data already
exist or have been proposed. Potential application to ordered nanoparticles are illustrated here for C60 mol-
ecules adsorbed on a Cu�111� surface, with and without coadsorbed metal atoms, as well as for adsorbed
carbon nanotubes. These demonstrate sensitivity to important structural features such as size and deformation
of the nanostructures.

DOI: 10.1103/PhysRevB.75.014114 PACS number�s�: 61.14.Dc, 61.14.Hg, 61.46.�w, 61.48.�c

I. INTRODUCTION

Nanomaterials open up new fields of science and hold
great promise for many novel applications.1,2 As in other
fields �such as solid-state physics, chemistry, and biology�,
the atomic-scale structure plays a fundamental role, espe-
cially in understanding and predicting a multitude of useful
materials properties: this includes, in particular, bond lengths
and bond angles.

Such information is now sorely missing, for lack of suit-
able techniques to obtain it from experiment. Few techniques
are currently available, and none has yet been used to our
knowledge, to determine the detailed atomic-scale structure
of nanomaterials from experiment with the precision needed
to calculate their properties, i.e., on the scale of 0.01 nm
=0.1 Å or better. X-ray diffraction �XRD�, due to relatively
weak light sources, is a candidate for complex structures that
are periodic and well prepared.3 X-ray absorption fine struc-
ture �XAFS� is much more tolerant of long-range disorder
but less capable of handling the mix of inequivalent atomic
environments typical of nanostructures.4 Scanning tunneling
microscopy �STM� can provide impressive atomic-scale im-
ages of single nanostructures but requires theoretical model-
ing to extract bond lengths and angles, and in some cases
even the presence or absence of atoms.5 Theory, whether
phenomenological or using first principles, can predict nano-
structural details but must itself be checked against determi-
nation from experiment. This is especially true for complex
structures that require approximations in the theory and that
allow many alternative structures of nearly the same total
energy.

We prove conclusively in this work that low-energy elec-
tron diffraction �LEED� offers great promise for the detailed
structural determination of many nanomaterials. Our work
exhibits the possibility to perform the needed calculations,
despite the large complexity of typical nanostructures. In this
paper, we develop the main elements of the methodology and
illustrate the potential of our method for periodically ordered

nanostructures �as briefly reported earlier6�, while the appli-
cation to isolated or disordered nanostructures will be de-
scribed separately.7

An important question remains: can LEED experiments
be successfully conducted on nanomaterials? LEED experi-
ments have already produced diffraction patterns from
arrays of ordered nanoparticles, such as adsorbed
buckminsterfullerenes;8 it would thus be a routine matter to
measure their diffracted intensities with existing equipment.

For less well-ordered nanostructures, it should be possible
to focus the incident LEED beam onto a single particle or
small area and record the diffracted pattern, either as
angular-dependent intensity data or as energy-dependent data
�“I-V curves”�. This has been proposed in the form of
convergent-beam LEED �CBLEED�.9 Diffraction from
single objects as small as a few nanometers is then conceiv-
able. The angular spread of the converging beam then im-
plies a corresponding broadening of the diffraction pattern.
Even for a diffuse LEED pattern �without sharp spots due to
absence of long-range periodicity�, this would still be valu-
able if this spread is taken into account in the calculation
through convolution �as is already commonly done in photo-
electron diffraction,10 for example�. In the case of an ordered
structure, the sharp spots of normal LEED would be replaced
by disks delimited by the angular spread of the convergent
beam. These disks contain angle-dependent intensities that
provide additional structural information not present in sharp
spots.

Another approach is to use an STM tip as electron source
to form a very narrow beam.11 Such an experiment has al-
ready produced diffraction patterns from areas as small as
400 �m across, with areas smaller than 50 nm across being
possible. Electron beams have in fact been focused to such
dimensions in various applications.12

LEED requires a theory to extract structural information,
mainly due to strong multiple scattering of the diffracted
electrons. Electrons often scatter from several atoms in suc-
cession before leaving the material for the detector.13,14 The
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multiple scattering, which can be formulated as the solution
of a matrix-vector equation Ax=b, requires computation
times that scale as N3 for matrix inversion or N2 for some
iterative schemes, as implemented in existing LEED codes.
Here the matrix dimension N is proportional to the number
of inequivalent atoms n and the number of partial spherical
waves used �typically �100�. Such power-law scaling can be
very challenging for nanostructures, for which n can be in
the hundreds and N in the many thousands or more.

The present work develops a theoretical scheme that
scales much more favorably, namely, as N log N and thus
n log n, making nanostructures accessible. It uses a cluster
approach based on mathematical methods developed in the
context of the multiple scattering of electromagnetic
waves.15,16 Our adaptation of these methods is shown here to
permit the calculation of LEED intensities for nanostruc-
tures. We have chosen to test our methods on several repre-
sentative nanosystems. We have thus modeled buckminster-
fullerenes �C60� and carbon nanotubes �CNTs� adsorbed on
Cu�111� surfaces. These are ordered with relatively large
supercells on the Cu�111� substrate. We will report on simi-
lar modeling for isolated or disordered nanostructures
separately.7

Since the aim is to enable structural determination, we
investigated the structural sensitivity of LEED by varying
representative geometrical parameters of the various nano-
structures.

II. METHOD

Nanostructures are a serious challenge for LEED calcula-
tions. The main reason is that one of the theory’s compo-
nents, the solution of an Ax=b matrix-vector equation, be-
comes a computational bottleneck. The standard LEED
codes solve this equation by inverting the matrix A by any of
various schemes; this approach has worked well for surfaces
with unit cells that are not too large �e.g., up to a �7�7� unit
cell when using all available symmetries17,18�, but is gener-
ally not suitable for nanostructures due to their hundreds or
thousands of inequivalent atoms.

A. Iterative methods vs inversion. Scaling

Let us suppose that the dimension of the Ax=b problem is
N. Then the matrix A contains N2 elements which must be
stored in memory. Determining the inverse of this matrix
scales as N3. In the standard LEED case, if there are n atoms
in the unit cell and the electron wave function’s maximum
order of expansion in spherical waves is lmax, then the prob-
lem’s dimension is N= �lmax+1�2�n. Thus, the computation
complexity scales with the cube of the number n of inequiva-
lent atoms and the memory requirement for the A matrix
storage is proportional to the square of n. When the system
of interest is a surface with up to tens of atoms per unit cell,
the inversion method requires reasonably small resources
both in terms of computation time and memory.

However, when one studies nanostructures, the long-range
periodicity assumed by most LEED codes may not be
present at all, or if it exists, the number of atoms in the unit

cell may become as high as several hundreds or more. For
LEED calculations performed on nanosystems �“nanoLEED
calculations”�, we will thus need to assume that no long-
range periodicity is present, so that a cluster approach would
be used, rather than the slab approach characteristic of most
standard LEED theories. Consequently, the dimension of the
Ax=b problem becomes extremely large and the amount of
required resources, in terms of both memory and computa-
tion power, becomes prohibitive.

In order to overcome the high calculation complexity, we
will solve the matrix-vector equation not by inversion but by
an iterative method that exhibits better than n2 scaling.

The operations with highest numerical complexity of any
step of an iterative algorithm that solves the Ax=b equation
are the matrix-vector products, so the computation time per
iteration step scales as N2. If Ns steps are required to reach
convergence, the total computation time scaling is Ns�N2.
As long as Ns�N, the use of an iterative method is a major
improvement.

Due to the high complexity of a nanoLEED calculation,
lowering the computing effort scaling to N2 and not lowering
the memory requirement is not sufficient. Therefore, we have
implemented more efficient methods which lower both the
computational effort and the memory requirement of LEED
calculations for nanostructures. In order to achieve this goal,
our methods operate with an approximate matrix instead of
the full A matrix.

B. The (bi)conjugate gradient method

Not all the iterative methods can accept the lowering of
their computational and memory requirements without sig-
nificant loss in accuracy �thus being suitable for our aim�,
nor do all the methods that are suitable for our goal accept
the same level of approximation and still produce accurate
solutions. Among the methods we tested so far, the most
suitable iterative method for nanoLEED calculations was
found to be the biconjugate gradient �BiCG� method.19 This
is an enhancement of the standard conjugate gradient �CG�
method20 conceived for a Hermitian matrix.

Since in LEED the multiple scattering matrix is usually
not Hermitian, BiCG has to be used instead of CG. The main
difference between CG and BiCG is that the latter also con-
siders the adjoint matrix-vector equation associated to the
original Ax=b, namely, x*A*=b*. The CG method generates
successive sets consisting of an approximate solution, corre-
sponding residuals, and the search directions to be used in
the next iteration step. At each iteration, two inner products
are performed in order to compute updated scalars that are
defined such that certain orthogonality conditions are satis-
fied. If the A matrix is Hermitian, these conditions imply that
the distance to the correct solution is minimized in norm. In
the case of a non-Hermitian matrix, the inclusion in the al-
gorithm of the adjoint equation implies the replacement of
the orthogonal sequence of residuals by two mutually or-
thogonal sequences that are simultaneously minimized at
each iteration. If the residual norm satisfies a certain stop-
ping criterion, the approximate solution is close enough to
the correct one and the algorithm stops. In practice, our stop-
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ping criterion for the nanoLEED case is chosen such that the
residual norm at convergence must be as low as 0.0075% of
the initial residual norm in order to guarantee a high accu-
racy �higher than 99%� in the final intensities. However, for
some systems the convergence has been found to become
extremely slow. So we chose to stop the algorithm as soon as
the improvement in residual norm becomes smaller than
0.0001% per iteration. We find that the precision attained is
nonetheless high enough in practice �less than 2% error�.

The character of the system matrix A determines whether
the BiCG method converges fast or slow, or not at all. To
analyze this, we must use the concepts of matrix rank and
condition number. In linear algebra, the rank of a matrix is
the number of linearly independent rows or columns of that
matrix, i.e., the number of nonzero eigenvalues. Each lin-
early independent row or column is an eigenvector of the
matrix and corresponds to an eigenvalue. In practice, since in
LEED eigenvalues are nonzero in general, we ignore eigen-
values smaller than some fraction of the largest eigenvalue to
define the rank of matrix A.

If we denote by A* the Hermitian conjugate of a matrix A,
there is a set of real positive numbers called “singular val-
ues” ��i�A��i and two sets of nonzero vectors, �ui�i and �vi�i

�of identical length�, such that

�Aui = �i�A�vi

viA
* = �i�A�ui

The singular values ��i�A��i are of special importance for
numerical studies. With 	A	 the norm of matrix A, the con-
dition number of that matrix is defined as ��A�

	A−1 	 * 	A	 and, if the spectral norm 	A 	 =��max�A� is
used, the condition number can be expressed simply as

��A� =
�max�A�
�min�A�

where �max�A� and �min�A� are the largest and smallest sin-
gular values of matrix A, respectively.

The condition number is a measure of how well-posed the
numerical problem of solving the matrix-vector equation is
�according to Hadamard, a well-posed problem has a unique
solution which depends continuously on the parameters of
the problem in a reasonable topology�. A problem with a
high condition number is said to be ill-conditioned, while a
low condition number corresponds to a well-conditioned
problem. In the case of BiCG, a low condition number will
mean a reliable and fast convergence, whereas a high condi-
tion number will mean a slow convergence, or none. In
LEED, the complete scattering matrix has elements equal to
unity on the main diagonal; thus, in order to achieve a fast
BiCG convergence due to good conditioning, the matrix el-
ements should all be smaller than unity and decrease gradu-
ally in absolute value away from the main diagonal toward
small values in the off-diagonal corners.

At each iteration step one needs to perform two matrix-
vector products of type Ax, which need O�n2� computation
times. As we stated earlier, the goal of our fast methods is to

find reasonable approximations of matrix A to lower the
complexity of the matrix-vector product.

C. The grid method

One case of special value to increase computational effi-
ciency is when the matrix A is periodical, i.e., satisfies the
condition

Am,n = Am+p,n+p 
 am−n

for all m and n and for any integerp�N. In this case, we
have

�
A1,1 A1,2 A1,3 ¯ A1,N

A2,1 A2,2 A2,3 ¯ A2,N

A3,1 A3,2 A3,3 ¯ A3,N


 
 
 � 

AN,1 AN,2 AN,3 ¯ AN,N

�
=�

a0 a−1 a−2 ¯ a1−N

a1 a0 a−1 ¯ a2−N

a2 a1 a0 ¯ a3−N


 
 
 � 

aN−1 aN−2 aN−3 ¯ a0

� ,

and a is a vector of length 2N−1. The matrix A is called a
Toeplitz matrix, and contains only 2N−1 independent ele-
ments, instead of N2. For this class of matrices, the Ax-type
matrix-vector product can be performed more efficiently than
the usual N2 scaling. First, one can write explicitly, in this
particular case, the matrix-vector multiplication elements as

bn = �Ax�n = �
m=0

N−1

an−mxm,

which can be immediately recognized as a linear convolu-
tion. We know that for a circular convolution, i.e.,

bn = �Ax�n = �
m=0

N−1

a�N−m�mod Nxm,

the convolution theorem applies, and

F�b� = F�Ax� = F�a� * F�x� ,

where by F�x� we denote the discrete Fourier transform
�DFT�21 of the vector x and “*” denotes the multiplication in
reciprocal space. The main computational effort lies now not
in the multiplication itself, but in the Fourier transform. This
can be done with O�N log N� efficiency using the fast Fourier
transform �FFT� algorithm22 for DFT. Thus, the computa-
tional complexity of the original matrix-vector multiplication
can be lowered to O�N log N� if the linear convolution can
be rewritten as a circular convolution. This is equivalent to
transforming the initial Toeplitz matrix into a circulant ma-
trix �the rows or columns of this type of matrix are circular
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permutations of the first row or column�. As there are 2N
−1 independent elements in the initial matrix, the easiest
manipulation is to embed the N�N Toeplitz matrix A in a
2N�2N circulant matrix A� with the aid of an auxiliary N
�N matrix A�,

A� =�
0 aN−1 aN−2 ¯ a2 a1

a1−N 0 aN−1 ¯ a3 a2

a2−N a1−N 0 ¯ a4 a3


 
 
 � 
 

a−2 a−3 a−4 ¯ 0 aN−1

a−1 a−2 a−3 ¯ a1−N 0

� .

The initial vector x of length N is extended to a vector x� of
length 2N, with

xn� = �xn,n � N ,

0,n 	 N .

A new 2N-dimensional matrix-vector multiplication is con-
structed,

A�x� = � A A�

A� A
��x

0
� = �b

0
� .

The first N elements of the new matrix-vector product form
the vector b, the result of the desired matrix-vector multipli-
cation. Using FFT, this can be calculated with O�N log N�
efficiency. However, the use of FFT imposes a constraint on
N, which must be an integer power of 2.

From the point of view of LEED, the physical situation
corresponding to the mathematical case described here has
atoms situated on a perfect one-, two-, or three-dimensional
�1D, 2D, or 3D� rectangular grid �the 2D and 3D cases are
simple extensions to more dimensions of the algorithm pre-
sented above�, containing Ng=2k grid points �k integer�. In
nature, particularly in nanostructures, it is highly unlikely
that atoms would be perfectly arrayed on such a grid. We can
nonetheless use this type of grid algorithm to treat a real
physical situation with atoms placed in nongrid positions, as
described in Sec. III B.

D. The UV method

Using the singular value decomposition �SVD� method,
any N�N matrix A can be decomposed into a product of a
N�r matrix U and a r�N matrix V, where r is the rank of
matrix A. The original AN�NxN product can then be written as
UN�rVr�NxN. This lowers the computational complexity
from N2 to 2rN, and if r is significantly lower than N /2 there
is a gain in computation speed. However, the SVD algorithm
needed to determine the U and V matrices has to process the
N rows and columns of the matrix A, leading to O�N3� com-
putational complexity, which shifts the weight of the calcu-
lation on finding the U and V matrices and makes the method
seemingly unappealing.

The UV method23 is an approximation exploiting prior
knowledge of our prediction for the value of the rank r. If

one can predict or estimate a certain value re for the rank of
the matrix A, then the decomposition can be performed con-
sidering not the entire matrix A, but only re linearly indepen-
dent rows and columns sampled from the matrix A. This way,
the decomposition complexity is lowered to Nre

2 and so its
computational weight is drastically reduced, since the bulk of
the calculation is spent on the matrix-vector multiplication.

By “sampling” we mean an algorithm that can select from
the rows and columns of the matrix A a set of re linearly
independent rows and re linearly independent columns. To
ensure the accuracy of the method, one must overestimate
the rank r of A when predicting the value of re �re
r� and,
in order to ensure a high method efficiency, the difference
between estimated and real rank should be as low as possible
�re�r�. This is achieved in practice by using empirical val-
ues obtained from prior studies on the system of interest.

III. APPLICATION TO “NANOLEED”

A. Mathematical formulation of LEED

The standard LEED theory assumes that the atoms are
arrayed in a semi-infinite stack of infinite periodical layers.
For each layer, transmission and reflection matrices are cal-
culated and total reflected beam intensities are obtained for
the stack. This approach takes advantage of the long-range
periodicity of bulk structures and surfaces. The LEED pat-
tern of such an ordered structure shows sharp spots mimick-
ing the reciprocal lattice.

In the case of nanostructures, long-range order may not
exist; the above-described approach will then not work and
the LEED pattern will have diffuse intensities rather than
sharp spots.

Our method considers the general case in which the elec-
tron beam impinges on a certain region of a nanomaterial or
a region of a surface covered with one or more nanostruc-
tures. A cluster of all the atoms contributing to electron scat-
tering is formed and exit-direction-dependent intensities re-
flected by the whole cluster of atoms are calculated for
certain directions chosen to match the experimental intensi-
ties. The incident electron beam may be collimated �a plane
wave� or convergent: we will only discuss the collimated
case here, and defer the convergent case to a separate
publication.7

In order to determine the reflected beam intensities, we
first obtain the scattering matrices Ti representing the effect
of all the scattering paths which an electron may follow in-
side the cluster and which end at atom i. These quantities are
the solution of the matrix-vector equation

t = �I − tG�T , �1�

where, if we denote by L
�l ,m�, the pair of angular mo-
mentum quantum numbers t is a block-diagonal matrix com-
posed of atomic scattering matrices ti for individual atoms,
ti= �tLL�

i �, tLL�
i = tl

i�ll��mm��ei�lsin �l�ll��mm�

T = �TLL��
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I − tG =�
I − t1G12 − t1G13

¯ − t1G1n

− t2G21 I − t2G23
¯ − t2G2n

− t3G31 − t3G32 I ¯ − t3G3n


 
 
 � 

− tnGn1 − tnGn2 − tnGn3

¯ I
� 
 C

�2�

is the complete scattering matrix of the cluster, and

Gij = �GLL�
ij � and

GLL�
ij = − 8
ik0�

L�

il�hl�
1 �k0rij�YL��r̂ij�a�L,L�,L��

is the free electron Green function between atoms i and j,
where a�L1 ,L2 ,L3�=�YL1

* ���YL2
���YL3

* ���d� is a Clebsch–
Gordon coefficient, hl

1�z� is a Hankel function of the first
kind, and k0 is the incident electron’s wave number. The core
of the calculation lies in solving the matrix-vector equation
�1�. As discussed earlier, the method chosen is not the matrix
inversion but the iterative BiCG; however, the N2 scaling of
BiCG is not satisfactory, so we select more efficient methods
presented in Secs. II C and II D.

B. The sparse matrix canonical grid (SMCG) method

Let us suppose for a moment that the nanosystem of in-
terest is a linear chain of Ng chemically identical atoms,
equally spaced. Then, for a given pair of angular momentum
indices L and L�,

GLL�
nm = GLL�

n+p,m+p = gLL�n−m

for any atoms n and m in the chain and for any p such that
n+ p�N and m+ p�N. Consequently, the matrix C �Eq. �2��
of the linear chain has the same property, i.e.,

CLL�
nm = CLL�

n+p,m+p

At each step of the BiCG iteration, two matrix-vector prod-
ucts have to be performed, both involving either the scatter-
ing matrix and a chain-related vector, p= �pL

n�, or their ad-
joint counterparts. As the adjoint product is numerically
similar to the direct product, we will only present the latter;
all the mathematical manipulations valid in the direct case
will work with minimal modifications for the adjoint coun-
terpart.

One can see that by reordering the operations as

qL
n = �

L�,m

CLL�
nm pL�

m = �
L�

��
m

CLL�
nm pL�

m � ,

the sum inside the square brackets is a linear convolution,
which can be performed with O�Nglog Ng� efficiency by FFT
�see Sec. II C� if the number of atoms in the chain is an
integer power of 2.

Generally, the systems of interest in nanoscience are
three-dimensional; let us first suppose that the system studied
forms a rectangular 3D grid of Ng chemically equivalent at-
oms, while on each of the three basis directions of the grid

there are Ng1, Ng2, and Ng3 atoms, respectively. Each atom
can be labeled by its three grid indices n1, n2, and n3 so the
direct matrix-vector products to be performed at each itera-
tion step can be written as

qL
n1,n2,n3 = �

L�,m1,m2,m3

CLL�
n1,n2,n3,m1,m2,m3pL�

m1,m2,m3

= �
L�

� �
m1,m2,m3

CLL�
n1,n2,n3,m1,m2,m3pL�

m1,m2,m3� .

As for the 1D case �linear chain� the sum inside the square
brackets is a linear convolution, three-dimensional this time,
and can be performed by 3D-FFT with O�Nglog Ng� effi-
ciency, with Ng=Ng1

Ng2
Ng3

.
However, it is in reality unlikely that the atoms are all

identical and arranged on a rectangular 3D grid. We can
nonetheless take full advantage of this O�Nglog Ng� efficient
method for any given system of interest. Let us suppose that
the nanostructure under study is a random cluster of atoms
with random chemical species. If one arranges within this
cluster a rectangular 3D grid, each atom can be “assigned” to
its closest grid point. The propagation of the electron wave
function between atoms i and j can be seen as three succes-
sive processes �Fig. 1�: first, the electron wave originating
from point i is re-expanded with respect to grid point A; then,
the resulting wave is propagated to the grid point B; and
finally, the electron wave resulting at grid point B is re-
expanded around the point j. In other words, the Green func-
tion calculated between two atoms i and j can be expressed

FIG. 1. SMCG method: the electron propagation from atom i to
atom j is replaced by a shift from atom i to the nearest grid point A,
a propagation to the grid point B closest to atom j, and finally a
shift from B to j.
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in terms of the Green function related to the corresponding
closest grid points A and B:

− tl
iGLL�

ij = �
LA

�
LB

J̃LLA

iA GLALB

AB JLBL�
Bj , �3�

where J̃LLA

iA and JLBL�
Bj are the so-called “shift matrices” and

their mathematical expressions are

J̃LiLA

iA = − 4
ti
l�

L

iljl�k0riA�YL�r̂iA�a�Li,LA,L�

JLBLj

Bj = 4
�
L

iljl�k0rBj�YL�r̂ jB�a�Li,Lj,L� ,

with jl�z� a spherical Bessel function of the first kind.
Now the total cluster scattering matrix Cij can be ex-

pressed in terms of the grid counterpart CAB by a relation
similar to �3�, and the direct matrix-vector product of a BiCG
step can be written as

qL
i = �

LA

J̃LLA

iA �
LB
��

B

CLALB

AB ��
L�

JLBL�
Bj pL�

j ��
= �

LA

J̃LLA

iA �
LB

��
B

CLALB

AB p̃LB

B � . �4�

After the sum inside the parentheses is performed, the sum
inside the square brackets is a linear 3D convolution; if the
grid’s dimensions are integer powers of 2, it can be per-
formed by 3D-FFT with O�Nglog Ng� efficiency. By Ng we
understand the total number of grid points on the 3D rectan-
gular grid.

To summarize, the matrix-vector product is performed in
three steps: first, the atom-to-atom path is made to pass
through the grid points nearest to the two atoms; second, the
grid-related matrix-vector product is performed with
O�Nglog Ng� efficiency; and finally, the grid-related result is
shifted back to the corresponding atomic positions. As the
shift operations are of a complexity proportional to the
square of the cutoff in angular momentum lmax �typically
around 7�, the bulk of the calculation is the grid-related prod-
uct, performed efficiently by FFT. This is the sparse matrix
canonical grid �SMCG� method originally developed for
electromagnetic waves.20

The accuracy of the decomposition �4� depends upon the
cutoff lmax in the sums over LA and LB. The larger the shift
from an atom i to the nearest grid point A, the larger the
cutoff should be in order to maintain accuracy, which may
dramatically increase the computational burden. The cutoff
can be reduced by using a denser grid, thus shortening the
required shifts, but this may result in many more grid points
than atoms, again increasing the burden.

For reasonable cutoff and maximum shift, the decompo-
sition �3� does not ensure accuracy if the atoms are closer
than a certain critical distance, which may be several atomic
diameters. A solution is then to split the scattering matrix
into a sum of two matrices, one containing the electron
propagations between atoms closer than this critical distance
and the other containing propagations between more distant
atoms. The matrix-vector product accordingly splits into two

terms: one that can be obtained with O�Nglog Ng� efficiency,
using FFT, and one that must be calculated by the classical
method. Fortunately, the class of distant atoms is normally
much more populated than the other for typical nanostruc-
tures �e.g., carbon nanotubes�, so the major part of the cal-
culation is performed with high efficiency.

C. The “UV” method for LEED

As stated in Sec. II D, both the efficiency and the accu-
racy of the “UV” method depend on the sampling of rows
and columns fed into the algorithm. It is vital that the sam-
pling include the largest possible set of linearly independent
rows and columns of the matrix. For the case of electromag-
netic wave scattering, several schemes exist for sampling
linearly independent rows and columns out of the complete
scattering matrix,23 but for the electron-scattering case the
development of effective sampling algorithms is not yet
complete. So far, our sampling schemes can handle a system
of just two scatterers. In the case of electromagnetic waves,
the UV decomposition yields a matrix-vector product effi-
ciency of O�n log n�, n being the number of scattering
particles.23 For LEED, if the UV method can only be applied
to small matrices corresponding to pairs of scatterers, this
order of efficiency cannot be achieved. However, since the
submatrix dimension is �lmax+1�2, which is 64 for lmax=7,
and the rank has a maximum estimated value of 15 and de-
creases rapidly with the distance between the two scatterers
�Fig. 2�, the use of UV decomposition still typically speeds
up the computation by a factor larger than 6 compared to
standard matrix-vector inversion.

D. Application to LEED: SMCG vs UV vs direct calculation

To test our methods, we performed LEED calculations on
buckminsterfullerenes �C60�. It is known experimentally that
these molecules can order as adsorbates with �4�4� period-
icity on a Cu�111� single-crystal substrate. We chose this
geometry to test the numerical accuracy of our nanoLEED
calculations, while removing the Cu atoms from the compu-
tation �the substrate will be included in our modeling in Sec.
V�. We continued to identify the beam directions using the
Cu�111� reciprocal lattice, resulting in quarter-order beam

FIG. 2. For the case of an electron suffering multiple scattering
on a system of a pair of scatterers, the scattering matrix rank varia-
tion function of the distance between the two scatterers.
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labels. To that end, we calculated standard “I-V curves” �in-
tensities as a function of voltage or energy�. We chose a
realistic lmax=7 and an inelastic potential of Vi=−5 eV.

As after a cutoff distance dcut the electron wave will be
largely attenuated by the crystal due to damping, the atoms
composing the cluster used in calculation were those of the
�4�4� unit cell and all their periodically equivalent atoms
that are translated by at most dcut.

In Fig. 3 we compare I-V curves for selected LEED
beams calculated by different methods for a periodic mono-
layer of pure C60 �the cluster used in the calculations con-
tained 376 atoms�. A well-converged CG result represents
the “correct” solution �correct within the usual physical
model of LEED theory�. It serves as reference for approxi-
mate SMCG and UV results, as well as for a combined CG
+SMCG+UV approach described below. The SMCG calcu-
lation used a three-dimensional grid spacing of 0.4 nm. The
UV calculations typically yielded ranks �17% of N. All four
methods needed exactly the same number of iterations to
reach convergence.

The calculations performed with different methods are
seen to yield visually indistinguishable curves, thus verifying
the accuracy of the SMCG and UV methods, and their com-
bination.

As a measure of relative computing speed, at 100 eV, our
r yielded computation times per iteration for these CG,
SMCG, and UV results of 252.81, 77.75, and 94.65 s, re-
spectively.

Let us now discuss in more detail the relative perfor-
mances of CG, SMCG, and UV observed in our LEED tests.
We find that each method outperforms the others in specific
circumstances, so that a combined approach will be most
appropriate overall.

First, SMCG is most effective in LEED when dealing
with a large number of atoms. This is due to the fact that the
time-consuming, grid-related results are common to all at-
oms closest to the same grid point. Secondly, SMCG toler-
ates a relatively low lmax to properly describe pairs of distant
atoms but needs higher lmax for closely packed atoms. Thus,
SMCG outperforms CG and UV for large numbers of atoms
and large interatomic distances.

The accuracy of the UV method depends on the above-
mentioned sampling of rows and columns and does not de-
pend on the value of lmax. However, for pairs of very close
atoms �spaced less than 0.2 nm�, the rank of the pair scatter-
ing matrix is very close to the matrix dimension and the
method becomes inefficient. For this reason, direct CG cal-
culations are the most effective for very close neighbors.

We can exploit the relative strengths of CG, SMCG, and
UV by splitting the initial scattering matrix C �Eq. �2�� into
three parts, C=CCG+CUV+CSMCG, each of which is then
treated with a different method. Here, CCG includes only
atoms closer than 0.2 nm one from another �and the unit
matrix I of C=I− tG�, which are best treated by CG; CUV
includes atoms with intermediate separations, best treated by
UV; and CSMCG includes only distant atom pairs and is
treated by SMCG. This decomposition has been used for
rough-surface scattering problems under the name
“UV-SMCG.”24

Consequently, the computation time per iteration has three
additive components, with computation times that scale dif-
ferently: for SMCG it scales as Nglog Ng, where the number
of grid points Ng is normally smaller than the number of
atoms in the cluster; for the CG method the computation
time scales as the cube of the �relatively small� number of
closest pairs of atoms; and for UV as NUV re

2, where NUV is
the �also relatively small� number of UV-treated pairs of at-
oms, and re�N is the estimated rank of the matrix A. Thus
the overall performance of the combined CG+SMCG+UV
approach depends on the structure type, since the three meth-
ods will occupy different fractions of the computation.

We found that for large nanostructures, the SMCG part
strongly dominates the measured computation times, so the
overall time approaches its favorable Nglog Ng scaling. As an
example, if a Cu�111� substrate is added to the C60 layer, the
number of atoms included in the LEED calculations roughly
doubles �848 atoms�. Then, each iteration step at 100 eV is
completed in 68.83 s: 9.20 s for the UV part, 2.51 s for the
CG part, and 57.12 s for the SMCG part. Figure 4 verifies
that the combined method approaches the Nglog Ng scaling.

It is useful to realize that the SMCG part of the calcula-
tion, although by far the most time consuming, contributes
typically only �20% of the final intensity. Consequently, if
we neglect that part at first and then feed the approximate
result into a full-matrix calculation as an initial guess, we can
save more than half of the original computation time.

IV. USING “NANOLEED”

A central application of LEED has been the atomic-scale
structural determination of single-crystal surfaces, thanks to
the high sensitivity of I-V curves to changes in atomic posi-

FIG. 3. Comparison of LEED intensities calculated by different
methods described in the text, for a periodic monolayer of C60 that
mimics a �4�4� layer on Cu�111�, absent here, using the corre-
sponding fractional-order beam notation, at normal incidence.
Curves are off-set vertically for clarity. �Reproduced from Ref. 6.�
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tions. We can now prove that the same sensitivity is main-
tained for nanostructures. Our LEED code “nanoLEED” has
been designed to accept a wide variety of types of nanostruc-
ture, including structures with 2D periodicity �e.g., ordered
surfaces�, with 1D periodicity �e.g., nanotubes or nanowires�,
and with no periodicity �0D, e.g., isolated or disordered
nanoparticles�.

In standard LEED, a diffraction pattern with sharp beams
results from the periodic surface structure and the collima-
tion and monochromaticity of the incident beam. Most fre-
quently, beam intensities are recorded as a function of elec-
tron energy �controlled by an accelerating potential V�,
yielding “I-V curves.” Sometimes intensities are measured at
fixed energy as a function of sample orientation, yielding
“rocking curves.” With nanostructures, the two-dimensional
periodicity may be lost, resulting in “diffuse” diffraction pat-
terns. This allows other modes of measurement, for example,
as a function of electron exit direction for fixed sample ori-
entation at fixed electron energy, as has already been ex-
ploited in “diffuse LEED” from disordered surfaces.25–27

These various modes of measurement, as well as combina-
tions thereof, can be used to determine nanostructures with
LEED, since the resulting data are structure-sensitive. The
most appropriate choice of experimental variable will depend
on the kind of nanostructure to be solved. In any case, there
will be a minimum requirement for a sufficient number of
measured data points to permit the determination of the un-
known structural parameters, which may be quite numerous
�for guidance, a rule of thumb used in LEED for crystalline
surfaces is a minimum of 10 peaks in I-V curves for each
unknown structural parameter�.

V. “NANOLEED” APPLIED TO NANOSTRUCTURES

We have chosen to illustrate the application of nanoLEED
to several types of nanostructures of actual interest. We focus
our attention on the structural sensitivity of calculated inten-
sities, to exhibit the potential of the method for structural
determination. In the following, the behavior of LEED inten-
sities will be shown for buckminsterfullerenes �buckyballs,

C60� and CNTs. The application to nonperiodic silicon nano-
wires will be shown elsewhere.7 In these calculations, graph-
ite phase shifts were used for C and bulk phase shifts for Cu
and Li; the Debye temperatures were 973 K for C, 335 K for
Cu, and 600 K for Li. The theoretical curves were produced
for incident electrons with energies between 50 and 165 eV
and for a sample temperature of 300 K. The surface potential
step was set to 10 eV and the imaginary part of the potential
to −5 eV.

A. Ordered monolayer of buckminsterfullerenes „C60…

We performed nanoLEED calculations for a monolayer of
C60 molecules, as well as of endohedral and exohedral C60
by addition of single Cu or Li atoms within and outside each
C60, respectively. For similarity with known structures re-
ported in the literature,28 we ordered these nanostructures as
adsorbates with �4�4� periodicity on a Cu�111� single-
crystal substrate. Because of the thickness of the C60 mono-
layer, the LEED electrons will not penetrate the substrate
much, so we limited the Cu�111� to four metal layers, the
number of atoms being n=124 or 125 per �4�4� unit cell,
without or with a Li or Cu atom, respectively. Each C60
molecule was oriented such that two of its hexagonal rings
were located at the top and at the bottom of the molecule,
parallel with the Cu�111� layers, the hexagon centers being
located over hcp hollow sites �see Fig. 5�. The distance from
the bottom of the adsorbate layer to the substrate was 0.2 nm
�between planes of nuclei�.

For a monolayer of pure C60 molecules sitting on the
Cu�111� substrate, calculations were performed for three val-

FIG. 4. Actual computation times of our combined CG
+SMCG+UV approach �points� for different numbers of grid
points, representing larger nanoclusters, compared with a N log N
extrapolation of the leftmost point. �Reproduced from Ref. 6.�

FIG. 5. Geometry of a C60 monolayer sitting on a Cu�111� sub-
strate. Each C60 molecule is oriented such that two of its hexagonal
rings are located at the top and at the bottom of the molecule,
parallel with the Cu�111� layers, the hexagon centers being located
over hcp hollow sites. Graphics are generated using ©Balsac by K.
Hermann, FHI Berlin.
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ues of the C60 radius. In addition to the generally accepted
0.355 nm radius, we considered a larger radius of 0.375 nm
as well as a smaller radius of 0.335 nm. This represents close
to a 5% expansion or contraction of the buckyball, respec-
tively, so that individual C-C distances change by about
0.0075 nm �0.075 Å�. The spacing between the Cu and the
nearest C atoms is kept constant.

As one can see in Fig. 6, these rather small changes in the
molecule radius trigger significant changes in the shapes of
the LEED I-V curves; in particular, large shifts of the posi-
tions of maxima and minima are observed, which is the usual
sign of high structural sensitivity in LEED.

We next considered the possibility of the presence of ad-
ditional metal atoms inside or outside the C60 molecules, as
in endohedral or exohedral C60, respectively. Important ques-
tions include the position of the additional metal atoms and
displacement or distortion of the C60 by the additional metal.
One additional metal atom per C60 molecule represents only
one scatterer out of 60+1 scatterers, so that we cannot ex-
pect, and did not obtain, high sensitivity to this metal atom
by itself. But such an atom will influence its neighborhood,
distorting and/or displacing the C60, for instance. This affects
many more atoms and should be much more noticeable in
LEED.

We added Li or Cu atoms in either of three positions, one
per C60 molecule �i.e., one per 4�4 unit cell�, using realistic
interatomic distances: “in and up” positions inside the mol-
ecule, 0.143 nm �Li� or 0.174 nm �Cu� above the center of
C60, respectively; “in and down” positions inside and
0.143 nm �Li� or 0.174 nm �Cu� below the center of C60,
respectively; or “out” position interstitially between C60 mol-
ecules 0.283 nm �Li� and 0.287 nm �Cu� above the Cu sur-
face. �To simplify the description, we here assume the sur-

face to be “horizontal” with vacuum above it.� If the added
metal atom lies inside the sphere, it should modify the elec-
tronic structure of its neighbors and consequently, their geo-
metrical positions. To simulate this and illustrate the sensi-
tivity of LEED to such effects, we assumed very simple
distortions of the buckyballs. Our coarse model supposed
that only the C atoms situated in the same spherical cap as
the metal atom are affected and the effect is such that the C60
sphere is flattened in the area of the respective cap by reduc-
ing the vertical C-metal interatomic spacings by 20%; this
corresponds to displacements perpendicular to the surface
ranging from 0.003 to 0.03 nm. The I-V curves �Fig. 7� con-
firm the expected sensitivity to the supplementary metal at-
om’s presence, or more precisely to its induced distortions;
not surprisingly, larger changes in curve shapes are seen for
the heavier and thus more strongly scattering atom �Cu vs
Li�.

B. Carbon nanotubes (CNTs)

Another class of test calculations targeted the CNTs. We
have chosen for our tests a monolayer of �10,10� armchair
single-walled CNTs of 1.36 nm diameter. They are assumed
to lie flat on a Cu�111� substrate along the substrate’s �112�
direction. The matching between the CNT and substrate ge-
ometries leads to a �5�7� unit cell on Cu�111�, this cell
being composed of 200 CNT atoms and 70 substrate atoms
in 2 Cu layers.

We have investigated the effect of CNT deformations on
the LEED I-V curves. First, we analyzed the possibility of a

FIG. 6. Comparison of LEED intensities calculated by
nanoLEED for a periodic �4�4� C60 monolayer a substrate of four
layers of Cu�111� for three C60 radii. The radius of the C60 mol-
ecules is varied as indicated, keeping constant the spacing between
the Cu and nearest C. �Reproduced from Ref. 6.�

FIG. 7. As Fig. 6, but adding one atom of Li �at left� or Cu �at
right� for each C60 molecule, in either of three positions: inside and
0.143 nm �Li� or 0.174 nm �Cu� above the center of C60 �“in and
up”�, or inside and 0.143 nm �Li� or 0.174 nm �Cu� below the cen-
ter of C60 �“in and down”�, or interstitially between C60s �“out”�,
using realistic interatomic distances. In each case, the C60 sphere is
flattened on the side of the nearest metal atom by reducing the
perpendicular C-metal spacings by 20%. �Reproduced from Ref. 6.�
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flattening of the CNTs due to the interaction with the Cu
surface. The model assumed that the atoms located below the
tube’s axis lose a certain percentage of their vertical distance
to that axis, keeping the distance between the bottom CNT
and the substrate constant at 0.2 nm. First, the tubes are thus
flattened by a small 6% vertical compression; then the flat-
tening is increased to 20%. Finally, the upper parts of the

tubes are also flattened by 20%, the result being the equiva-
lent of squeezing the nanotubes from both top and bottom.
As shown in Fig. 8, the response to these changes in terms of
LEED I-V curves is proportional to the amount of deforma-
tion: for a small 6% flattening �corresponding to a maximum
0.082 nm C shift perpendicular to the surface� the effect is
small, but for an increased 20% deformation �maximum
0.272 nm shift� the change in shape of the curves is obvious,
as it is also in the case of “squeezing” from top and bottom.

VI. CONCLUSIONS

We have adapted efficient and accurate methods to enable
LEED calculations for complex nanostructures, thus permit-
ting their structural determination from LEED experiment.
These methods owe their nanostructural capability to the
property that they scale basically as n log n, rather than the
current n3 or n2, with the number of inequivalent atoms n.

Sensitivity of the I-V curves to structural changes was
proven and illustrated with LEED calculations performed for
different classes of nanosystems. We show here that this fea-
ture is present for ordered nanostructures, such as a mono-
layer of ordered C60 adsorbed on Cu�111� or a monolayer of
ordered carbon nanotubes adsorbed on Cu�111�. The case of
isolated or disordered nanostructures will be published sepa-
rately.

Experimental techniques necessary to perform LEED
measurements on ordered nanostructures already exist, while
experimental LEED methods have been proposed to focus
electron beams in nanoscale areas, and thus on single nano-
structures. Given the satisfactory sensitivity and the efficient
scaling recorded for LEED simulations, we believe that de-
tailed structural determination for materials with very large
unit cells and for nanoclusters is now possible, a key advance
for progress in nanoscience and technology.
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