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A nonconventional renormalization-group �RG� treatment close to and below four dimensions is used to
explore, in a unified and systematic way, the low-temperature properties of a wide class of systems in the
influence domain of their quantum critical point. The approach consists in a preliminary averaging over
quantum degrees of freedom and a successive employment of the Wilsonian RG transformation to treat the
resulting effective classical Ginzburg-Landau free energy functional. This allows us to perform a detailed study
of criticality of the quantum systems under study. The emergent physics agrees, in many aspects, with the
known quantum critical scenario. However, a richer structure of the phase diagram appears with additional
crossovers which are not captured by the traditional RG studies. In addition, in spite of the intrinsically static
nature of our theory, predictions about the dynamical critical exponent, which parametrizes the link between
statics and dynamics close to a continuous phase transition, are consistently derived from our static results.
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I. INTRODUCTION

Continuous quantum phase transitions �QPTs� constitute a
very topical subject in condensed matter physics1–6 and in
the last few years their intensive study has stimulated inter-
esting speculations in other branches of modern physics,
too.7 The fundamental feature is that anomalous behaviors
appear when a quantum critical point �QCP� is approached.
In particular, it is now well established that the presence of
such zero-temperature critical points is the key to explain
unsolved puzzles in the low-temperature properties of many
materials.8–10

In spite of the large variety of systems that exhibit QPTs,
their critical properties can be described, following the semi-
nal paper by Hertz11 for itinerant magnets, using suitable
quantum Ginzburg-Landau �QGL� free energy functionals,
characterized by the dependence of the n-vector order pa-
rameter field on the Matsubara-time variable � and by the
presence in the free propagator of a term related to the in-
trinsic dynamic of the original microscopic systems. This
assures the correct inclusion of the quantum degrees of free-
dom, by avoiding the difficulties connected with noncom-
muting operators.

In the earliest works on the argument11–18 the effects of
the zero-point critical fluctuations were essentially studied
only at temperature T=0 by applying the ideas of Wilson’s
renormalization-group �RG� approach.

The T=0 analysis does not produce additional conceptual
difficulties with respect to thermal phase transitions since
quantum criticality is determined by the divergence of the
length scale, set by the correlation length �, as well as by the
divergence of the time scale ���� z, where z is the dynami-
cal critical exponent. The main conclusion is that, in general,
a QPT in d dimensions is related to a classical transition in
�d+z�, except for Bose-like systems with �−i�l� intrinsic dy-
namics �here �l denotes the usual bosonic Matsubara fre-

quency: see next section�. Relevant examples are the dilute
Bose gas, the XY model in a transverse field, and other mod-
els in the same quantum universality class.1,4,17,19 For these
peculiar systems, an unusual �T=0� mean-field-like quantum
criticality was found for d�2 by variation of an appropriate
control parameter �chemical potential, transverse magnetic
field, and so on�. This finding cannot be explained in terms
of a simple dimensional crossover d→d+2 but rather by
means of a more complex crossover process �d ,n�→ �d=d
+2,n=−2� involving also an effective change of the dimen-
sionality n of the order parameter field: the quantum critical
exponents of the Bose-like systems can be formally obtained
from those for a classical n-vector model with dimensional-
ity d+2 and symmetry index n=−2.20 This was conjectured
in Ref. 15 on the grounds of a �T=0� RG treatment up to
second order in the natural expansion parameter �=2−d,
proved to be valid to arbitrary order in � for the interacting
Bose gas21 and for the XY model in a transverse field22 and
confirmed by exact large-n-limit calculations.17,23

It is also worth pointing out that for some systems of
itinerant electrons, the Hertz theory11 does not seem properly
adequate to describe the correct T=0 critical behavior as will
be specified in the next section. Anyway, in this paper we
consider only systems for which the QGL free energy func-
tionals are expected to describe correctly the quantum critical
behavior.

The reliable and complete description of finite-
temperature crossovers close to a QCP has a long
history.11,19,23–35 Wilsonian and field-theoretic RG
treatments19,24–31 have been extensively used in combination
with nonperturbative and self-consistent methods.1,23,32–35

The common opinion for a long period was that, at any
finite-temperature, classical fluctuations control the behavior
of the system, but it has become increasingly clear that the
presence of a QCP peculiarly influences measurable quanti-
ties over a wide range of the low-temperature phase diagram.
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Indeed intricate crossovers between finite-temperature re-
gimes may occur, especially when there is a line of finite-
temperature phase transitions ending in a QCP. Although pre-
vious partial RG investigations of low-temperature
properties and crossovers exist,24,27 the first detailed study of
the low-temperature phase diagram around a QPT was per-
formed by Millis28 within a RG framework treating the ther-
mal and quantum fluctuations on the same footing. He con-
sidered quantum actions for itinerant antiferromagnets and
ferromagnets and depicted the corresponding low-
temperature phase diagram by solving the RG equations, step
by step, in different regions selected by suitable conditions.
The resulting description is correct, but the derivation of the
incoming crossover lines appears cumbersome and, some-
times, rather unnatural.

In this paper we propose a nonconventional, but intrinsi-
cally simple, approach to obtain a general and systematic
description of the complex structure of the phase diagram
when a QCP is present, avoiding the step-by-step Millis pro-
cedure. Starting with a general QGL functional, �i� we inte-
grate out the degrees of freedom with nonzero Matsubara
frequencies, thus reducing the original quantum action to an
effective classical one with temperature-dependent coupling
parameters, and then �ii� we solve the related RG equations
to obtain the phase diagram and the crossover scenario. It is
worth mentioning that the first step has been already used by
Sachdev1,35 to formulate a theoretical approach to finite-
temperature quantum criticality, which mixes perturbative
predictions and known �T=0� RG results close to and above
the quantum upper critical dimension. In our picture, the
temperature-dependent effective couplings play a crucial role
and we show that, with this basic ingredient, both the clas-
sical and quantum criticalities appear as a natural result of
the fusion of the classical world with the underlying quantum
one. This special feature, together with the powerful Wilson
RG method, allows us to draw out in a unified way a series
of low-temperature crossover lines, which separate different
asymptotic regimes, including some that do not emerge in
former approaches and which could be observable in appro-
priate ultralow-temperature experiments.

Moreover, within our method, we avoid the direct control
of the quantum degrees of freedom in the various levels of
approximation, obtaining, at the end, the quantum criticality
as an emergent phenomenon. Just for this reason, we believe
that the idea developed in this paper may be conveniently
employed in other branches of theoretical physics, from
quantum gravity to cosmology.

The paper is structured as follows. In Sec. II we introduce
the quantum action which allows us to properly describe the
low-temperature critical properties of many systems exhibit-
ing a QCP. Then, after averaging over degrees of freedom
with nonzero Matsubara frequencies, we present the explicit
expression of the arising effective classical functional to one-
loop approximation. As a second step of our program, in Sec.
III the one-loop RG equations for the temperature-dependent
effective coupling parameters are solved exactly close to and
below four dimensions, and the general expression of the
correlation function as a function of the temperature and of
the original “microscopic” parameters is obtained for the
quantum systems under study. Section IV is devoted to de-

termine the critical-line equation in the low-temperature re-
gime and the related shift exponent. The critical properties
and the crossovers approaching the critical line close to the
�T=0� ending point �here identified as a QCP� are studied in
Sec. V and their unified description in terms of two-
parameter effective exponents is presented in Sec. VI. In Sec.
VII we localize other crossover lines far from the phase
boundary to have a global picture of the phase diagram for
different quantum systems. Finally, in Sec. VIII, some con-
clusions are drawn.

II. QUANTUM MODELS AND EFFECTIVE CLASSICAL
HAMILTONIAN

A remarkable feature is that the critical properties of a
wide variety of systems that exhibit QPTs can be described
through a reduced number of QGL actions; each of them is
representative of a given quantum universality class, defined
by the space dimensionality d, the order parameter symmetry
index n, and the dynamical critical exponent z that charac-
terizes the intrinsic dynamics of the systems in the class.

Bearing this in mind, in order to be as general as possible,
we consider a quantum action which, in the Fourier space, is
written in the form

S��� � = S0��� � + SI��� � , �2.1�

S0��� � =
1

2�
j=1

n

�
k�,�l

�r0 + k2 + ��k�,�l��	� j�k�,�l�	2, �2.2�

SI��� � =
u0T

4V
�
i,j=1

n

�
�k�,�l��

	�
�=1
4 k��;0	�

�=1
4 �l�;0


� i�k�1,�l1
�� i�k�2,�l2

�� j�k�3,�l3
�� j�k�4,�l4

� .

�2.3�

Here �� �k� ,�l�
�� j�k� ,�l� ; j=1, . . . ,n� are the Fourier com-
ponents of an n-vector real order parameter field, k� denotes a
wave vector with a cutoff �=1 �in convenient units�, T is the
temperature, V is the volume, and �l=2�lT �l
=0, ±1, ±2, . . . � are the bosonic Matsubara frequencies. Of
course, models with a complex ordering field can be de-
scribed in terms of n=2m real components �with m
=1,2 , . . .�. The meaning of the coupling parameters r0 ,u0

and the explicit expression of the function ��k� ,�l�, which
defines the intrinsic dynamics, depend on the physical sys-
tem of interest. Our analysis can be performed formally for a
general ��k� ,�l� and only when it is necessary need one in-
troduce its explicit expression to have information about a
particular quantum system. However, to be specific, through
this paper we focus on three basic models which have re-
cently attracted a great deal of attention to describe the be-
havior close to a QCP of many materials subject to extensive
experimental studies in the latest years. They are character-
ized by the following1–6,11–20,23–38

�i� ��k� ,�l�=�l
2. This function defines the intrinsic dynam-

ics of the so-called transverse Ising-like systems37 �n1�
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and allows one to properly describe, for instance, the low-
temperature properties of several magnetic materials and
compounds with quantum structural phase transitions,19 for
which the nonthermal control parameter is related to the ap-
plied magnetic field and the pressure.

�ii� ��k� ,�l�=−i�l. This is peculiar to the class of Bose-
like systems1,4,17,19 such as, for instance, those described by
the transverse XY model and antiferromagnetic dimer or lad-
der spin materials where the field-induced QPT can be ex-
plained in terms of a Bose-Einstein condensation of
magnons.38

�iii� ��k� ,�l�= 	�l	. This enters the action model generally
used for itinerant antiferromagnets1,11,28 and other systems in
the same quantum universality class.19 In this context, it has
been recently speculated39 that the Hertz-Millis �4 theory11,28

of quantum criticality for itinerant antiferromagnets is in-
complete as it misses anomalous nonlocal contributions to
the interaction vertices �the effective bosonic action becomes
nonlocal�. Hence, it should fail to predict results for dimen-
sionalities d�2 with z=2. In contrast, for d�2 all the inter-
action terms are irrelevant and the Gaussian-like results pre-
serve their validity. In any case, other systems exist1,17,19 for
which the �4 action �2.1�–�2.3� with an 	�l	 dynamics ap-
pears adequate.

A relevant feature is that our picture is quite general and
may be simply applied also to other quantum systems19 with
intrinsic dynamics described by ��k� ,�l�= 	�l	� /k�� ��
1,��0� in the quantum action and with a dynamical
critical exponent z= �2+��� /�. The only concern is to cal-
culate the Matsubara frequency sums T��l

�r0+k2

+ 	�l	� /k���−1 which have been studied in Ref. 19, where
examples of other physical systems can be found. However,
some caution must be used for the relevant case 	�l 	 /k usu-
ally assumed in the action �2.1�–�2.3� to describe quantum
criticality of clean itinerant ferromagnets.1,11,28 It has been
indeed observed40 that the conventional Hertz-Millis analysis
may predict incorrect results for d�3, due to the existence
of soft modes at zero temperature that couple to the order
parameter field and thus preclude the construction of a con-
ventional QGL action. A more recent study based on a en-
tirely different point of view41 seems indeed to confirm the
nonvalidity of the Hertz-Millis theory for
�d�3�-dimensional itinerant ferromagnets.

Now, we have all the basic ingredients to start with our
proposal.

Our first step is to average over the degrees of freedom
with �l�0 to generate an effective classical functional,
where the quantum nature of the original action enters the
new temperature-dependent coupling parameters as a result
of the averaging process.

For this purpose we separate in the free action the term
with �l=0, writing

S��� � = S0��� � + S0��� �k�,�l � 0�� + SI��� ;�� �k�,�l � 0�� ,

�2.4�

where �� �k��=�� �k� ,�l=0�. Then the partition function Z

=�D��� �e−S��� � can be written as

Z =� D��� �e−S0��� � � D���� �k�,�l � 0���


e−�S0��� �k�,�l�0��+SI��
� ;�� �k�,�l�0���� 
 � D��� �e−H��� �,

�2.5�

where H��� � denotes the dimensionless effective classical
Hamiltonian which arises from the reduction procedure of
the quantum degrees of freedom. Working within a perturba-
tive scheme to one-loop approximation and with the condi-

tion H��� =0�
0, we find for H��� � the �4 expression

H��� � =
1

2�
j=1

n

�
k�

�r̃0 + k2�	� j�k��	2

+
ũ0

4V
�
i,j=1

n

�
�k���

	�
�=1
4 k��;0�i�k�1��i�k�2�� j�k�3�� j�k�4� .

�2.6�

The diagrams that contribute to the effective coupling pa-
rameters r̃0 and ũ0 in Eq. �2.6� are shown in Fig. 1. These
parameters are connected to the original microscopic ones r0
and u0 by the relations �with �1/V��k��¯�
→Kd�0

1dk kd−1�¯� and Kd=21−d�−d/2 /��d /2��

r̃0 = r0 + Kd�n + 2�u0�
0

1

dk kd−1T �
�l�0

G0�k�,�l�� ,

�2.7�

ũ0 = Tu0�1 − Kd
n + 8

2
u0�

0

1

dk kd−1


T �
�l�0

G0�k�,�l�G0�− k�,− �l��� , �2.8�

where

G0�k�,�l� =
1

r0 + k2 + ��k�,�l�
�2.9�

is the free propagator which retains the memory of the dis-
tinctive features of a quantum system.

Defining

FIG. 1. Diagrams leading �a� to the effective coupling r̃0; and
�b� to the quartic coupling ũ0. Here the dashed lines correspond to

�� �k� ,0�; the straight lines to �� �k� ,�l�0�.
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G�r0,T� = �
0

1

dk kd−1T�
�l

G0�k�,�l�� , �2.10�

Equation �2.7� can be conveniently written as

r̃0 = r0 + Kd�n + 2�u0G�r0,T� − T�
0

1

dk
kd−1

r0 + k2� ,

�2.11�

where the last term on the right hand side �RHS� represents
the contribution of the zero-frequency term.

Equations �2.6�–�2.11� will play a key role for the next
developments.

III. ONE-LOOP RG EQUATIONS FOR THE EFFECTIVE
CLASSICAL HAMILTONIAN AND THEIR SOLUTION

CLOSE TO AND BELOW FOUR DIMENSIONS

One can now apply the standard RG approach to the ef-
fective classical Hamiltonian �2.6�, which represents the
n-vector model. The results are well known and to one-loop
approximation, where the Fisher correlation length exponent
�=0, the appropriate flow equations are

dr̃�l�
dl

= 2r̃�l� + Kd�n + 2�
ũ�l�

1 + r̃�l�
, �3.1�

dũ�l�
dl

= �4 − d�ũ�l� − Kd�n + 8�
ũ2�l�

�1 + r̃�l��2 , �3.2�

to be solved with the initial conditions:

r̃�l = 0� = r̃0�T,r0,u0�, ũ�l = 0� = ũ0�T,r0,u0� . �3.3�

Of course the explicit dependence of the initial effective
parameters on the temperature and the physical parameters
r0 ,u0 reflects the microscopic nature of the quantum models
here considered. It is worth noting that, after reducing to the
effective Hamiltonian, the physical temperature does not en-
ter explicitly in the RG machinery. Hence it is not involved
in the renormalization procedure, which acts only on the ef-
fective coupling parameters, but appears at the end of calcu-
lations through the initial conditions to be used for solving
the RG recursion relations.

Without making explicit reference to the underlying
fixed-point scenario, we will adopt here the point of view
that the RG transformation is also a systematic step-by-step
averaging procedure to obtain �at a given level of approxi-
mation� the partition function of a macroscopic system,
which takes properly into account the competing effects of
classical and quantum fluctuations. In our picture, the differ-
ent microscopic dynamics will emerge without involving the
dynamical critical exponent z as happens, in contrast, in the
RG treatments based directly on path-integral
representations.1–6 Bearing this in mind, with the aim of ex-
ploring the low-temperature properties of a quantum system,
we need to solve Eqs. �3.1� and �3.2� exactly to order of
interest.

The solution for ũ�l� to first order in �=4−d is

ũ�l� =
ũ0e�l

1 + �n + 8�Kd�ũ0/���e�l − 1�
. �3.4�

This allows us to obtain in a simple form the appropriate
solution for the relevant coupling parameter r̃�l� through the
combination36

t�l� = r̃�l� +
1

2
�n + 2�Kdũ�l� −

1

2
�n + 2�Kdũ�l�r̃�l�ln�1 + r̃�l��

�3.5�

which scales as

t�l� = e��l�t�l = 0� , �3.6�

where

t�l = 0� = r̃0 +
1

2
�n + 2�Kdũ0 −

1

2
�n + 2�Kdũ0r̃0ln�1 + r̃0�

�3.7�

and

��l� = 2l −
n + 2

n + 8
ln�1 + �n + 8�Kd�ũ0/���e�l − 1�� .

�3.8�

Hereafter we consider the most interesting case ��0 �d
�4�.

As a conclusion of this section, we write down the initial
expression t�l=0� of the nonlinear scaling field �3.6� in a
low-temperature form very convenient for the next develop-
ments.

Working to first order in the original coupling parameters
r0 ,u0, Eq. �3.7� yields

t�l = 0� = r0 + Kd�n + 2�u0G�r0,T� 
 t�r0,T� , �3.9�

where, with the notation t�r0 ,T�, we have explicitly intro-
duced the dependence on the temperature T and on the mi-
croscopic nonthermal parameter r0.

Moreover, performing the sums over Matsubara frequen-
cies in Eq. �2.10�, in the low-temperature limit G�r0 ,T� can
be written as

G�r0,T� � G�r0,0� + T�G�r0/T2/�� . �3.10�

The value of the exponents � and �, whose physical meaning
will become clear later, together with the explicit expressions
of G�r0 ,T� and G�r0 /T2/�� for the different quantum models
considered in this paper, are collected in Table I.

Finally we write the low-temperature expression for
t�r0 ,T�,

t�r0,T� � r0 + Kd�n + 2�u0�G�r0,0� + T�G�r0/T2/��� ,

�3.11�

which will play a relevant role in the next analysis.

IV. CRITICAL LINE

From the rescaling relation �3.6� for the relevant field t�l�,
one immediately has that the critical line in the �r0 ,T� plane,
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close to and below four dimensions, is determined by the
condition t�r0 ,T�=0 which yields the critical line equation

r0 + Kd�n + 2�u0G�r0,T� = 0. �4.1�

Then, solving this equations with respect to r0 or T, to first
order in the coupling parameters, we obtain the following
equivalent low-temperature representations of the critical
line:

r0c�T� � r0c − A�n,d�u0T�, �4.2�

Tc�r0� � �A�n,d�u0�−1/��r0c − r0�1/� �r0 � r0c� , �4.3�

where

r0c = − Kd�n + 2�u0G�0,0�, A�n,d� = �n + 2�KdG�0� ,

�4.4�

whose explicit expressions, for the models here considered,
are given in Table II. Equation �4.2� �or �4.3�� shows that, for
different quantum models, the critical line ends in the point
�r0=r0c ,T=0� which, as will be clear from the following
analysis, plays just the role of a QCP. This feature makes
clear the physical meaning of the parameter � as the phase
boundary exponent, also known as the shift exponent, with
values reported in Table I. In particular, by extrapolation to
d=3, one has �=2 for �l

2 intrinsic dynamics and �=3/2 for
the cases �−i�l , 	�l 	 �.

It is worth noting that the low-temperature shape of the
phase boundary is strictly related to the microscopic nature
of the system under study as a result of the quantum degrees
of freedom reduction procedure performed in Sec. II.

For future convenience it is useful to express the initial
field t�r0 ,T�, in terms of the critical line equation r0c�T� or
Tc�r0� as follows:

t�r0,T� = �r0 − r0c�T�� + Kd�n + 2�u0�G�r0,T� − G�r0c�T�,T�� ,

�4.5�

or

t�r0,T� = Kd�n + 2�u0�G�r0,T� − G�r0,Tc�r0��� . �4.6�

V. LOW-TEMPERATURE CRITICAL PROPERTIES AND
CROSSOVERS

In this section we study the low-temperature behavior of
some relevant quantities, e.g., the correlation length and the
susceptibility, when one approaches the critical line follow-

ing different thermodynamic paths in the phase diagram.
As usual in the RG approach, the correlation length � and

the susceptibility � can be expressed as36

� = �0el*, � = �0e2l*, �5.1�

where l*= l*�r0 ,T��1 is determined by the condition t�l*�
=1. By using Eqs. �3.6�, �3.8�, and �3.9� we find for l*, to
order of interest in the microscopic coupling parameters, the
self-consistent equation

e2l*�1 + �n + 8�Kd�u0/��T�e�l* − 1�t�r0,T��−�n+2�/�n+8� = 1,

�5.2�

which has the low-T solution

el* = �t�r0,T��−1/2�1 + �n + 8�Kd�u0/��T�t�r0,T��−�/2��n+2�/2�n+8�,

�5.3�

yielding directly the dimensionless correlation length � /�0.
Equation �5.3� contains all the physics of interest for us. It

allows us to calculate not only the correlation length and the
susceptibility, but also the singular part of the free energy
density Fs�r0 ,T� through the usual scaling relation Fs�r0 ,T�
�e−dl* ��−d and hence the singular part of the specific heat
Cs�r0 ,T� /T=−�2Fs�r0 ,T� /�T2.

A. Critical behavior close to the phase boundary and the
Ginzburg line

Near the critical line within the disordered phase
�t�r0 ,T��0�, the last term in the RHS of Eq. �4.5�, can be
neglected to the order of interest in the parameters r0 and u0,
and hence the field t�r0 ,T� in this region assumes the simple
form

t�r0,T� � r0 − r0c�T� , �5.4�

and measures, at any given temperature T, the horizontal
distance from the critical line.

TABLE I. Values of the exponents � and � and explicit expressions of the functions G�r0 ,T� and
G�r0 ,T2/�� for the three classes of systems we are investigating.

��k� ,�l� � �= d−2
�−1 G�r0 ,T� G�r0 /T2/��

�l
2 d−1 1 Kd�0

1kd−1 1
2

coth ��1/2T��r0+k2�
�r0+k2

�0
�dx xd−1

��r0/T2�+x2�1/2
1

exp��r0/T2�+x2�1/2−1

−i�l
d
2

2 Kd�0
1kd−1 1

2coth
r0+k2

2T
1
2�0

�dx xd/2−1

exp��r0/T�+x�−1

	�l	
d
2

2 Kd�0
1kd−1�0

1 d�
�

�coth �

2T
� �

�r0+k2�2+�2 �0
� dy

� �0
1dx x

ex−1
yd/2−1

��r0/T�+y�2+x2

TABLE II. Explicit expressions of the quantities that enter the
critical line equation.

��k� ,�l� r0c A�d ,n�

�l
2

−
�n+2�Kdu0

2�d−1�
�n+2�Kd��d−1���d−1�

−i�l −
�n+2�Kdu0

2d

n+2
2 Kd��d /2���d /2�

	�l	
n+2
2�dKdu0�ln 2−�� d+2

4
�+ 4

d
� n+2

2 Kd

��d/2���d/2�

sin��d/4�
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At T=0 and r0→r0c
+ , from Eqs. �5.3� and �5.4� one has

� � �r0 − r0c�−1/2, � � �r0 − r0c�−1. �5.5�

These �T=0� mean-field �MF� results, just expected for
quantum systems above their upper critical dimension dcu

�q�

=4−z �i.e., when d+z�4�, allow us to interpret the point
�r0=r0c ,T=0� in the phase diagram as the QCP of the differ-
ent quantum models here considered �see Table II for explicit
values of r0c� where the correlation length and susceptibility
diverge.

Notice that the result �5.5� is appropriate for quantum
systems with z�1 also for d=3. An exception occurs for the
case z=1 ��l

2 dynamics� for which the quantum upper critical
dimension is dcu

�q�=3 and logarithmic corrections to MF re-

sults are expected at d=3. In any case no inconsistency en-
ters the problem because our static theory is really valid only
close to and below four dimensions and caution must be used
when one extrapolates the results to d=3.

At finite temperature, Eq. �5.3� provides two different as-
ymptotical behaviors for el* according to which term is
dominant in the braces. One has therefore for the correlation
length � and the susceptibility �, as r0→r0c

+ �T� along a ther-
modynamic path parallel to the r0 axis, the asymptotical
behaviors42

� � �r0 − r0c�T��−�r, � � �r0 − r0c�T��−�r �5.6�

with

�r = �
1

2
if r0 � r0c�T� + �Kd�n + 8��u0/��T�2/�,

�r =
1

2
+ �1 +

n + 2

2�n + 8�
�� if r0c�T� � r0 � r0c�T� + �Kd�n + 8��u0/��T�2/�,� �5.7�

and �r=2�r since, in our one-loop analysis, the Fisher expo-
nent �=0. From now on we consider explicitly only the criti-
cal exponents for the correlation length being ���2 in any
case.

Equation �5.7� suggests that, on varying the distance from
the critical line by decreasing r0 toward r0c�T� at fixed T, the
system undergoes a crossover from a MF behavior to a clas-
sical Wilsonian �W� one, except at T=0 where a MF behav-
ior is expected as r0→r0c

+ �see Eq. �5.5��. The crossover line
determined by

r0Gi�T� = r0c�T� + �Kd�n + 8��u0/��T�2/� �5.8�

will be called the “Ginzburg line.” It is worth noting that the
horizontal distance between the Ginzburg line and the critical
one,

t„r0Gi�T�,T… = r0Gi�T� − r0c�T� , �5.9�

goes to zero on decreasing the temperature according to a
power law with exponent 2 /� �independent of the particular
model� and hence both the critical and Ginzburg lines merge
at the QCP.

In terms of t(r0Gi�T� ,T), Eq. �5.3� can be conveniently
written as

el* = �t�r0,T��−1/21 + � t„r0Gi�T�,T…
t�r0,T� ��/2��n+2�/2�n+8�

.

�5.10�

In order to evaluate the effective correlation length exponent
which interpolates between the two regimes in Eq. �5.7� and
hence to describe the previous crossover, it is natural to ex-

press the correlation length in terms of the renormalized dis-
tance from the critical line at fixed T,

x =
t�r0,T�

t„r0Gi�T�,T…
=

r0 − r0c�T�
r0Gi�T� − r0c�T�

, �5.11�

as

� = �0�t„r0Gi�T�,T…�−1/2h�x� , �5.12�

where the scaling function h�x� is given by

h�x� = x−1/2�1 + x−�/2��n+2�/2�n+8�. �5.13�

Then, from Eqs. �5.10�–�5.13� it is easy to obtain the re-
quired effective exponent

�r
eff�x� = −

d ln h�x�
d ln x

=
1

2
�1 +

n + 2

2�n + 8�
�� 1

1 + x�/2�� ,

�5.14�

which reproduces the asymptotic values in Eq. �5.7� in the
limiting cases x�1 and x�1, respectively.

Concerning the singular part of the free energy density,
we immediately have for r0→r0c

+ �T�

Fs�r0,T� � �r0 − r0c�T��d�r, �5.15�

and hence for the specific heat we get

Cs�r0,T�
T

� �r0 − r0c�T��−�r, �5.16�

with
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�r � �0 if r0 � r0Gi�T� ,

4 − n

2�n + 8�
� if r0c�T� � r0 � r0Gi�T� .

�5.17�

Of course, also in this case one can define and easily
calculate an effective specific heat exponent �r

eff�x�, whose
rather cumbersome expression is, however, inessential for
our purposes.

A similar analysis can be performed approaching the criti-
cal line along thermodynamic paths parallel to the T axis in
the phase diagram. For this purpose it is necessary to assume
for t�r0 ,T� the representation �see Eq. �4.6��

t�r0,T� � A�n,d�u0�T� − Tc
��r0�� . �5.18�

First, we suppose r0�r0c so that Tc�r0��0 and Eq. �5.18�
reduces to

t�r0,T� � ��Tc�r0���−1A�n,d�u0�T − Tc�r0�� , �5.19�

which measures, at any fixed r0�r0c, the vertical distance
from the critical line. Then, when T→Tc

+�r0�, Eq. �5.3�, to-
gether with �5.19�, provides for the susceptibility and the
correlation length the asymptotic behaviors

� � �T − Tc�r0��−�T, � � �T − Tc�r0��−�T, �5.20�

with

�T ��
1

2
if T � TGi�r0� ,

1

2
�1 +

n + 2

2�n + 8�
�� if Tc�r0� � T � TGi�r0� ,�

�5.21�

and �T=2�T. Here

TGi�r0� = Tc�r0� + ��A�n,d�u0�−1


��n + 8�Kd�u0/���2/��Tc�r0��2/� �5.22�

is the temperature representation of the Ginzburg line. The
extrapolation of this result to d=3, according to the genuine
Wilson RG philosophy, yields a Tc

2 deviation from the critical
line for any quantum system, consistently with the �d=3�
prediction of Ref. 28.

Note the coincidence of the exponents �r and �T obtained
along horizontal and vertical thermodynamic paths,
respectively,42 for r0�r0c. This is a consequence of the lin-
earization �5.19� valid only when Tc�r0� is finite.

A suitable form for the dimensionless correlation length
�5.3� is now

el* = �t�r0,T��−1/2�1 +
T

TGi�r0�� t„r0,TGi�r0�…
t�r0,T� ��/2��n+2�/2�n+8�

,

�5.23�

where

t„r0,TGi�r0�… = ��Tc�r0���−1A�n,d�u0�TGi�r0� − Tc�r0��

= ��n + 8�Kd�u0/��Tc�r0��2/� �5.24�

estimates, at fixed r0�r0c, the vertical distance between the

Ginzburg line and the critical one. In terms of the crossover
parameter x= �t�r0 ,T�� / �t(r0 ,TGi�r0�)�, the correlation length
�5.23� looks like

� = �0�t„r0,TGi�r0�…�1/2h�x� , �5.25�

in terms of the same scaling function �5.13� that appears in
the representation �5.12�. So we recover, along a path paral-
lel to the T axis, an effective exponent �T

eff�x� of the form
�5.14�.

For the singular part of the free energy density we can
now write

Fs�r0,T� � �T − Tc�r0��d�T. �5.26�

In this way we obtain for the specific heat, along a thermo-
dynamic path parallel to the T axis, the expression

Cs�r0,T�
T

� �T − Tc�r0��−�T, �5.27�

with asymptotic critical exponents

�T � �0 if T � TGi�r0� ,

4 − n

2�n + 8�
� if T � TGi�r0� ,

�5.28�

which are identical to the previous ones obtained for hori-
zontal paths. Of course, we have also �T

eff�x�
�r
eff�x�.

B. Critical behavior along the quantum critical trajectory
„r0=r0c ,T\0…

Experimental information that characterizes the low-
temperature behavior of a quantum system can be obtained
by fixing the nonthermal control parameter r0 at its QCP
value r0c and decreasing the temperature along the so-called2

quantum critical trajectory. Hence, this case deserves particu-
lar attention.

At r0=r0c and T→0 the field �5.4� becomes

t�r0c,T� = A�n,d�u0T�, �5.29�

so that the dimensionless correlation length �5.3� takes the
form

el* = �A�n,d�u0�−1/2T−�/2�1 + � T

T*����n+2�/2�n+8�

,

�5.30�

where we have defined the characteristic temperature T* and
the exponent � as

T* = � �

�n + 8�Kdu0
�1/�

�A�n,d�u0��/2�, �5.31�

� = 1 −
�

2
� . �5.32�

Equation �5.30� provides two different asymptotic behaviors
on decreasing the temperature toward the QCP. Defining for
the correlation length and susceptibility the critical expo-
nents �T and �T as ��T−�T and ��T−�T, we have
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�T ��
�

2
�1 −

n + 2

n + 8
��

�
�� if T � T*,

�

2
if T � T*,� �5.33�

with �T=2�T.
This equation shows that, on decreasing the temperature

along the quantum critical trajectory, a crossover temperature
T* exists which separates two different low-T regimes in the
influence domain of the QCP. The effective correlation
length exponent, which describes the crossover between
these two regimes, can be easily found by rewriting Eq.
�5.30�, in terms of the suitable crossover parameter �=T /T*,
as

el* = �A�n,d�u0�−1/2�T*�−�/2h1��� , �5.34�

where the new scaling function h1��� is given by

h1��� = �−�/2�1 + ����n+2�/2�n+8�. �5.35�

Then, for the effective exponent �T
eff���, we find

�T
eff��� = −

d ln h1���
d ln �

=
�

2
�1 −

n + 2

n + 8

��

1 + ����

�
��

�5.36�

which reduces to the asymptotic values in Eq. �5.33� for �
�1 and ��1, respectively.

We now consider the singular part of the free energy den-
sity along the quantum critical trajectory which, using �5.30�,
can be written as:

Fs�r0c,T� � �A�n,d�u0�d/2Td�/2�1 + � T

T*���d�n+2�/2�n+8�

.

�5.37�

From this, with Cs�r0c ,T� /T�T−�T, it immediately fol-
lows that

�T ��2 −
d�

2
+

n + 2

n + 8

d�

2
if T � T*,

2 −
d�

2
if T � T*,

�5.38�

with �T�0 for dcu
�q��d�4. Note that in both cases the hy-

perscaling relation 2−�T=d�T is satisfied. As for the corre-
lation length, an effective specific heat exponent can be eas-
ily obtained from Eq. �5.37� as a function of the crossover
parameter T* /T.

Equations �5.33�–�5.38� are particularly interesting be-
cause they show in a transparent way the effects of quantum
critical fluctuations through the shift exponent, which is
strictly related to the Matsubara-frequency reduction proce-
dure and hence to the quantum nature of the system under
study. Also the predicted crossover which should occur on
decreasing the temperature through T* is of interest espe-
cially because it may constitute a stimulating suggestion for
experiments.

Notice that we have chosen here to express the asymptotic
values of the exponents �T and �T in terms of the phase

boundary exponent �, just with the aim to underline these
important features. The explicit values of �T and �T to first
order in �=4−d are presented in Table III.

As a conclusion of this section, it is worth mentioning that
previous results suggest also that another crossover occurs
on increasing r0 to r0c �Tc�r0�→0 as r0→r0c

− � between the
critical regimes found by approaching the critical line at
fixed r0�r0c and the QCP along the quantum critical trajec-
tory �r0=r0c ,T→0�. It is easy to show that this crossover,
like those explored before, can be described again in terms of
effective exponents as functions of the appropriate crossover
parameter 0���=Tc�r0� /T�1, with T→Tc

+�r0� and r0→r0c
− .

This can be performed along the same lines used for the
previous two crossovers, but we prefer to postpone the prob-
lem to the next section where we present a unified frame-
work of all crossovers which occur at a fixed r0�r0c on
decreasing the temperature within the disordered phase.

VI. A UNIFIED DESCRIPTION OF CROSSOVERS FOR r0

�r0c IN TERMS OF TWO-PARAMETER EFFECTIVE
EXPONENTS

The former analysis shows clearly that the scenario close
to the QCP, which emerges on approaching the phase bound-
ary along vertical paths for decreasing T at fixed r0�r0c
within the disordered phase, is richer than the one for hori-
zontal thermodynamic trajectories. Here we want to show
that all the vertical crossovers that take place within the re-
gion of the phase diagram delimited by the critical line and
the quantum critical trajectory can be globally described in
terms of two-parameter scaling functions or related effective
exponents. This interesting feature allows one to have a
transparent unified picture of the complex competition be-
tween thermal and quantum fluctuations close to the QCP.
Without loss of generality, we focus on the correlation func-
tion �and hence on the directly related susceptibility� but the
crossovers of the other thermodynamic quantities can be
studied similarly. Within this general framework one can eas-
ily reproduce all the asymptotic behaviors which may have
direct experimental interest.

From the basic equation �5.3� and the representation
�5.18� of the distance from the critical line t�r0 ,T�, it is
straightforward to check that one can write

� � �0�A�n,d�u0�−1/2�T*�−�/2H��1,�2� . �6.1�

Here

TABLE III. Values of �T and �T to first order in � along the
quantum critical trajectory.

��k� ,�l� T�T* T�T*

�T �T �T �T

�l
2 3

2 − �

2 −4+ 7
2� 4�n+11�+�n−10��

4�n+8� −
2�n+14�−21�

n+8

−i�l and 	�l	 1− �

4
−2+2� 2�n+14�+�n−4��

2�n+8� −
24−�22−n��

2�n+8�
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H��1,�2� = �2
−�/2�1 − �1�−1/2�1 + �2

��1 − �1�−�/2��n+2�/2�n+8�

�6.2�

is a scaling function of the two natural crossover parameters
�we use here more convenient notations to avoid possible
confusion�

�1 =
Tc�r0�

T
, �2 =

T

T* , �6.3�

with 0��1�1 and �20, where �1=0 and �1=1 correspond
to r0=r0c and r0�r0c, respectively.

Since we wish to include in the analysis also the possibil-
ity Tc�r0�→0 as r0→r0c

− , it is now convenient to define the
effective exponent of interest as

�T
eff
„T,Tc�r0�… = −

d ln �„T,Tc�r0�…
d ln�T − Tc�r0��

. �6.4�

Then, working in terms of the parameters �1 and �2, after
some tedious but straightforward calculations, we obtain for
�T

eff the noteworthy expression

�T
eff��1,�2� =

�

2

1 − �1

1 − �1
�1 +

n + 2

2�n + 8�
�

�2
�

�1 − �1
���/2 + �2

�


�1 −
2�1 − �1

��
��

�� . �6.5�

Equations �6.2� and �6.5� are the basic results to describe
properly all crossovers that occur on approaching the critical
line along paths parallel to the T axis in the phase diagram.

We consider explicitly the following asymptotic cases.
�i� �1→1 �T→Tc

+�r0��0�. In this case we easily see that
Eq. �6.5� reduces to

�T
eff��1 → 1,�2� � �T

eff��1,�2c� =
1

2�1 +
n + 2

2�n + 8�



�

1 + ��/2�2c
−��1 − �1��/2� , �6.6�

where �2c=Tc�r0� /T*. In particular, when

	 = ��/2�2c
−��1 − �1��/2 � 1, �6.7�

the effective exponent �6.6� assumes the asymptotic value

�T
eff��1 → 1,�2c� �

1

2
�1 +

n + 2

2�n + 8�
�� , �6.8�

which reproduces the W result in �5.21�. On the contrary,
when 	�1, Eq. �6.6� gives the MF value

�T
eff��1 → 1,�2c� �

1

2
. �6.9�

Of course the MF-W crossover line is determined by 	�1,
which yields, consistently, the Ginzburg line found before.

�ii� �1=0 �Tc�r0�=0, r0=r0c�. In this case Eq. �6.5� reduces
to

�T
eff��1 = 0,�2� =

�

2
�1 −

n + 2

n + 8

�2
�

1 + �2
���

�
�� , �6.10�

and, in agreement with Eq. �5.33�, we get

�T
eff��1 = 0,�2 � 1� �

�

2
�1 −

n + 2

n + 8
��

�
�� �6.11�

and

�T
eff��1 = 0,�2 � 1� �

�

2
. �6.12�

�iii� 0��1�1, �2��2c=Tc�r0� /T*→0 �r0→r0c
− �. Under

these conditions, a crossover between the classical W regime
and that along the quantum critical trajectory occurs as T
→Tc

+�r0� with Tc�r0�→0 for r0→r0c
− .

From the general equation �6.5�, one finds

�T
eff��1,�2c → 0� =

�

2

1 − �1

1 − �1
�1 +

n + 2

2�n + 8�
��2c

� �1 − �1
��−�/2


�1 −
2�1 − �1

��
��

� + O��2c
2��� =

�

2

1 − �1

1 − �1
�

+ O��2c
� � = �

�

2
, �1 → 0,

1

2
, �1 → 1.

�6.13�

Since ��1 for dcu
�q��d�4 for all quantum models �see

Table II�, we get

1

2
� �T

eff��1,�2c → 0� �
�

2
. �6.14�

In particular, for transverse-Ising-like models as d→3+ one
has �T

eff��1 ,�2c→0��1/ �1+�1�, so that 1 /2��T
eff��1 ,�2c

→0��1 and hence 1��T
eff��1 ,�2c→0��2/ �1+�1��2. The

previous results suggest that, for systems well described by
the model action �2.1�–�2.3� with ��k� ,�l�=�l

2, accurate sus-
ceptibility measurements as T→Tc

+�r0� sufficiently close to
the QCP should signal an increasing of the exponent �T from
the value �T=1 to �T=2 as Tc�r0�→0 when r0→r0c

− . This
static �d→3+� extrapolation prediction appears to be in very
good agreement with available experimental data for quan-
tum ferroelectrics and other systems with quantum structural
phase transitions43,44 and for transverse-Ising-type magnetic
materials.45 It is also worth mentioning that our static RG
results agree with alternative approaches around d=3 based
on conventional quantum RG treatments1,19,30 and field-
theoretic techniques.25 This constitutes a clear proof of
matching consistency between static and dynamic theories as
d→3+.

For quantum models with −i�l and 	�l	, sufficiently close
to the QCP we have �T

eff��1 ,�2c→0�� 3
4 �1−�1� / �1−�1

3/2� and
hence 1

2 ��T
eff��1 ,�2c→0��

3
4 and 1��T

eff��1 ,�2c→0�
��3/2��1−�1� / �1−�1

3/2��3/2.
Coming back to the general equation �6.5� for 0��1�1

and �20, with T→Tc
+�r0� we get
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� � �T
eff��1,�2� � �/2, �6.15�

where the correlation length critical exponent �
�T=�r

= 1
2 �1+ �n+2� /2�n+8��� characterizes the finite-temperature

classical W critical regime. With n=1 and �l
2 dynamics, as

d→3+ we have

1.17 � �T
eff��1,�2� � �/2, �6.16�

which can be a good starting point for a comparison with
experimental findings.44,45 A similar result can be obtained
for other quantum models at d=3 by means of an appropriate
use of the general inequality �6.15�.

VII. OTHER CROSSOVER LINES FOR r0�r0c AND THE
GLOBAL PHASE DIAGRAM

We now focus our attention on the region of the phase
diagram to the right side of the quantum critical trajectory
�r0�r0c�. Here we are sufficiently far from the critical line
but still in the influence domain of the QCP. As mentioned in
Sec. V, also the physics of this region is fully contained in
the general equation �5.3� for the dimensionless correlation
length � /�0�el* �here we assume �0=1�. Of course, to ex-
tract the correct physics for r0�r0c we must consider the full
expression �4.5� for t�r0 ,T� which, for the next develop-
ments, can be conveniently written in terms of g=r0−r0c
�1 �to leading order in u0� as

t�r0,T� � g + A�n,d�u0T� + Kd�n + 2�u0T��G� g

T2/�� − G�0�� ,

�7.1�

or, equivalently, as

t�r0,T� � g + Kd�n + 2�u0T�G� g

T2/�� , �7.2�

in view of the definition �4.4� of A�n ,d�.
Due to the peculiar competing effects of the two small

parameters g and T that enter Eqs. �7.1� and �7.2� for t�r0 ,T�
and, hence, all the relevant thermodynamic quantities such as
susceptibility, specific heat, and so on, different low-
temperature regimes may occur. We consider here the two
limit cases g /T2/��1 and g /T2/��1.

�i� g /T2/��1. Under this condition, Eq. �7.1� yields

t�r0,T� � g + A�n,d�u0T�, �7.3�

so that the correlation length is given by

� � �g + A�n,d�u0T��−1/2 
 1 + �n + 8�Kd�u0

�
�T�g

+ A�n,d�u0T��−�/2��n+2�/2�n+8�

. �7.4�

Notice that, when r0=r0c, Eq. �7.4� reduces to Eq. �5.30�
and hence all the results of Sec. V B are reproduced, as ex-
pected.

From Eq. �7.4� two asymptotic regimes appear.
When g�A�n ,d�u0T�, the properties are essentially con-

trolled by temperature so that, as T→0 with g�0, but T

� �A�n ,d�u0�−1/�g1/�, one finds for � and Cs /T the behaviors
already obtained at r0=r0c involving the crossover tempera-
ture T*. This regime will be called the “renormalized MF
�RMF� regime” �RMF1 and RMF2 for T�T* and T�T*,
respectively�.

In the opposite case g�A�n ,d�u0T�, it is easy to check
that

�−2 � �g + A�n,d�u0T��1 + �n + 8�Kd�u0

�
�Tg−�/2�−�n+2�/�n+8�

� g + A�n,d�u0T� �7.5�

and

Cs�r0,T�
T

�
d

2
��� − 1�A�n,d�u0g�d−2�/2T�−2, �7.6�

where now g dominates and A�n ,d�u0T� represents the lead-
ing T-dependent deviation from the �T=0� MF behavior �Q
regime� of the correlation length as g→0+. This will be
called the Q1 regime. Of course, the crossover between the
previous low-T regimes is signaled by the crossover line in
the phase diagram

T1�r0� = �A�n,d�u0�−1/��r0 − r0c�1/�, �r0  r0c� . �7.7�

It is worth noting that this is symmetric with the critical line
with respect to the quantum critical trajectory r0=r0c.

�ii� g /T2/��1. Now, one needs the leading contribution to
G�g /T2/�� for g /T2/��1 in the representation �7.2�. This de-
pendence is different for the three classes of quantum models
here considered1,17,19,35 and hence it is convenient to discuss
separately the three cases.

�ii�1 ��l
2� dynamic. With g /T2�1, it is1,35

G� g

T2� � ��d/2�2d/2−1�g/T2��d−2�/4e−�g/T2
. �7.8�

So, for t�r0 ,T� we find

t�r0,T� � g +
n + 2

�2��d/2u0Td−1�g/T2��d−2�/4e−�g/T2
, �7.9�

to be compared with Eq. �7.3� in the opposite regime. Then,
straightforward calculations show that, as T→0, the correla-
tion length and the singular part of the specific heat reduce to

�−2 � g +
n + 2

�2��d/2u0Td−1� g

T2��d−2�/4

e−�g/T2
�7.10�

and

Cs�r0,T�
T

�
d

2�2��d/2 �n + 2�u0g�3d−3�/4T�d−8�/2e−�g/T2
.

�7.11�

Comparing with the corresponding equations �7.5� and �7.6�,
which are valid within the region g /T2�1 of the phase dia-
gram below the line T1��A�n ,d�u0�−1/�d−1��r0−r0c�1/�d−1�, we
see that, crossing the additional line
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T2�r0� � �r0 − r0c�1/2, �7.12�

a crossover takes place, decreasing T, between the Q1 regime
and a new Q2 one characterized by a T-dependent deviation
from the �T=0� quantum MF behavior �Q regime� of the
correlation length as g→0+ weaker than the simple power
law form A�n ,d�u0Td−1 which enters the Q1 regime.

�ii�2 �−i�l� dynamics. Here, with g /T�1, we have17,19

G�g/T� �
1

2
��d/2�e−g/T, �7.13�

so that, for � and Cs�r0 ,T� /T, we get

�−2 � g +
n + 2

�4��d/2u0Td/2e−g/T �7.14�

and

Cs�r0,T�
T

�
d

2d+1�d/2 �n + 2�u0gd/2+1T�d−8�/4e−g/T.

�7.15�

Then, the line

T2�r0� � �r0 − r0c� �7.16�

signals a crossover between the two quasiquantum regimes
Q1 and Q2 which are characterized by the T-dependent de-
viations A�n ,d�u0Td/2 �Eq. �7.5�� and B�n ,d�u0Td/2e−g/T �Eq.
�7.14�� from the MF quantum critical behavior of �−2 as g
→0+.

�ii�3 	�l	 dynamics. This case, although characterized by
the same exponents � and �, is sensibly different from the
Bose-like one due to the peculiar effect of the sums over
Matsubara frequencies.1 Here, with g /T�1, one finds indeed

G� g

T
� �

�

6
��d/2���4 − d

2
�� g

T
�−�4−d�/2

. �7.17�

Then we have

�−2 � g +
�n + 2�
�4��d/2

�

3
��4 − d

2
�u0Td/2� g

T
�−�4−d�/2

�7.18�

and

Cs�r0,T�
T

�
�d

�4��d/2��4 − d

2
��n + 2�u0gd−3. �7.19�

Also here Eq. �7.16� defines the crossover line from the Q1
regime �with T-dependent deviation A�n ,d�u0Td/2� in �−2 to
the Q2 regime �Eqs. �7.18� and �7.19�� on decreasing T to
zero at fixed g.

Of course, in all cases, at T=0 one has �−2�g and Cs
=0 �Q regime�, as expected.

In summary, for all quantum systems here considered, on
the right of the quantum critical trajectory, when decreasing
the temperature to zero, one should observe two crossovers
among three regimes in the phase diagram, signaled by the
two lines with equations T1�r0���A�n ,d�u0�−1/��r0−r0c�1/�

and T1�r0���r0−r0c��/2 �with � /2�1/�� ending in the QCP,

whose behaviors are determined by the exponents � and �
strictly related to the quantum nature of the original micro-
scopic models. Above the first line, which is symmetric with
the phase boundary within the region r0�r0c, any system
exhibits, essentially, the low-T behavior expected for r0
=r0c. Above and below the second crossover line one finds,
for correlation length and susceptibility, the MF behavior in
r0−r0c �expected at T=0 as r0→r0c

+ � but different
T-dependent corrections which go to zero more and more
rapidly as T→0. Specifically, for the inverse susceptibility
�−1��−2, crossing the line T2�r0�, we find that the T contri-
bution changes from the power-law shape A�n ,d�u0T� for all

models, to a1u0Td−1��r0−r0c� /T2��d−2�/4e−��r0−r0c�/T2
if

��k� ,�l���l
2; to a2u0Td/2e−�r0−r0c�/T if ��k� ,�l��−i�l; and to

a3u0Td/2��r0−r0c� /T�−�4−d�/2 if ��k� ,�l��	�l	. The constants
ai �i=1,2 ,3� are defined in Eqs. �7.10�, �7.14�, and �7.18�,
respectively. Similarly, different regimes occur as T→0 at
fixed r0�r0c for the singular part of the specific heat which
goes in any case to zero �in agreement with the Nernst theo-
rem� with deviation from the Fermi-liquid-like behavior ex-
cept for systems with 	�l	 dynamics �see Eqs. �7.11�, �7.15�,
and �7.19�, respectively�.

The qualitative global low-temperature phase diagram in
the �r0 ,T� plane for quantum models here considered for
dcu

�q��d�4, which emerges from our previous static analysis,
is shown in Fig. 2.

FIG. 2. Qualitative global low-T phase diagram for
�d�4�-dimensional quantum systems that emerges from our static
framework. Here T is the temperature and r0 the nonthermal control
parameter. The continuous line denotes the phase boundary and the
noncontinuous ones indicate crossovers. The shaded region repre-
sents the ordered phase. Within the W region, a classical critical
behavior takes place �approaching the critical line along vertical
and horizontal paths�. The central region is characterized by a cross-
over between two different regimes �RMF1 and RMF2� which oc-
curs on decreasing T along the quantum critical trajectory, with
MF-like exponents renormalized through the shift exponent �. This
is signaled by the thin dashed horizontal line T=T*. In the region
Q1, the T-dependent contribution to the leading MF behavior in
�r0−r0c� of relevant macroscopic quantities has a power-law form
again related to �. The region Q2 corresponds to the disordered
quantum regime where the thermal fluctuations are negligible. The
exponent �, which marks the crossover between the quasiquantum
regimes Q1 and Q2, is identified as the dynamical critical exponent
z.
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It is remarkable that the quantum critical scenario, emer-
gent from the effective static RG treatment here performed,
is quite similar to that obtained in the literature1–4 using RG
approaches which involve directly the Matsubara-time axis.

Another key point to be clarified is the underlying role
played by the dynamical critical exponent z which character-
izes the intrinsic dynamics of a quantum system that exhibits
a QPT. In this connection, since our theory is strictly static in
nature, one may think that no direct information about the
different quantum models is possible. This is not the case and
information about z can be simply and consistently extracted
from our static results using the general feature in the theory
of critical phenomena that some scaling relations exist which
relate also static and dynamic exponents. Bearing this in
mind, by inspection of the results collected in Table I, it is
evident that the shift exponent � and the exponent �, which
enter in all our predictions as a manifestation of the under-
lying quantum degrees of freedom, are not independent but
are related by

� =
d − 2

� − 1
, �7.20�

which is valid for any quantum model considered through
this paper. On the other hand, in conventional quantum RG
approaches,1–4 when the dynamical exponent z is known, for
d+z�4 the shift exponent � is determined in terms of z
through the scaling relation2,28

� =
d + z − 2

z
. �7.21�

Equations �7.20� and �7.21�, together with a careful compari-
son of the global static phase diagram in Fig. 2 with the
corresponding ones derived by means of dynamic
theories,1,2,28 allows us to identify the exponent � as the ap-
propriate dynamic exponent z for the quantum systems under
study.

This identification establishes a bridge between our uni-
fied static analytical predictions and the conventional dy-
namic scenario. For instance, the crossover line T2�r0� in Fig.
2 can also be obtained from our leading order solution �
��r0−r0c�−1/2 setting �with �=z� �Tz�1, which coincides
with the value found in literature,1–6,28 signaling the so-called
quantum �T�z�1� to classical �T�z�1� crossover. Then,
when T�T2�r0�, we are in the “disordered quantum regime”
where the physics is essentially quantum in nature in the
sense that the fluctuations on scale � have energies much
greater than kBT �where kB is the Boltzmann constant here
assumed equal to unity�.

Within this scenario, the peculiar region around the quan-
tum critical trajectory in the phase diagram, above the cross-
over line T1�r0�, defines the usual “quantum critical region”
characterized by vertical path classical exponents renormal-
ized as a consequence of the QCP influence.

VIII. CONCLUSIONS

In summary, in this paper we have derived, within a gen-
eral nonconventional framework, the low-T quantum critical

scenario and the crossovers induced by the interplay of ther-
mal and quantum critical fluctuations for three wide classes
of systems which exhibit a QCP, also named a “black hole”
in the phase diagram.7 This has been performed, close to and
below the classical upper critical dimensionality, by using an
effective static treatment which combines a preliminary inte-
gration over degrees of freedom with nonzero Matsubara fre-
quencies, to obtain a classical GL free energy functional with
effective T-dependent coupling parameters, and then the
genuine Wilson RG philosophy. This allowed us to extract
the quantum critical properties, crossovers, and global phase
diagram of the original quantum systems. In our intrinsically
static RG picture, the explicit dependence of the effective
coupling parameters on temperature and the original micro-
scopic ones played a crucial role as a result of the competi-
tion between the classical and quantum critical worlds. The
emergent phase diagram was found to display all the relevant
features currently obtained via more familiar approaches.
Nevertheless, additional low-temperature crossovers were
found as a further manifestation of the QCP influence. It is
also worth emphasizing another relevant result of our static
approach. As is well known, the key feature that distin-
guishes the quantum and the most familiar finite-temperature
phase transitions is that, while the intrinsic dynamics of a
quantum system is irrelevant for the latter, it plays a crucial
role in the former. The link between statics and dynamics
close to a continuous QPT is usually measured by the value
of the dynamical critical exponent z, that describes the rela-
tive scaling of the time and the length scales in the problem.
Thus, settling the value of z is of a great interest, especially
to distinguish different quantum universality classes. This
objective is traditionally achieved using dynamic theories.1–6

However, although intrinsically static, our RG analysis al-
lowed us to obtain information about z through its identifi-
cation with a new exponent � which arises from the degrees
of freedom reduction procedure as strictly related to the shift
exponent � which characterizes the low-T shape of the phase
boundary.

In conclusion, we hope that our simple approach may give
further insight into the topical subject of QPTs and the ef-
fects of competition between thermal and quantum critical
fluctuations moving in the phase diagram along appropriate
thermodynamic trajectories to approach QCPs. On this mat-
ter, we believe that a relevant feature of our approach is that
it allows us to work within a single parameter space in con-
trast with the usual one where the temperature explicitly en-
ters the RG flows. As one is well known,1–6,19,28,30,31 to ex-
tract complete physical information, the renormalization of
the temperature forces one to perform the rather unnatural
change of the renormalized original coupling parameter u�l�
�see Eq. �2.3�� to the new one v�l�=u�l�T�l� when the rescal-
ing parameter l is sensibly increased by iteration of the RG
transformation. It is just this feature that implies inevitably
the traditional step-by-step procedure and prevents, in our
opinion, a unified and controllable description of the cross-
overs in the influence domain of a QCP. More serious prob-
lems emerge on physical grounds in the conventional RG
treatments when quenched disorder is present.1,46 We think
that the key idea of our method may be usefully employed,
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especially in this more complex situation, for properly ex-
ploring quenched disorder effects on quantum criticality by
overcoming the well-known troubles1,46 related to the
Matsubara-time direction introduced by path-integral repre-
sentation as an expression of the noncommutability of the
operators which enter the microscopic Hamiltonian.

It is also worth mentioning that the present scenario close

to the QCP, like the previous ones in literature,1–6,28 is
strictly valid to the one-loop approximation. Of course, cor-
rections to the Fisher exponent �, and hence to the related
ones via the usual scaling relations, are expected in higher-
order approximations. However, we believe that the previous
physical scenario will remain qualitatively unchanged for all
quantum systems of interest.
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