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Nonlinear response of single-molecule magnets: Field-tuned quantum-to-classical crossovers
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Quantum nanomagnets can show a field dependence of the relaxation time very different from their classical
counterparts, due to resonant tunneling via excited states (near the anisotropy barrier top). The relaxation time
then shows minima at the resonant fields H,*nD at which the levels at both sides of the barrier become
degenerate (D is the anisotropy constant). We showed that in Mn,,, near zero field, this yields a contribution
to the nonlinear susceptibility that makes it qualitatively different from the classical curves [Phys. Rev. B 72,
224433 (2005)]. Here we extend the experimental study to finite dc fields showing how the bias can trigger the
system to display those quantum nonlinear responses, near the resonant fields, while recovering a classical-like
behaviour for fields between them. The analysis of the experiments is done with heuristic expressions derived
from simple balance equations and calculations with a Pauli-type quantum master equation.
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I. INTRODUCTION

Single-molecule magnets are metal-organic clusters con-
taining a magnetic core surrounded by a shell of organic
ligands which isolates the clusters from one another (see,
e.g., Refs. 1). The most studied is Mn,,, whose core contains
eight Mn** and four Mn** ions strongly coupled via super-
exchange interactions. This gives a ground state spin S=10,
while the large Jahn-Teller distortion on the Mn3* sites leads
to a strong uniaxial anisotropy. The energy levels have a
bistable structure &,,~—Dm? (at zero field) with an energy
barrier U=g;—eg=70 K to be overcome for the spin rever-
sal. At low temperatures, these systems show the typical be-
haviors of superparamagnets, such as blocking or hysteresis,
yet at a much smaller scale of size. In addition, they form
molecular crystals in which all molecules are nearly identical
and, in the case of Mn,, acetate, have their anisotropy axes z
parallel to the crystallographic ¢ axis.

These properties make of molecular magnets model sys-
tems to investigate whether quantum phenomena, like tun-
neling, survive in mesoscopic systems.? As is well known,
tunneling probabilities decrease exponentially with the
height of the barrier to be tunneled through (a height that
grows with the system size).> At the same time, external
perturbations can induce decoherence that degrades the
quantum behavior.* Furthermore, an external magnetic field
H, detunes energetically the initial and final states for tun-
neling [i.e., those having +m and —(m+n) spin projections
along z]. Actually, many experiments have shown that tun-
neling takes place at those fields where states of opposite
orientation are degenerate, H,=nH, (n=0,1,2,... with H,
=2gupD=4200 Oe in Mn,,), whereas it is suppressed for
intermediate fields.®-8

Such a resonant tunneling enables the spins to approach
faster their equilibrium state, giving rise to steps in the hys-
teresis loops around H.=H,,*° and to maxima in the linear
dynamical susceptibility x;. In our previous work,'%!! we
found that resonant tunneling at H,=0 induces an extra con-
tribution to the nonlinear response 3, making it larger (in
magnitude) than the equilibrium one and having peaks re-
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versed with respect to the classical predictions.'>!3 In Refs.
10 and 11 the dependence of the response on temperature,
frequency, and orientation at zero field was studied. In this
Brief Report we show how the tunneling contribution to the
nonlinear response can be switched on and off by varying an
external field, tuning and breaking the resonances succes-
sively.

II. EXPERIMENTAL DETAILS

Single crystals of Mn;, acetate were grown following
the same procedure described in Ref. 11. In order to increase
the signal, the magnetic measurements were done on a
collection of oriented and glued crystals. In our previous
experiments'®!! we extracted the zero-field y;(w) by fitting
the dc field-dependent y(w) to a parabola. Clearly, this
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FIG. 1. Illustration of the method employed for measuring the
nonlinear susceptibilities (here 7=8 K, H_,=100 Oe, and w/2m
=2 kHz). x»(2w) and x3;(3w) are obtained, respectively, from the
slope and the quadratic coefficient of the second m,(2w)/hg and
third m3(3w)/hy harmonics of the output signal, measured as a
function of the ac field amplitude A,
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method is not applicable to study how y; depends on the
external magnetic field itself. For this reason, in the present
experiments we resorted to the more traditional method of
measuring nonlinear susceptibilities by detecting the differ-
ent harmonics x,(2w) and y;(3w) of the response. In the
absence of bias field one has y,=0 (see below). A nonzero
H_, however, makes y, the leading nonlinear term, and we
will mainly focus on it.

The fields, both dc and ac, were applied parallel to the
common anisotropy direction z of the clusters. We employed
the susceptibility option of a commercial multipurpose mea-
suring platform (physical properties measuring system,
PPMS) which uses a conventional inductive method. It en-
ables applying ac fields of amplitude hy=17 Oe, and selec-
tive detection of several harmonics of the exciting frequency
/27 <10 kHz. To separate the intrinsic nonlinear response
of the sample from the possible contamination due to non-
perfect harmonicity of the exciting ac coil, we measured the
output signals m,(2w)/h, and ms(3w)/h at several h. This
gives the sought-for intrinsic contributions y, and y; as the
terms proportional to A, and h(z), respectively. An example of
this procedure is shown in Fig. 1.
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III. RESULTS AND MODELIZATION

The so-measured linear and nonlinear susceptibilities of
Mn;, at T=8 K are shown in Fig. 2. The frequency-
dependent y; shows maxima near the resonant fields, Hy=0,
H,, and H,, where it approaches the equilibrium x{%. We also
display [Fig. 2(b)] the second and third harmonic compo-
nents measured at w/27=2 kHz. (The high noise-to-signal
ratio prevented us from obtaining reliable y; data for H,
>1 kOe.) The equilibrium nonlinear susceptibilities, also
shown, were obtained by differentiating x}% measured at the
lowest frequency w/27=1 Hz.

We clearly see that the magnitudes of the harmonics in-
crease in the neighborhood of the resonant fields Hy=0, H;,
and H,, where states of opposite S, are degenerate and the
tunnel channels open. In addition, in contrast to the behavior
of xj, both x, and x3; become, near H, larger than x5! and
ng_ Thus, when resonant tunneling sets in, the multihar-
monic response of these molecular clusters is enhanced.

In order to understand these results we have derived
simple expressions for the susceptibilities. This was done by
solving, as in Ref. 13, a system of balance equations for the
net population of the two anisotropy-potential wells:

ot

X2(2w) = x5!

X7 (1)

1+ 2iwr 1 +ion(1+2iwT)

2iwT eq 2i(w7)?

x:(3w) = x5!

The equilibrium x{9=(d*M_/dH%)/k! are the derivatives of
the magnetization curve, while 7, 7/, and 7’ are the relax-
ation time and its corresponding field derivatives (all evalu-
ated at the working field H,). At H,=0 we have x5?=0 [since
M_(H.)=-M_(-H_)] as well as 7 =0 [from «(H,)=7(-H.)].
Then x,(2w)—0 as H.—0, while in y;3 the last two terms
vanish. Therefore these equations extend the expressions of
Ref. 13 to nonzero bias fields.

The first Eq. (1) gives the ratio x;/x{"<1. In addition y,
depends, via the product w7, on how far the spins are from
thermal equilibrium. By contrast, the nonlinear susceptibili-
ties x, and y; include also terms depending on 7" and 7, i.e.,
on how sensitive 7 is to changes of H,. As a result, the
relaxation time does not simply “renormalize frequency,” as
occurs with y;, but it modifies the magnitudes of the nonlin-
ear responses. This effect is missed in modelizations of the
nonlinear susceptibility that fail to include the field deriva-
tives of 7.5 As we discuss next, extending our arguments at
H,=0 of Refs. 10 and 11, it is this property that makes the
quantum Y, and y; qualitatively different from the classical
ones.

According to Eq. (1), the relaxation time of the magnetic
clusters can be estimated from y; as x|/ wy; where x| and x/

1+3i0r XU (1+ion( +3i07) 2 (1 +2i00(1 +3i07) ' (1 +i0n)(1 + 2ien(1 + 3ier)

()

are the real and imaginary components of the first harmonic.
This 7is shown in the inset of Fig. 2. The data show minima
at the resonant fields, in contrast with the monotontic behav-
ior of 7in classical spins. At zero field and finite tempera-
tures, Mnj, spins are able to tunnel between those excited
magnetic states (m~2-4) for which this process is not
blocked by the internal bias caused by dipolar and hyperfine
interactions.'® This results in an effective barrier reduced by
a few magnetic levels, say U~ e,3—&,g, so that the thermo-
activated relaxation gets faster (SU~4 K). Tunneling is,
however, suppressed as soon as the external bias &,
=2gupmH_ exceeds the tunnel splitting A,,, slowing down
the relaxation (the full barrier has to be overcome). As a
result, 7 is minimum at zero field, whence 7/>0, while 7’
changes sign from negative to positive.

The same features are repeated every time the field brings
magnetic levels again into resonance H,=nX (2gug)D.
Therefore, tunneling becomes, at any crossing field, an addi-
tional source of nonlinear response via 7" and 7. In addition,
accounting for the signs of the 7 derivatives and Egs. (1) and
(2), one sees that the sign of the nonlinear susceptibilities can
be reversed with respect to the classical ones. [In the classi-
cal model 7 decreases monotonically with increasing field'*
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FIG. 2. (a) Linear susceptibility of Mn;, measured at 7=8 K
versus a magnetic field applied parallel to the anisotropy axis. X,
w/2m=1 Hz (~equilibrium); *, 500 Hz; A, 1 kHz; ¢, 2 kHz. Solid
symbols, real parts; open symbols, imaginary parts. The inset shows
the relaxation time 7, as obtained from x/wy; [see Eq. (1)] as well
as calculated for classical spins (line) (Ref. 14). (b) Second har-
monic susceptibility measured at the same temperature. * and o,
X>(2w) and x5(2w) at 2 kHz; X, equilibrium x5=(dx{%/dH_)/2.
Inset: *, x;(3w) at 2 kHz; X, X;‘l:(dz)(?q/dﬂf)/ﬁ The dotted ver-
tical lines mark the resonant fields H;=4200 Oe and H,=2H,.

(inset of Fig. 2), giving 7'<0 and 7' <0 for any H_; the
same occurs in a quantum thermoactivation model not in-
cluding the possibility of tunneling.!”-%]

It is interesting that both behaviors can be obtained in our
case just by varying the external field. For fields between
resonances, tunneling becomes blocked for all states and the
spins reverse by thermal activation over the total (“classi-
cal”) energy barrier. But when a crossing field is approached,
the strong nonlinearity of 7 shows up with its characteristic
contribution to the nonlinear susceptibilities via 7' and 7”.

To confirm this interpretation we have computed the non-
linear responses from Egs. (1) and (2) but incorporating the
relaxation time obtained by solving a Pauli quantum master
equation (as in Ref. 16). The results (Fig. 3) show that the
quantum contribution to y,(2w) is dominant near the reso-
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FIG. 3. Theoretical calculations of x,(2w) [Eq. (2)] for quantum
and classical spins. In the latter case, we used Brown’s classical
formula for 7 (Ref. 14) and in the former 7 was calculated by
solving Pauli’s quantum master equation, as described in Ref. 16.
Notice the difference in the y, axis scale (the solid equilibrium
curve is the same in both panels).

nances. This is due to the smallness of the tunnel splitting of
the relevant states for our Mn,, sample: A,~2 X 1072 K and
A,~7x 107" K. This means that the fields required to block
tunnel via these levels, albeit relatively small (~20 Oe and
1000 Oe, respectively), give rise to relatively large changes
in 7, and hence large 7" and 7. In the classical regime,
by contrast, the scale of change of 7 is determined by the
anisotropy field H, ~ (25— 1)H,. As this is very large in Mn,,
(=95 kOe), one has a comparatively slow decrease of 7 with
H,. This correspond to small values of the derivatives 7" and
7’ and in turn of the classical (nontunneling) nonlinear sus-
ceptibilities.

It is also worth mentioning that the tunnel splittings,
which determine the width of the 7 vs H, resonances, are
further broadened by dipolar and hyperfine interactions.'® In
fact, the master-equation calculations tell us that tunneling
via lower-lying states would give rise to enormous spikes in
X2 (A1p~7X 10719 K for the ground state). However, these
peaks are also very fragile, being easily suppressed by envi-
ronmental bias fields and therefore not observed experimen-
tally.

IV. SUMMARY AND CONCLUSIONS

We have studied experimentally the nonlinear suscepti-
bilities of a Mn,, acetate molecular magnet in the presence
of a longitudinal field H,. The standard method of measuring
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the harmonics of the response to an oscillating field
hy cos(wt) has been employed. By using several amplitudes
hy, we managed to isolate the genuine nonlinear susceptibili-
ties x, and y; (oscillating with 2wt and 3wt). The low signal-
to-noise ratio (in spite of gluing several single crystals) pre-
vented us from obtaining good y; data; fortunately, we
obtained nice curves for y,, which is the leading nonlinear
term when a bias field is applied.

The analysis and interpretation of the susceptibility curves
were done with help from expressions derived with a simple
system of balance equations (for the potential well popula-
tions). At variance with previous formulas, the field deriva-
tives of the magnetic relaxation time are captured by our
expressions. This, together with the known strong effect on
7(H,) of resonant tunneling near the barrier top, permitted us
to understand the experimental phenomenology. We also
plugged into those equations the 7(H_) obtained by solving a
Pauli quantum master equation for Mn,,, supporting this in-
terpretation.
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Near the resonant fields H, (matching the levels at both
wells) the x, vs H, curves neatly amplify the resonant tun-
neling, as this entails large d7/dH,. For fields between the
H,’s, tunneling is blocked and the response is governed by
the thermoactivation over the total barrier, as in the classical
case. This does not give such a large 7/, while its sign is
reversed with respect to the tunneling contribution. Thus the
sensitivity of x, to the local features of the 7(H,) curve pro-
vides an alternative method to assess if tunneling plays a role
in the relaxation of a superparamagnet; and if so, in what
field ranges it takes place.
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