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We present a simple theoretical description of the linear optical properties of zigzag single-walled BN
nanotube �BN-SWNT� ensembles within a single-particle approach that uses the Král-Mele-Tománek effective
Hamiltonian for modeling the electronic structure of such tubes. The perturbation-theory method of Genkin and
Mednis is applied to derive analytical expressions for both the real and imaginary parts of the linear optical
susceptibility ��1����, and these are used to calculate numerically the optical functions �dielectric function,
refractive index, reflectance and optical absorption coefficient� for several representative BN-SWNT en-
sembles. The results of our calculations are discussed in the light of the recent experimental observation by
Lauret et al. �Phys. Rev. Lett. 94, 037405 �2005�� of the optical absorption spectrum of an assemble of
large-diameter BN-SWNT’s. It is shown that the developed theory is capable of explaining the dominant
features of the experimental data, thus suggesting that the characteristic peaks observed in the optical absorp-
tion spectrum of BN-SWNT’s are due to direct interband electron transitions between pairs of van Hove
singularities in the electronic density of states of these tubes.
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I. INTRODUCTION

Although boron nitride nanotubes �BNNT’s� were first
predicted theoretically and successfully synthesized more
than a decade ago,1–4 their optical properties are only starting
to be explored. Recently, Lauret et al.5 have measured the
optical absorption spectrum for an assembly of single-walled
BN nanotubes �BN-SWNT’s� with an average diameter of
about 1.4 nm. The observed spectrum consists of three broad
absorption bands with the peak energies at 4.45, 5.5, and
6.15 eV and with the increasing peak intensity on going over
to the high-energy side. It has also been observed that the
lowest absorption band can be decomposed into two sub-
structures centered at 4.4 and 4.5 eV, respectively.

In Ref. 5, two possible interpretations of the above-
mentioned spectral features have been discussed. The first
interpretation is based on a simple noninteracting electron
model in which the optical resonances arise from interband
electron transitions. The second interpretation, on the con-
trary, suggests that a one-dimensional exciton effect plays an
important role in determining the optical transition energies.
While a definitive test for both of the above-mentioned mod-
els has not been provided in Ref. 5, the authors of that paper
have assumed that at least the lowest absorption band in the
observed spectrum should be attributed to the formation of
excitons rather than free electron-hole pairs.

A number of theoretical studies have also been reported
on the optical properties of BNNT’s, mainly of fairly small
diameters.6–10 Ng and Zhang6 used a semiempirical
localized-density matrix approach to calculate the optical
properties of a few BN-SWNT’s. However, their optical ab-
sorption spectra, as given in Ref. 6, show only one major
peak below 6 eV, which is quite different from the two-peak
structure of the spectrum observed in experiment.5

Marinopoulos et al.7 as well as Guo and Lin8 carried out
density-functional-theory calculations of the optical proper-
ties of BN-SWNT’s on the basis of both the local density and
random phase approximations—i.e., without considering
many-electron effects. The optical absorption spectra pre-
sented in Refs. 7 and 8 are also markedly different from the
experimental spectrum measured by Lauret et al.5 Two more
recent papers of Park et al.9 and Wirtz et al.10 have reported
first-principles calculations of the effect of electron-electron
and electron-hole interections on the optical absorption spec-
tra of BN-SWNT’s. According to their calculations the opti-
cal response of BN-SWNT’s is strongly dominated by exci-
tonic effects. However, both these studies have been focused
on a few selected small-diameter BN-SWNT’s, and no re-
sults have been obtained for BN-SWNT’s with diameter
similar to the average diameter dav=1.4 nm of the tubes used
in the experiment,5 probably owing to the limitation of com-
puter resources. This makes very difficult a direct compari-
son between theory and experiment. Nevertheless, in Ref. 10
it was claimed that both alternatives �the interband and the
excitonic transitions� discussed in Ref. 5 fail to explain the
nature of the two peaks at 4.45 and 5.5 eV in the absorption
spectrum. How then can we understand the experimental re-
sults?

Further experimental and theoretical work is evidently
highly desirable in order to overcome this difficulty. On the
theoretical side, what is first of all needed is a unified treat-
ment of the optical properties of BN-SWNT’s of different
diameters, including 1.4 nm-mean-diameter tubes used in the
experiment.5 It is, of course, desirable that such a treatment
would not require significant computational labor to carry
out numerical calculations of optical functions. The ab initio
many-electron Green’s function approach elaborated on in
Refs. 9 and 10, though remarkably accurate, can scarcely be
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applied to the study of a wide range of large-diameter tubes,
since it requires extensive computational power, which is not
available at present. This provides the motivation for the
present study in which we analyze the linear optical proper-
ties of BN-SWNT’s based on a simplified, but analytically
tractable, one-electron model proposed by Král and
co-workers11,12 to describe the band structure of BN-
SWNT’s within an effective-mass approximation. The ad-
vantage of the approach is that it enables an explicit expres-
sion to be obtained for the complex dielectric function of
BN-SWNT’s. The numerical calculations of the optical func-
tions, such as refractive index, optical absorption coefficient,
and reflectance, are then readily implemented for BN-
SWNT’s of different diameters. A detailed analysis of the
spectral behavior of these functions, which has not yet been
reported the literature, is the focus of the present study.13 We
are particularly interested in investigating to what extent the
simple model approach, in which excitonic effects are disre-
garded, can explain the experiment on the optical absorption
of BN-SWNT’s.5 The results of our calculations show that
rather close agreement with experiment can be achieved al-
ready within a single-electron approach. This indicates that
one-photon absorption spectroscopy is probably far from be-
ing an ideal tool to discriminate between the two above-
mentioned alternative pictures �the free electron-hole pairs
and the excitons� proposed for the interpretation of the ex-
perimental data—the situation closely resembling that ob-
served for single-walled carbon nanotubes �see Refs. 14–20�.

The rest of the paper is arranged as follows. In Sec. II we
describe the theoretical scheme used to evaluate the optical
functions of BN-SWNT’s. A series of numerical studies of
these functions is given in Sec. III. Our results for the optical
absorption spectra are also presented in this section and com-
pared with the experimental data obtained in Ref. 5. Finally,
our conclusions are collected in Sec. IV.

II. THEORETICAL DESCRIPTION

We first specify the model adopted in the present paper.
The system we are considering represents an ensemble of
very closely packed and well-aligned, identical BN-SWNT’s.
Their geometrical structure �see Fig. 1� is specified by a chi-
ral vector

C = l1a1 + l2a2, �1�

where a1=a0�1,0� and a2=a0�−1/2 ,�3/2� are the primitive
lattice translation vectors of a two-dimensional BN sheet
rolled up into a cylindrical form �a0=2.504 Å is the lattice
constant of the hexagonal BN�. A set of two integers �l1 , l2�
uniquely determines the type of the nanotubes under
consideration—i.e., their symmetry and radius. The latter is
defined as

R =
a0

2�
�l1

2 + l2
2 − l1l2. �2�

It was reported that BNNT’s prefer a zigzag structure dur-
ing their growth in current synthesis processes.21,22 There-
fore, our further treatment will be restricted to the zigzag

BN-SWNT’s with chiral index �l ,0�. To describe their elec-
tronic structure we use the Král-Mele-Tománek �KMT�
model11 based on an effective-mass approximation and de-
veloped in the context of a simple tight-binding theory for �
electrons. The KMT model treats only the electronic states
near the conduction �c� and valence �v� band edges at K and
K� points of the two-dimensional Brillouin zone of the BN
sheet. The effective k ·p Hamiltonian for these states associ-
ated with the K point can be represented in the form �cf. Eq.
�1� in Ref. 11�

H = �z� − i���x�x + �y�y� , �3�

where �x, �y, and �z are the Pauli spin matrices, �x��y� stands
for a partial derivative with respect to x�y�,
�=�3 �Vpp� �a0 /2 is the k ·p interaction parameter �Vpp� is
the �-electron transfer integral�, and � is a site diagonal
potential that distinguishes the B and N sites. Thus, � and �
are the two essential parameters that describe the KMT
model.

In view of the simplicity of the model, the energy eigen-
values and the corresponding eigenstates of H in Eq. �3� are
available in analytical form. Choosing axes x and y along the
circumference of a nanotube and its symmetry axis, respec-
tively, and imposing a periodic boundary condition in the x
direction, we obtain the � electron energy dispersion in the
vicinity of the K point as follows:

�sk = �s�mk = ± ���m
2 + �2k2, �4�

with

��m
2 = �2 + �2	�m

2 , �5�

where s�=c ,v� is the band index, ��=0, ±1� is the number
specified by the relation l=3M +� with integer M, the azi-
muthal quantum number m=0, ±1, ±2, . . . , ± �l−1� labels
the size-quantized energy subbands, and k is the electron
wave vector with two components: kx and ky. The former is
quantized to the allowed discrete values

FIG. 1. Fragment of a two-dimensional BN sheet with B and N
occupying alternate sites, which is rolled up in order to construct a
BN-SWNT specified by a chiral vector C. Also shown the Cartesian
coordinate axes x and y with the x direction along the circumference
of the tube and the y direction along the axis of the tube. The
vectors a1 and a2 with length a0 are primitive translation vectors.
The shaded hexagon represents a unit cell of the BN sheet.
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	�m =
1

3R
�3m − �� , �6�

while the latter �further labeled simply k� remains continuous
for an infinitely long nanotube and takes values within the
one-dimensional Brillouin zone −kBZ
k
kBZ, where
kBZ=� /a0

�3. The upper �lower� sign on the right-hand side
of Eq. �4� corresponds to the c�v� band. The energy bands
associated with the K� point are obtained by the replacement
�→−� in Eq. �4�.

The eigenstates of the Hamiltonian H in Eq. �3�, corre-
sponding to the two above-mentioned bands, are given by
the following pseudospinors:11

�ck = ��ck
�1�

�ck
�2� � =

ei�ck

�2
�
ke−i�k/2

�kei�k/2 � , �7�

�vk = ��vk
�1�

�vk
�2� � =

ei�vk

�2
� �ke−i�k/2

− 
kei�k/2 � , �8�

where


k =��ck + �

�ck
, �k =��ck − �

�ck
, �9�

�k = tan−1� k

	�m
� , �10�

and there is also an arbitrary phase factor exp�i�sk� related to
gauge invariance.

We now turn to the calculation of the optical properties of
the system under consideration. Based on the previous
studies,7,8 one can expect that the optical response of BN-
SWNT’s to light polarized perpendicular to the nanotube
axis is suppressed by a depolarization field, as originally pre-
dicted by Ajiki and Ando23 for single-walled carbon nano-
tubes �SWCNT’s�. Therefore, in this paper we focus our at-
tention on parallel polarization, when only the long-axis
component �yy

�1� of the second-rank optical susceptibility ten-
sor �ij

�1� is needed to describe the linear optical response of
BN-SWNT’s �further for simplicity we omit the subscripts
y�. The selection rules for the optical excitations relevant to
this polarization follow directly from the conservation law of
the quantized angular momentum m, as well as from the fact
that the photon momentum is extremely small on the micro-
scopic scale. Based on these simple arguments, one can con-
clude that in the case of the parallel polarization only the
vertical interband transitions, which couple the pairs of the
electronic states with the same m, are electrically dipole al-
lowed for each k.

In calculating the susceptibility ��1���� at angular fre-
quency �, we take as a starting point the Genkin-Mednis
dispersion formula for ��1����,24 obtained by using a general
formalism they developed to study the optical response �lin-
ear and nonlinear� of a two-band semiconductor system in
the dipole approximation. Within the independent nanotube
approximation, the expression for ��1���� may be written as

��1���� = −
e2

V�
	
k

	
s

	
s��s

f0��sk�

�
 Xss��k�Xs�s�k�

�s�s�k� + � + i�
+

Xss��k�Xs�s�k�

�s�s�k� − � − i�
� .

�11�

In this equation, V is the normalized volume of the system,
−e is the electron charge, ��s�s�k�=�s�k−�sk is the energy
distance between the bands s and s� at fixed value of k, � is
a phenomenological broadening factor regularizing the reso-
nant divergencies, which is assumed to be independent of k,
f0��sk� is the Fermi-Dirac distribution function, and X de-
notes the part of the electron coordinate operator in the crys-
tal momentum representation, which is diagonal only in k.
Therefore, the matrix element of the dipole transition be-
tween the s and s� bands is

Xss��k� =� usk
* �r��kus�k�r�d3r , �12�

where usk�r� is the periodic part of the Bloch eigenfunction.
Following the approach developed by Král et al.,11 we can

approximately express the Bloch amplitude usk
�K��r� around

the K point in terms of the periodic parts uK
�1��r� and uK

�2��r�
of the band-edge Bloch functions as follows:

usk
�K��r� = 	

j=1,2
�sk

�j�uK
�j��r� , �13�

where the expression for uK
�j��r� can be established on the

basis of the tight-binding approximation as

uK
�j��r� =

1
�N

	
n

e−iK·�r−Rn−dj���r − Rn − d j� . �14�

Here N is the total number of the sites occupied by B and N
atoms, which is given by

N = 2AL
��3

2
a0

2� =
4AL
�3a0

2
, �15�

where A is the length of the nanotube, L its circumference
length, ��3/2�a0

2 is the area of the BN sheet unit cell, and the
factor of 2 takes into account that there are two atoms in the
unit cell. The function ��r−Rn−d j� in Eq. �14� is the wave
function of a normalized � orbital for an atom located at
Rn+d j, Rn and d j being the position vectors of the nth unit
cell and the jth site in it, respectively.

In our work we are concerned with the situation in which
thermal effects are not important, so we can take f0��sk� in
Eq. �11� to be equal to 1 for the occupied electronic states of
the v band and 0 for the unoccupied states of the c band. In
this case, we then have
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��1���� =
e2

V�
	

m=−�l−1�

l−1

	
k

�Xcv�k��2
 1

�cv�k� − � − i�

+
1

�cv�k� + � + i�
� . �16�

Using Eqs. �7�–�10� and �12�–�14�, one obtains

Xcv�k� � Xcv�	�m,k�

=
1

2

�2

�ck
��ck

2 − �2
� �

�ck
k − i	�m�e−i��ck−�vk� �17�

and, hence,

�Xcv�k��2 =
�2��m

2

4�ck
4 . �18�

In the limit when the length of the nanotubes goes to
infinity, with �=A /V held constant, we can replace the sum-
mation over k in Eq. �16� by integration over the same vari-
able. The above-mentioned equation can be separated into
real and imaginary parts, and using Eqs. �4�, �5�, and �17�,
after some algebraic manipulations we obtain a lengthy but
tractable result:

Re ��1���� =
e2��

��2 	
m=−�l−1�

l−1
1

a�m
�

0

c�m

�1 + t2�−3�1 − t2�3

��Q1�m�z,t�Q2�m��,z,t�

+ Q1�m�− z,t�Q2�m��,− z,t��dt , �19�

Im ��1���� = �
e2��

��2 	
m=−�l−1�

l−1
1

a�m
�

0

c�m

�1 + t2�−3�1 − t2�4

��Q2�m��,z,t� − Q2�m��,− z,t��dt , �20�

where z=�� /2� and �=�� /2� are the dimensionless pho-
ton energy and the dimensionless broadening constant, re-
spectively. In addition, the following notations are used:

Q1�m�z,t� = a�m�1 + t2� − z�1 − t2� , �21�

Q2�m��,z,t� = �Q1�m
2 �z,t� + �2�1 − t2�2�−1, �22�

a�m =
��m

�
=�1 +

�2	�m
2

�2 , �23�

b�m =�a�m
2 +

�2kBZ
2

�2 , �24�

c�m =�b�m − a�m

b�m + a�m
. �25�

Although Eqs. �19� and �20� involve only elementary
functions, it does not seem possible to calculate ��1���� ana-
lytically for any � values, except the limiting case �→0,
which is considered below. However, these equations enable
numerical results for ��1���� at an arbitrary � value to be

readily obtained and those are shown in Sec. III.
In the long-wavelength limit ��→0�, where Im ��1�=0,

the integration with respect to t, involved in Eq. �19�, can
easily be carried out analytically to yield the following
simple formula for the important quantity ��1��0�, which ap-
pears when evaluating the index of refraction n0�n��=0�
=�1+4���1��0� in the transparency region:

��1��0� =
2e2��

3��2 f l
���� �

�kBZ
� , �26�

with

f l
���� �

�kBZ
� = 	

m=−�l−1�

l−1

F� �

�kBZ
,
	�m

kBZ
� , �27�

where the function F�x ,y� is defined as

F�x,y� =
1 + �3x2/2� + �3y2/2�

�1 + y2/x2��1 + x2 + y2�3/2 . �28�

Note that in the case when only interband transitions be-
tween the two azimuthal subbands with m=0 are taken into
account, Eq. �26� can be reduced to the formula obtained for
the zero-frequency susceptibility ��1��0� in Ref. 13.

To determine the observed optical properties of BN-
SWNT’s we need to know the complex optical dielectric
function ����=�1���+ i�2���, where the real �1��� and
imaginary �2��� parts of ����, connected with each other by
the Kramers-Kronig relation, are defined as

�1��� = 1 + 4� Re ��1���� , �29�

�2��� = 4� Im ��1���� . �30�

It is also convenient to express ���� in terms of the complex
refractive index N���=n���+ i	���:

���� = �N����2 = �n��� + i	����2, �31�

where n��� is the linear real refractive index defined by

n��� =
1
�2

��1��� + ��1
2��� + �2

2����1/2 �32�

and 	��� is the extinction coefficient,

	��� =
1
�2

�− �1��� + ��1
2��� + �2

2����1/2. �33�

The normal incidence reflectance R��� may then be calcu-
lated using the equation

R��� =
�n��� − 1�2 + 	2���
�n��� + 1�2 + 	2���

, �34�

while the optical absorption coefficient K��� is given in
terms of the above quantities by

K��� =
�

c

�2���
n���

, �35�

where c is the speed of light in free space.
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III. THE CALCULATED OPTICAL SPECTRA

To numerically calculate the optical functions defined by
Eqs. �29�–�35�, it is first of all needed to choose the appro-
priate values of the two parameters involved in the KMT
model: namely, � and �. In this paper, we adopt the values of
�=5.9 eV Å and �=2.2 eV, which are similar to those used
in Ref. 12. Note that the value of 2�=4.4 eV exactly corre-
sponds to the energy position of the first substructure of the
lowest absorption band observed in the experiment.5 The
above value is very close to that predicted by the density-
functional-theory calculations for the band gap of zigzag
BN-SWNT’s25–27 and is in the range of the experimental
energy-band-gap values reported in the literature.28–30

There is one more parameter entering the above
formulas—namely, ��—which describes the broadening of
the spectral resonances due to the finite lifetime of the ex-
cited electronic states. Its precise assessment would require
more experimental information on the energy relaxation rate
in BN-SWNT’s than it is available at present. Therefore, in
the numerical calculations below, we adopt the value ��
=44 meV, which, though reasonable, is rather arbitrary. We
have verified that, on varying �� around the above value,
only the width and the height of the peaks in the optical
spectra are changed, as should be expected. In this connec-
tion, we would like to stress that it is not our objective at this
stage to strive towards an agreement with the experiment5

with respect to the profile of the absorption lines. The point
is that the experimental lines seem to be inhomogeneously
broadened because of the presence of tubes with various di-
ameters and chiralities in the BNNT sample used in the ex-
periment. However, the real distribution of the nanotube ge-
ometry parameters in the sample is unknown, so that at
present it does not seem possible to carry out meaningful
calculations of the ensemble average of the optical functions.
Besides this, although the details of the structure of the
sample were not reported in Ref. 5, the authors of that paper
mentioned that it contained a small fraction of the material in
the form of different kind of nanoparticles, in particular hex-
agonal boron nitride �h−BN� particles. Meanwhile, one of
the ultimate goals of modern BNNT production technologies
is the fabrication of highly ordered arrays of identical
BNNT’s. Although at present this goal is still beyond our
reach, a first step in this direction has already been made
�see, e.g., Ref. 30�, and one can hope that, with the improve-
ment of experimental conditions and techniques, such arrays
of BN-SWNT’s with a uniform diameter and a uniform he-
lical angle will be available. Our analytical results presented
above are, strictly speaking, valid for just such ensembles of
BN-SWNT’s with the zigzag structure of 0° helicity. Actual
numerical calculations of the optical functions have been
performed for five representative ensembles of this type,
consisting, respectively, of BN-SWNT’s with indices �15,0�,
�17,0�, �18,0�, �19,0�, and �21,0�. The diameters of these
tubes are 1.20, 1.35, 1.43, 1.52, and 1.67 nm, respectively.
Hence, it is a �18,0� tube that has a diameter very close to the
average diameter of the tubes used in the experiment.5 Our
calculated optical spectra are shown in Figs. 3–5, which we
discuss further below.

However, we first consider the easiest functions to under-
stand: namely, the static dielectric constant �0=1+4���1�

��0� and the index of refraction n0=��0 at zero frequency—
i.e., in the transparency region. Based upon Eq. �26�, we
have calculated �0 and n0 for ensembles of identical BN-
SWNT’s with indices from �7,0� to �25,0�. The results are
presented in Fig. 2. The values of �0 and n0 are plotted for
three types of ensembles differing from one another by the
way the tubes are arranged. The first type corresponds to
densely packed tubes without gaps between them. In this
case the surface concentration � of aligned BN-SWNT’s in
the plane perpendicular to the longitudinal axis of the nano-
tubes is given by

� = 1/�R2. �36�

The two remaining types of ensembles correspond to arrays
of the same nanotubes arranged in two-dimensional qua-
dratic and triangular lattices, respectively, with the lattice
constant d approximately equal to the interlayer distance of
3.34 Å in h-BN. For a BN-SWNT array with a square-lattice
structure, the � is given by

� = 1/�2R + d�2, �37�

whereas in the case of a triangular-lattice structure,

� = 2/�3�2R + d�2. �38�

Note that the possibility of the formation of crystalline
bundles of BNNT’s with a squarelike structure has recently
been confirmed experimentally,30 while a triangular-lattice
structure for such bundles is hypothetical �cf. the inverse
situation for carbon nanotube bundles31� and is considered

FIG. 2. �a� Static dielectric constant �0 calculated for uniform
ensembles of BN-SWNT’s �l ,0� with l ranging from 7 to 25 and �b�
refractive index n0 at zero frequency for the same ensembles. Solid
dots, square, and open triangles show the results obtained for the
three types of BN-SWNT ensembles specified by Eqs. �36�–�38�,
respectively.
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here for illustrative purposes. It should also be noted that,
within the independent nanotube approximation we have
used, only the density of nanotubes per unit cross area, de-
fined by the above equations, is relevant here, affecting the
magnitude of the zero-frequency linear susceptibility ��1��0�
in accordance with Eq. �26�.

Our theoretical data in Fig. 2 clearly indicate the tendency
of both �0 and n0 to decrease with increasing the nanotube
radius R �or with increasing l� for all the three types of en-
sembles considered, the �0 values, as well the n0 ones, being
almost identical for the quadratic- and triangular-lattice
structures. Compared to the last ones, the closely packed
structure of BN-SWNT’s exhibits a considerable enhance-
ment of �0 and n0 for small-diameter tubes. This results from
the combination of Eqs. �26� and �36�. The function
f l

����� /�kBZ� in Eq. �26� for the zero-frequency susceptibility
��1��0� depends on R via the parameter 	�m �see Eq. �6��, but
only weakly because of the specific form of the function
F�x ,y� in Eq. �28�. Therefore, the susceptibility ��1��0� of the
ensemble of the closely packed BN-SWNT’s turns out to be
actually inversely proportional to the square of the nanotube
radius and, consequently, significantly increases with de-
creasing R. However, in this connection, a word of caution is
in order. The results of our calculation are, in general, less
reliable for the smallest BN-SWNT’s, since the effects
caused by the finite tube curvature �such as �−� hybridiza-
tion and the misalignment of the � orbitals at nearest-
neighbor atoms� are left out of account in the KMT model
used above. These effects are negligibly small for BN-
SWNT’s of somewhat large diameters �more than, say,
1 nm�, but they, certainly, may turn out to be important for
extra-small-diameter tubes, which we are not considering
here.

It is noteworthy that the behavior of �0 and n0 for an
ensemble of closely packed BN-SWNT’s is quite different
from that predicted for SWCNT bundles of similar structure,
where �0 and n0 are shown to be independent of R.14,15 This
directly reflects the difference between the electronic struc-
tures of these two types of nanotubes: conrary to the BN-
SWNT’s, which are wide-gap semiconductors with an almost
constant band gap independent of their diameters, the semi-
conducting SWCNT’s have a band gap which is approxi-
mately inversely proportional to the nanotube diameter.

Looking back at Fig. 2, it is also worthwhile to note that
the difference in the behavior of �0 and n0 for the three
above-mentioned BN-SWNT structures indicates a possible
way to discriminate between the closely packed structure of
the tubes and the quadratic �or triangular� one by measuring
the refractive index of the BN-SWNT sample in the trans-
parency region. A similar possibility for SWCNT samples
fabricated in the form of thin films has recently been realized
in an experiment by Tatsuura et al.32

Proceeding to the optical spectra presented in Figs. 3–6, it
should be noted that they have been calculated by combining
Eq. �36� with Eqs. �19� and �20� and, thus, are formally rel-
evant to ensembles of the closely packed BN-SWNT’s. How-
ever, the basic qualitative features of the spectra are insensi-
tive to how the tubes are packed in the ensembles, because
the density � enters Eqs. �19� and �20� only as a proportion-

ality factor. Therefore, the spectra in Figs. 3–6 are represen-
tative ones not only for the closely packed nanotube struc-
ture, but for the two other above-mentioned structures as
well.

For the sake of convenience, the optical functions in Figs.
3–6 are plotted versus the dimensionless photon energy
�� /2�. As is clearly seen from these figures, below the
threshold value �� /2�=1 all the spectra are featureless and
show a progressive increase of the optical functions as
�� /2� approaches the threshold. Above it characteristic
sharp peaks are observed, which can be attributed to dipole-
allowed direct optical transitions between successive pairs of
van Hove singularities in the one-dimensional density of
states of BN-SWNT’s. The mirror pairs of these singularities
occur at the edges of the valence and conduction energy
subbands with the same azimuthal indices m. The corre-
sponding electron transitions will further be designated by
the abbreviation vm→cm, while the corresponding peaks in
Figs. 3–6 are labeled simply m �=0, ±1, ±2, . . . �. As follows
directly from Eqs. �4�–�6�, for BN-SWNT’s �l ,0� with
l=3M �further referred to as type-I nanotubes� the energy

FIG. 3. Theoretical spectra of the real �1��� �left panels� and
imaginary �2��� �right panels� parts of the complex dielectric func-
tion ���� calculated for five uniform BN-SWNT ensembles consist-
ing, respectively, of the tubes with chirality indices �15,0�, �17,0�,
�18,0�, �19,0�, and �21,0�. The latter ones are indicated in the upper
part of the panels. The numbers 0 , ±1 , ±2, . . . on the top of the
peaks correspond to our labeling convention for the interband elec-
tron transitions �for details, see the text�.
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subbands with m�0 are doubly degenerate in m for any
value of k, but the degeneracy is lifted in the case of BN-
SWNT’s �l ,0� specified by the index l=3M ±1 �further re-
ferred to as type-II nanotubes�. As a consequence, the num-
ber of peaks observed in the optical spectra for the latter type
of the nanotubes is larger than that for the former one �cf.,
for example, Figs. 3�a� and 3�b��. The overall trend to more
peaks, as well as to smaller energy spacing between two
neighboring peaks, for thicker tubes belonging to one and the
same above-mentioned type of BN-SWNT’s is also clearly
seen in Figs. 3–6.

Inspection of Fig. 3 shows that there are two important
differences in both the �1��� and the �2��� spectra for the
type-I and type-II nanotubes. First, as seen from Figs. 3�a�,
3�c�, and 3�e�, the central, most prominent peak in the �1���
spectra of the type-I nanotubes actually consists of two sub-
peaks of almost equal height, which correspond to v0→c0
and v±1→c±1 transitions, respectively. Contrary to this, the
central peak in the �1��� spectra of the type-II nanotubes has
no double-peak structure, but it has a narrow shoulder, cor-
responding to the v1→c1 transition and situated on the right-
hand wing of the peak �see Figs. 3�b� and 3�d��. Second, the
�1��� spectra of the type-I nanotubes exhibit sharply asym-

FIG. 4. Calculated spectra of the refractive index n��� for the
same BN-SWNT ensembles, as in Fig. 3. Resonant interband elec-
tron transitions are indicated by the numbers on the top of the
peaks, as in Fig. 3.

FIG. 5. Calculated spectra of the reflectance R��� for the same
BN-SWNT ensembles, as in Fig. 3. Resonant interband electron
transitions are indicated by the numbers on the top of the peaks, as
in Fig. 3.
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metrical, deep dip structures situated between all the nearest-
neighboring peaks except the first two. In the right-hand
neighborhood of the peaks the corresponding �1��� drasti-
cally changes from a large positive value to a small positive
�or negative� one. Although such dip structures exist in the
�1��� spectra of the type-II nanotubes as well, they are shal-
low rather than deep.

The aforesaid differences in the �1��� spectra of the
type-I and type-II nanotubes have their counterparts in the
corresponding �2��� spectra. Indeed, as seen from Figs.
3�f�–3�j�, the most prominent peak in the �2��� spectra al-
ways corresponds to the v1→c1 transition. However, in the
�2��� spectra of the type-I nanotubes there is a nearest-
neighboring peak corresponding to the v0→c0 transition,

situated on the left-hand side of the central peak, whereas for
the type-II nanotubes a narrow shoulder is observed instead
of the former peak. Besides this, we again observe deep dip
structures in the �2��� spectra of the type-I nanotubes and, in
contrast, rather shallow ones in the �2��� spectra of the
type-II nanotubes.

Finally, there is one more point to be noted regarding the
spectra in Fig. 3. The amplitudes of all the peaks in these
spectra become smaller as the diameters of the nanotubes
become larger. This implies that, if one desires to attain a
larger optical response of BN-SWNT ensembles, one should
preferably use those fabricated from small-diameter tubes.

The above-mentioned features of the real and the imagi-
nary parts of ���� are directly reflected in the n��� and the
R��� spectra, which are shown in Figs. 4 and 5, respectively.
In particular, the spectral behavior of n��� is qualitatively the
same as for �1��� except for the obvious reduction in the
intensity of the dips. Nevertheless, the refractive index n���
of the type-I nanotube ensembles changes rather significantly
in the vicinity of the resonances, the number of which, in its
turn, depends on the diameter of the nanotube. This means
that the n��� spectra could be used in experiment to identify
the preferred nanotube geometry in a BN-SWNT ensemble.
It is also interesting to note the just above the threshold
�� /2�=1 the peak values of n��� are rather large �nmax

�3� for the smallest nanotubes considered. It is well known
�see, e.g., Ref. 33� that the linear refractive index n��� enters
the figure of merit of electro-optical materials. The above-
mentioned relatively large peak values of n���, as well as a
relatively large refractive-index change in the vicinity of the
resonances, indicate that BN-SWNT’s are possibly a suitable
material to be used in the design of nanoscale optoelectronic
devices, such as, for example, electro-optical modulators in
the ultraviolet region.

Turning next to Fig. 5, we find the characteristic peak and
dip structures, the spectral position of the former being re-
lated to the energetic separation between pairs of van Hove
singularities in the electronic density of states of both the
types of BN-SWNT’s. Again we observe that the details of
the behavior of R��� are sensitive to the types of the nano-
tubes, but the overall trend is that the reflectance R��� de-
creases with increasing the nanotube diameter. Comparing
Figs. 5 and 6, it is also worth noting that experimental mea-
surements of the reflectance spectra, which directly display
the sharp characteristic features corresponding to the inter-
band transitions above the threshold �� /2�=1, might also
be useful to investigate an opaque BN-SWNT sample in the
ultraviolet region below the threshold, which is inaccessible
to the optical absorption spectroscopy.

We finally turn to a discussion of the calculated optical
absorption spectra displayed in Fig. 6, which show the char-
acteristic resonances associated with the electron transitions
between the occupied valence-band states and the unoccu-
pied conduction-band ones. It is interesting to note that the
spectral profiles of the resonances in this figure, as well as
their relative strength, are markedly different from those in
the �2��� spectra, reflecting the effect of the refractive-index
dispersion on the absolute strength and the shape of the op-
tical resonances. In particular, the resonances observed in

FIG. 6. Calculated optical absorption spectra for the same BN-
SWNT ensembles, as in Fig. 3. Resonant interband electron transi-
tions are indicated by the numbers on the top of the peaks, as in Fig.
3.

MARGULIS et al. PHYSICAL REVIEW B 74, 245419 �2006�

245419-8



Fig. 6 are apparently more broadened and asymmetrical than
those in Figs. 3�f�–3�j�, exhibiting a sawtoothlike behavior.
This is a direct consequence of rather broad dip structures in
the n��� spectra �see Fig. 4�. Furthermore, the presence of
n��� in the denominator of Eq. �35� for the absorption coef-
ficient K��� reverses the relative intensity of the second and
the subsequent peaks in the K��� spectra as compared to
their relative intensity in the �2��� spectra �cf. Figs. 6 and
3�f�–3�j��. Thus, our calculations reproduce the finding of
Lauret et al.5 that the second and third absorption bands in
the observed optical spectrum have larger peak intensities
than both the substructures of the first band.

As has already been mentioned, a BN-SWNT �18,0� has a
diameter which is very close to the average diameter of the
tubes used in the experiment by Lauret et al.5 For an en-
semble of such tubes, it follows from Fig. 6�c� that the first
four absorption peaks occur at 4.4, 4.7, 5.6, and 6.7 eV, re-
spectively. These values are in reasonable agreement with
the experimental peak energy values of 4.4, 4.5, 5.5, and
6.15 eV.5 The calculated spectrum in Fig. 6�c� also correctly
reproduces the experimental observation by Lauret et al.5

that the absorption substructure at 4.4 eV possesses a smaller
strength than that at 4.5 eV. In this regard our calculations
agree with the experimental data better than any others pub-
lished to date and place theory and experiment in good quali-
tative agreement. However, there are some discrepancies be-
tween the theoretical results and the experimental ones with
respect to the peak energy positions as well as to the shape of
the peaks in the spectrum. Some differences may come from
the simplifications involved in the theory as well as from
uncertainties in the values of the two relevant parameters �
and � entering the KMT model we used. Indeed, the above
chosen values of these parameters, although reasonable, are
not known exactly. As to the simplifications used in the
theory, it should be noted that the calculations going beyond
the independent-particle approximations and including
electron-electron repulsion and electron-hole attraction may
have only a relatively small net effect on the peak energy
positions,9,10 which can be taken into account by phenom-
enologically adjusting the parameter �. In addition, some
discrepancies between theory and experiment can be attrib-
uted to experimental uncertainties in the measured peak en-
ergy positions as well to the fact that the experimental
sample contained BN-SWNT’s of different diameters. In the
context of the above discussion, we would like to remind the
reader that our primary intention in this paper is not to ex-
plain completely the absorption spectrum observed experi-
mentally, but rather to investigate to what extent a simple
one-electron-theory approach, disregarding exchange-
correlation effects, is able to provide a qualitative under-
standing of the optical properties of BN-SWNT’s. Our cal-
culations presented above clearly demonstrate that the KMT
model of the electronic structure of BN-SWNT’s, based on a
single-particle approximation, offers a convenient, physically
motivated scheme for studying such properties and the re-
sults thereof can form a reasonable background for future
theoretical studies. We believe that these along with even

more controlled experimental optical-absorption studies, car-
ried out on BN-SWNT samples containing monosized and
well-aligned nanotubes, may yield a somewhat better agree-
ment between theory and experiment than has been achieved
in this paper.

IV. SUMMARY

In this work, we have investigated theoretically the linear
optical properties of zigzag BN-SWNT’s of different diam-
eters. We have considered a number of uniform ensembles of
such tubes and developed an approach that allows one to
treat their optical response more or less analytically. The
Král-Mele-Tománek effective Hamiltonian11 has been used
to model the electron energy dispersion and the single-
electron eigenstates of the system. Within this model, ex-
plicit analytical formulas �Eqs. �19� and �20�� have been ob-
tained for the real and imaginary parts of the linear optical
susceptibility ��1����, which have been used to calculate nu-
merically the spectra of the dielectric function ����, the re-
fractive index n���, the reflectance R���, and the optical
absorption coefficient K��� of BN-SWNT ensembles con-
taining tubes of somewhat large diameters ��1.2 nm�. All
these spectra have been shown to exhibit prominent charac-
teristic peaks associated with interband electron transitions
between pairs of van Hove singularities in the electronic den-
sity of states of the tubes. The calculated optical absorption
spectra have been compared with the experimental spectrum
measured by Lauret et al.5 for an assembly of BN-SWNT’s
with an average diameter of about 1.4 nm. It has been found
that our theoretical spectrum for an ensemble of BN-
SWNT’s �18,0� with a diameter of 1.43 nm qualitatively re-
produces the characteristic features observed experimentally
in Ref. 5. However, some discrepancies between theory and
experiment still exist, and further experimental and theoreti-
cal developments are needed to achieve a complete under-
standing of the optical properties of BN-SWNT’s. In particu-
lar, the importance of excitonic effects in BN-SWNT’s is still
an open question, and only the experiments have to decide
the controversy regarding the nature of the optical transitions
in these novel materials.

To conclude, we should stress we are not claiming that a
one-electron-theory approach, which we have relied on in
this paper, suffices to describe all the details of the optical
response of BN-SWNT’s. However, it is striking to realize
the very good first-order description that such a theory is
able to provide for the experimental data. This feature should
be borne in mind when the results of more refined calcula-
tions are discussed.
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