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A general linear stability analysis of simple metal nanowires is presented using a continuum approach that
correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition
between surface tension and electron-shell effects leads to a complex landscape of stable structures as a
function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deforma-
tions, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures
with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar,
and octupolar cross sections. These nonintegrable shapes are compared to previous results on elliptical cross
sections, and their material-dependent relative stability is discussed.
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I. INTRODUCTION

Free-standing metal nanowires, suspended from electrical
contacts at their ends, have been fabricated by a number of
different techniques.1 Metal wires down to a single atom
thick were extruded using a scanning-tunneling microscope
tip.2,3 Metal nanobridges were shown to “self-assemble” un-
der electron-beam irradiation of thin metal films,4–6 leading
to nearly perfect cylinders down to four atoms in diameter,
with lengths up to 15 nm. Systematic studies of nanowire
properties for a variety of materials were carried out using
the mechanically controllable break junction technique.7–12

As the ultimate nanoscale conductors, metal nanowires are of
great interest for nanotechnology.

A remarkable feature of metal nanowires is that they are
stable at all. Most atoms in such a thin wire are at the sur-
face, with small coordination numbers, so that surface effects
play a key role in their energetics. Indeed, macroscopic ar-
guments comparing the surface-induced stress to the yield
strength indicate a minimum radius for solidity of order
10 nm.13 Below this critical radius, plastic flow would lead
to a Rayleigh instability,14 absent some other stabilizing
mechanism.

A series of experiments on alkali metal nanocontacts7–9

identified electron-shell effects as another key mechanism
influencing nanowire stability. Energetically favorable struc-
tures were revealed as peaks in conductance histograms, pe-
riodic in the nanowire radius, analogous to the electron-shell
structure previously observed in metal clusters.15 A super-
shell structure was also observed,8 in the form of a periodic
modulation of the peak heights. Recently, electron-shell
structure has also been observed for the noble metals
gold,10,11 copper,12 and silver.12

A theoretical analysis using the nanoscale free-electron
model16,17 �NFEM� found that nanowire stability is deter-
mined by the competition of these two key factors, surface
tension and electron-shell effects. Both linear13,18,19 and
nonlinear20,21 stability of axially symmetric nanowires were
investigated. It was found that the surface-tension-driven in-
stability can be completely suppressed in the vicinity of cer-
tain “magic radii.”

It is well known in the physics of crystals and molecules
that a Jahn-Teller deformation breaking the symmetry of the

system can be energetically favorable. In metal clusters,
Jahn-Teller deformations are also very common,22,23 and
most of the observed structures show a broken spherical
symmetry. By analogy, it is natural to assume that for nano-
wires, too, a breaking of axial symmetry can be energetically
favorable, and lead to more stable deformed geometries.

Recently, as a first step toward a stability analysis of wires
with a more general cross section, elliptical wires were ex-
amined within the NFEM.24 The sequence of stable cylindri-
cal and elliptical nanowires allows for a consistent interpre-
tation of experimental conductance histograms for alkali
metals, including both the electronic-shell and supershell
structures.25

Note that while the experimental manifestations of
electron-shell structure are similar in metal clusters and
nanowires, the Jahn-Teller effect plays out quite differently
in these two systems. The fundamental difference is that sur-
face effects tend to stabilize clusters, while they are the
source of the Rayleigh instability in nanowires.18 Therefore,
Jahn-Teller deformations of clusters are very common and
typically rather small,22,23 while they only occur for a minor-
ity of stable nanowires and can be rather large.

Cylindrical and elliptical nanowires are special, in the
sense that the classical electron dynamics in these structures
is integrable. An open question is whether integrability per se
plays a special role in nanowire stability. On the one hand,
the shell effect is enhanced in integrable systems,26 which
argues in favor of integrability. On the other hand, the Jahn-
Teller effect is driven by the lifting of degeneracy due to
symmetry breaking, and the degeneracy of states with angu-
lar momentum ±�� about the axis of symmetry is broken to
leading order by a perturbation of the radius �r���
�cos�2���, where � is the azimuthal angle, which renders
the dynamics chaotic. Furthermore, for the case �=1 �qua-
drupolar cross section�, the surface-energy cost of the pertur-
bation is somewhat less than that of an elliptical deformation
with the same aspect ratio.

In this paper, we perform a general linear stability analy-
sis for straight metal nanowires, including arbitrarily shaped,
nonintegrable cross sections. By considering all symmetry-
breaking deformations, it is rigorously shown that the cylin-
der is the only generically stable structure. We derive the
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complete stability diagram for cylinders, and discuss why
axial symmetry is special—in the sense that 75% of the ex-
perimentally observed alkali metal nanowires are indeed cy-
lindrical, and that proportion goes up with increasing con-
ductance.

Nevertheless, a wide range of structures with broken axial
symmetry is found at low conductance values, most of which
show a reduced relative stability compared to the axially
symmetric ones. We examine wires with quadrupolar,
hexapolar and octupolar cross sections, and compare these
nonintegrable shapes to the previous results on elliptical
cross sections. Their relative stability and their degree of
deformation are material dependent, and we examine these
properties for the alkali and noble metals.

This paper is organized as follows. The assumptions and
features of the nanoscale free-electron model are summa-
rized in Sec. II, followed by the presentation of the linear
stability analysis in Sec. III. Cylindrical wires are examined
in Sec. IV, whereas Sec. V considers nonintegrable cross
sections. The material dependence of our results is discussed
in Sec. VI. Finally, we summarize and discuss our results in
Sec. VII. The Appendix provides additional technical details
of our calculations.

II. NANOSCALE FREE-ELECTRON MODEL

Guided by the importance of conduction electrons in the
cohesion of metals, and by the success of the jellium model
in describing metal clusters,15,27 the nanoscale free-electron
model16,17 replaces the metal ions by a uniform, positively
charged background that provides a confining potential for
the electrons. The electron motion is free along the wire, and
confined in the transverse directions. Due to the excellent
screening28,29 in metal wires with G�G0, where G0=2e2 /h
is the conductance quantum, electron-electron interactions
can in most cases be neglected. The surface properties of
various metals can be fitted by using appropriate surface
boundary conditions.24,30

The NFEM is especially suitable for alkali metals, but is
also adequate to describe shell effects due to the conduction-
band s electrons in other monovalent metals, such as noble
metals, and in particular, gold. The experimental observation
of a crossover from atomic-shell to electron-shell effects
with decreasing radius in both metal clusters31 and
nanowires9 justifies a posteriori the use of the NFEM in the
latter regime.

Since a nanowire connecting two macroscopic electrodes
is an open quantum system, the Schrödinger equation is most
naturally formulated as a scattering problem. The fundamen-
tal theoretical quantity is the scattering matrix S�E� connect-
ing incoming and outgoing asymptotic states of conduction
electrons in the electrodes. Thermodynamic properties can be
expressed in terms of the scattering matrix through the elec-
tronic density of states32

D�E� =
1

2�i
Tr�S†�E�

�S

�E
−

�S†

�E
S�E�� , �1�

from which the relevant thermodynamic potential for an
open system, namely, the grand canonical potential 	, is
obtained as

	 = −
1



� dE D�E�ln�1 + e−
�E−��� . �2�

Here 
= �kBT�−1 is the inverse temperature and � is the elec-
tron chemical potential, specified by the macroscopic elec-
trodes. Equations �1� and �2� include a factor of 2 for spin
degeneracy.

Any extensive thermodynamic quantity can be expressed
as the sum of a Weyl expansion, which depends on geometri-
cal quantities such as the system volume V, surface area S,
and integrated mean curvature C, and an oscillatory shell
correction due to quantum-size effects.26 In particular, the
grand canonical potential �2� can be written as

	 = − �V + �sS − sC + �	 , �3�

where the energy density −�, surface tension coefficient �s,
and curvature energy −s are, in general, material- and
temperature-dependent coefficients. On the other hand, the
shell correction �	 can be shown, based on very general
arguments,29,33,34 to be a single-particle effect, which is well
described by the NFEM.

The ionic degrees of freedom in the NFEM are modeled
as an incompressible fluid.13,20,21 This takes into account, to
lowest order, the hard-core repulsion of the core electrons as
well as the exchange energy of the conduction electrons. Any
atom-conserving deformation of the structure is therefore
subject to a constraint of the form

N � kF
3V − �skF

2S + �ckFC = const, �4�

where kF is the Fermi wave vector. The parameters �s and �c
can be adjusted so as to fix the values of the effective surface
tension and curvature energy in the free-electron model to
the material-specific values, as discussed in detail in Sec. VI.
However, the shell correction �	 is �to leading order�
independent24,34 of �s and �c.

In this paper, the shell correction �	 is calculated quan-
tum mechanically, from Eqs. �1� and �2�. Nonetheless, in
interpreting our quantum-mechanical results, it is useful to
appeal to semiclassical arguments,26,35 according to which
the shell correction can be computed by a Gutzwiller-type
sum36 over classical periodic orbits, which takes the form of
an integral over the length L of the nanowire20

�	 =
EF

�F
�

0

L

dz�
po

Apo�z,T�cos�kFLpo�z� + �po	 , �5�

where EF and �F are the Fermi energy and Fermi wave-
length, respectively. Here the sum includes all classical peri-
odic orbits lying in the plane of the wire’s cross section, Lpo
is the orbit length, and �po is an orbit-dependent phase.
Semiclassically,26 the temperature dependence of �	 appears
only in the dimensionless amplitude Apo, which also depends
on the stability, symmetry, and length of the periodic orbit.
The orbit amplitude has the form26

Apo 
 �kFLpo�−�po
�po

sinh �po
, �po �

�kFLpoT

2TF
, �6�

where TF=EF /kB is the Fermi temperature, and �po=1 for a
continuous family of degenerate orbits, which arise when the
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cross section has the form of an integrable billiard, such as a
disk or an ellipse, and �po=3/2 for an isolated orbit in a wire
with a cross section whose dynamics is fully chaotic �see
Ref. 37 for details�.

It is useful to define the rms radius � of the cross section,
which is related to the cross-sectional area by A=��2. Then
Lpo��, so that �	
�−1 for an integrable cross section, and
decays exponentially for temperatures exceeding the radius-
dependent characteristic temperature T��TF /kF�. As shown
below, these semiclassical estimates of the temperature and
size dependence of �	 are in accord with our quantum-
mechanical results.

III. LINEAR STABILITY ANALYSIS

Let us consider a wire with uniform cross section aligned
along the z axis. Its surface is given by the radius function
r=R�� ;� ,�� in cylindrical coordinates r ,� ,z, where the pa-
rameters �� ,�� describe the cross-section geometry, chosen
such that the cross-sectional area is given by A=��2,
whereas the shape is determined by a set of dimensionless
parameters, composing the vector �. Without loss of gener-
ality, we can associate �=0 with a cylindrical wire.

A small z-dependent perturbation of a wire of length L

and initial cross section ��̄ ,�̄� can be written in terms of a
Fourier series as

��z� = �̄ + ����z� = �̄ + ��
q

�qeiqz,

��z� = �̄ + ����z� = �̄ + ��
q

�qeiqz, �7�

where the dimensionless small parameter � sets the size of
the perturbation. Assuming periodic boundary conditions, the
perturbation wave vectors q must be integer multiples of
2� /L. In order to ensure that ��z� and ��z� are real, we have
�−q=�q

* and �−q=�q
*.

The structural stability of metal nanowires is governed by
the response to long-wavelength perturbations,13,17,18,24 while
the response to short-wavelength perturbations controls sur-
face quantum fluctuations in long wires.19,38 Since we con-
sider free electrons, the stationary Schrödinger equation is
given by −��= �2meE /�2��, where � is the Laplace opera-
tor in cylindrical coordinates. In the long-wavelength limit,
the Schrödinger equation may be solved in the adiabatic ap-
proximation, for which transverse and longitudinal motions
decouple. Therefore, we use the ansatz ��r ,� ,z�
=��r ,� ;z���z�, and neglect all z derivatives of the trans-
verse wave function �, so that the Schrödinger equation be-
comes

 �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 +
2me

�2 En�z���n�r,�;z� = 0, �8�

 �2

�z2 +
2me

�2 �E − En�z����n�z� = 0. �9�

First, the transverse problem �8� is solved at fixed z in order
to determine the transverse eigenenergies En�z�. With our

choice of cross-section parametrization, their dependence on
geometry can be written as

En��,�� =
�2

2me
n���

�
�2

, �10�

where the function n��� remains to be determined. For an
axisymmetric wire, the n are given by the roots of the
Bessel functions, whereas for an elliptical cross section, the
n are given by the roots of the modified Mathieu
functions.24 In general, the shape-dependent n��� are deter-
mined numerically �see the Appendix for details�.

We are then left with a series of effective one-dimensional
scattering problems �Eq. �9�	 for the longitudinal wave func-
tions �n�z�, in which the transverse eigenenergies
En(��z� ,��z�) act as additional potentials for the motion
along the wire. These scattering problems can be solved us-
ing the Wentzel-Kramers-Brillouin �WKB� approximation:16

The grand canonical potential is given by

	�T;�,�	 = �
0

�

dE−
�f

�E
���E;�,�	 , �11�

where f = �1+exp��E−�� /kBT	�−1 is the Fermi function at
temperature T and chemical potential ��EF, and � is given
by

��E;�,�	 = −
8EF

3�F
�

0

L

dz�
n
E − En��,��

EF
�3/2

. �12�

The sum runs over all open channels n, for which En�� ,��
�E.

The energetic cost of a small deformation of the wire can
be calculated by expanding Eq. �11� as a series in the param-
eter �,

	 = 	�0� + �	�1� + �2	�2� + O��3� . �13�

A nanowire with initial cross section ��̄ ,�̄� is energetically

stable at temperature T if and only if 	�1���̄ ,�̄�=0 and

	�2���̄ ,�̄��0 for every possible deformation ��� ,��� satis-
fying the constraint �4�.

A straightforward expansion of Eq. �11� at T=0 yields

	�1�

L/�F
= 4�

n

�EF − Ēn

EF
�0 · ��Ēn − 2Ēn

�0

�̄
� , �14�

	�2�

L/�F
= EF�

q
�q/�̄

�q
�†A�� A��

A�� A��
��q/�̄

�q
� , �15�

where the elements of the matrix A in Eq. �15� are given by

A�� = �
n

4Ēn

EF
3/23�EF − Ēn −

Ēn

�EF − Ēn

� ,

A�� = − �
n

4Ēn�

EF
3/2�EF − Ēn −

Ēn

2�EF − Ēn

� ,
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A�� = �
n

1

EF
3/22Ēn�

�EF − Ēn −
Ēn� · �Ēn��

†

�EF − Ēn

� , �16�

and A��=A��
† . Here Ēn=En��̄ ,�̄�, Ēn�= ���En��̄,�̄ denotes the

gradient of En with respect to �, and �Ēn��ij

= ��2En /��i�� j��̄,�̄ is the matrix of second derivatives, all

evaluated at ��̄ ,�̄�.
The number of independent Fourier coefficients in Eq. �7�

is restricted through the constraint �4� on allowed deforma-
tions. Hence, after evaluating the change of the geometric
quantities V, S, and C due to the deformation, we can use Eq.
�4� to express �0 in terms of the other Fourier coefficients.
This yields an expansion �0=�0

�0�+��0
�1�+O��2�, with

�0
�0�

�̄
=

�s

kF�̄ − �sP̄
P̄� · �0,

�0
�1�

�̄
=

1

2�kF�̄ − �sP̄�
�

q
�q/�̄

�q
�† − kF�̄ �sP̄�

�s�P̄��T �sP̄�
��q/�̄

�q
� ,

�17�

where the function P̄= P��̄� is related to the perimeter P by

P��̄ ,�̄�=2��̄P̄, the first derivative P̄�= ���P��̄ is a vector,

and the second derivative P̄�= ��2P /��i�� j��̄ is a matrix.
Note that in the long-wavelength limit considered here, Eq.
�17� is independent of the parameter �c appearing in the
constraint �4�, so that our results are independent of the value
of �c. Inserting the expansion for �0 in Eq. �14�, the first-
order change of the energy under a constant N perturbation
is given by

��F

L
	�1��

N
=

4
�EF

�
n

�EF − ĒnĒn� −
2�sĒn

kF�̄ − �sP̄
P̄�� · �0,

�18�

and the second-order term is given by Eq. �15�, with the
matrix A replaced by

Ã�� = A�� +
4kF�̄

kF�̄ − �sP̄
�

n

Ēn
�EF − Ēn

EF
3/2 ,

Ã�� = A�� −
4�sP�

kF�̄ − �sP̄
�

n

�EF − Ēn

EF
,

Ã�� = A�� −
4�sP̄�

kF�̄ − �sP̄
�

n

�EF − Ēn

EF
. �19�

The stability condition 	�2���̄ ,�̄��N�0 requires that the sta-

bility matrix Ã be positive definite. The results at finite tem-
perature are obtained in a similar fashion, by integrating Eq.
�11� numerically.

IV. GENERAL STABILITY OF CYLINDERS

As a first application of the method presented in the pre-
vious sections, we derive the complete stability diagram for
cylinders, i.e., we determine the radii of cylindrical wires
that are linearly stable with respect to arbitrary small, long-
wavelength deformations. We choose the following general
form of the radius function describing the surface of the
wire:

R��� = ��1 − �
m

�m
2

2
+ �

m

�m cos�m�� − �m�	� .

�20�

The sum runs over a set M of positive integer values, and the
deformation parameters �m governing deviations from axial
symmetry are such that �m�m

2 �2. Note that the dipole de-
formation �m=1� corresponds, in leading order, to a simple
translation, plus higher-order multipole deformations. There-
fore we can restrict our analysis to m�1.

At first sight, considering arbitrary deformations, and
therefore theoretically an infinite number of perturbation pa-
rameters ��m ,�m� seems a formidable task. Fortunately, we

find that the stability matrix Ã for a cylinder is diagonal, and
therefore the different Fourier contributions of the deforma-
tion decouple.

This can be seen within perturbation theory for small de-
viations from axial symmetry, derived in the Appendix: for
energy levels n that are nondegenerate at �=0, i.e. levels
with orbital quantum number �n=0, we obtain

�En�0�
��i

= 0 and
�2En�0�
��i�� j

� �ij , �21�

whereas for two energy levels n and n� that are degenerate at
�=0, i.e., those for which �n=−�n��0, we get

�En�0�
��i

= −
�En��0�

��i
�22�

and

�2En�0�
��i�� j

+
�2En��0�

��i�� j
� �ij . �23�

Since the matrix A, given by Eq. �16�, includes a sum over
all open channels, the relations �21�–�23� imply that A is
diagonal. Furthermore, one can straightforwardly show, by
expanding the perimeter function P in a series in �, that

P̄�= ���P��=0=0 and the matrix P̄�= ��2P /��i�� j��=0 is di-
agonal as well. Therefore, we conclude that the stability ma-

trix Ã, including the corrections from the constraint �4�, is
diagonal. This also shows that the first-order correction �18�
to 	 is identically zero for cylinders. This result implies a
great simplification of the problem, since it allows to deter-
mine the stability of cylindrical wires with respect to arbi-
trary deformations through the study of a set of pure m de-
formations, i.e., deformations as given by Eq. �20� with only
one nonzero �m.

Figure 1 shows the stable cylindrical wires in dark gray as
a function of temperature. The surface tension was fixed at
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the value39 for Na, �s=0.22 N/m �i.e., �s=1.1�. The tem-
perature is given in units of the characteristic temperature
T�=TF /kF�, reflecting the temperature dependence of the
shell correction �5� to the wire energy: Since stability is de-
termined by a competition between the surface and shell
contributions,17,18 the maximum temperature of linear stabil-
ity scales with T�, the surface contribution being only weakly
dependent on temperature. The x axis is given by the cor-
rected Sharvin conductance

GS = G0 kF
2�2

4
−

kFP
4�

+
1

6
� , �24�

where P is the perimeter of the cross section.
The stability diagram was obtained by intersecting a set of

individual stability diagrams allowing cos�m��-deformations
with m=2, . . . ,8. Multipolar deformations become increas-
ingly costly with increasing m, their surface energy scaling
as �m2, and we find that including m�6 deformations does
not further modify the final result.

Figure 1 confirms the extraordinary stability of a set of
wires with so-called magic radii, which were identified in
previous studies of stability under axisymmetric perturba-
tions alone.13,18,19,21 They exhibit conductance values G /G0
=1 ,3 ,6 ,12,17,23,34,42,51, . . .. However, some wires that
are barely stable when considering only axisymmetric
perturbations,13,18,19 e.g., G /G0=5 ,10,14, . . ., shown in light
gray in the top panel of Fig. 1, are found to be unstable when
allowing more general, symmetry-breaking deformations.

The heights of the dominant stability peaks in Fig. 1 ex-
hibit a periodic modulation, with minima occurring near
GS /G0=9, 29, 59, 117, 170, and 255. The positions of the
first four minima are in perfect agreement with the observed
supershell structure in conductance histograms of alkali
metal nanowires,8 while we predict the next two minima of
the series. The supershell structure is expected to continue at
larger conductance, but may be obscured by atomic-shell ef-
fects in experiments. Interestingly, the nodes of the super-
shell structure, where the shell effect for a cylinder is sup-
pressed, are precisely where the most stable deformed
nanowires are predicted to occur �see Ref. 24 and the discus-
sion below�. Thus symmetry-breaking distortions and the su-
pershell effect are inextricably linked.

Linear stability is a necessary—but not a sufficient—
condition for a nanostructure to be observed experimentally.
The linearly stable nanocylinders revealed in the above
analysis are in fact metastable structures, and an analysis of
their lifetime has recently been carried out within an axisym-
metric stochastic field theory.21 In the lower panel of Fig. 1,
the zones of linear stability are superimposed on the activa-
tion energy �E �solid line�, calculated in Ref. 21, which
determines the nanowire lifetime � through the Kramers for-
mula �=�0 exp��E /kBT�. As can be seen, there is a strong
correlation between the size of the activation barriers and the
height of the stable fingers in the linear stability analysis.
This suggests that the linear stability analysis, with tempera-
ture expressed in units of T�=TF /kF�, provides a good mea-
sure of the total stability of metal nanowires. In particular,
the “universal” stability21 of the most stable cylinders is re-

FIG. 1. Stability of metal nanocylinders versus electrical conductance and temperature. Dark gray areas indicate stability with respect to
arbitrary small deformations. Temperature is displayed in units of T�=TF /kF� �see text�. The surface tension was taken as 0.22 N/m,
corresponding to Na �Ref. 39�. For comparison, the upper panel also shows wires that are stable toward axisymmetric deformations only
�light gray areas�, but which are unstable when allowing symmetry-breaking deformations. The lower panel includes a plot of the activation
energy �E �solid line�, reproduced from Ref. 21, which determines the nanowire lifetime �=�0 exp��E /kBT�.
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produced, wherein the absolute stability of the magic cylin-
ders is essentially independent of radius �aside from the
small supershell oscillations�.

For a given material, the typical value �E for the magic
cylinders is universal, i.e., it depends only on the surface
tension21 �s

�E � 0.6��2�s/me, �25�

where me is the electron effective mass, which is of order the
free-electron mass in simple metals. When comparing the
absolute stability for different materials, it is not sufficient to
simply compare the heights of the stable fingers in Fig. 1,
which depend only logarithmically on the ratio �s /EFkF

2

through Eqs. �3� and �5�; the �s
1/2 dependence of the activa-

tion barrier, which determines the lifetime, must be taken
into account explicitly �see Sec. VI�.

Since the activation barriers are calculated asymptotically
for low temperatures,21 they exhibit all of the fine structure
of the low-temperature shell correction. This fine structure is
also seen in the linear stability analysis at low temperature
�see Fig. 1, lower panel�. However, at higher temperatures,
the fine structure in the shell potential is smoothed out, as
described in Eqs. �5� and �6�, and some of the separate low-
temperature stability zones merge into arches at higher tem-
peratures. Prominent examples of this phenomenon, the un-
usual thermodynamics of which is discussed in Ref. 13,
occur at GS /G0
67, 80, and 255.

V. BREAKING AXIAL SYMMETRY

In a recent paper,24 the stability of wires with elliptic cross
sections was determined. Elliptic deformations are special, in

that the system remains integrable. Here we focus on wires
with a cos�m��-deformed cross section �i.e., having m-fold
symmetry�, a special case of Eq. �20� with only one nonzero
�m, which renders the system nonintegrable. In the follow-
ing, we will discuss quadrupolar deformations with m=2,
which are the most energetically favorable of the multipole
deformations, as well as the higher-order multipoles with
m�6. Deformations with higher m cost significantly more
surface energy, and thus yield fewer stable configurations.
The stability analysis of wires with five- and sixfold symme-
try reveals only a few barely stable configurations �besides
the axisymmetric wires discussed above�, whereas for m
�6 no stable deformed wires were found at all in the tem-
perature range considered.

Figure 2�a� shows the stable configurations �thick curves�
for quadrupolar Na wires at temperature T=0.03T�. These
are determined by the intersection of the stationary curves
�	�1���̄ , �̄2��N=0 and the convex regions, �	�2���̄ , �̄2��N�0.

Also shown are the thresholds to open new conducting chan-
nels, i.e., the energy eigenvalues of the two-dimensional bil-
liard comprising the cross section of the wire. Note that the
stable structures lie in the gaps of the spectrum of channel
thresholds, as is the case for axisymmetric wires.18

Combining results for all temperatures yields the stability
diagram shown in Fig. 2�b�. Note that the maximum defor-
mation of the stable structures decreases strongly with in-
creasing conductance. Nanowires with highly deformed
cross sections are only stable at small conductance, unlike
the magic cylinders, which are predicted to occur for arbi-
trarily large conductance �until the transition to crystalline
structures at sufficiently large radius�.

The most stable wires are found at the same conductance
values, and with similar semi-axis ratios, as the stable ellip-

FIG. 2. �Color online� �a� Lin-
early stable quadrupolar ��2�0�
Na wires �thick lines� at tempera-
ture T=0.03T�, shown in the con-
figuration space of the two param-
eters �2 and � describing the
quadrupolar shape, R���
=���1−�2

2 /2+�2 cos�2��	. � is
related to the Sharvin conductance
by Eq. �24�, which gives �GS /G0

�kF� /2. The thin gray lines show
the thresholds for the opening of
new channels. Some geometries
are shown on the right axis, illus-
trating their deviations from axial
symmetry. �b� Stability diagram
for quadrupolar Na wires. The
gray �color� scale reflects the
value of �2 for the stable wires.
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tical wires, discussed in Ref. 24. This is not surprising, since
the ellipse can be approximated to leading order by a quad-
rupole,

Rell��� � �1 −  2� + �2 + 7 3�cos�2�� + 3 2 cos�4��

+ 5 3 cos�6�� + O� 4� , �26�

where  � 1
4 �!2−1� / �!2+1� is given in terms of the aspect

ratio !. The maximum temperature Tmax up to which the
wires are stable is in general of the same order as found for
elliptical wires. Nevertheless, for the stable wire at G=2G0,
Tmax is 20% larger compared to the corresponding elliptical
wire, indicating that a wire with two conducting channels
will show a peanut-shaped cross section, rather than an el-
liptic one. Remarkably, this result, which was obtained by
minimizing the electronic energy—and thus contains nothing
of the atomic structure—is exactly what one would expect
for a wire with two atoms in the cross section.

In order to shed light on the possible competition between
integrable �elliptical� and nonintegrable �quadrupolar�
shapes, we analyzed the stability of wires with simultaneous
m=2 and 4 deformations, which can interpolate between el-
liptical and quadrupolar cross sections �cf. Eqs. �20� and
�26�	. The results are summarized in Table I. For large de-
formations, the quadrupole is more stable, due to its lower
surface energy, but no overall preference for a special geom-
etry was found; stable wires with both positive and negative
values of �4 exist. The values of �4 were found to be small,
indicating that the addition of further deformations has little
influence on the stability diagram. Remarkably, the wire with
G=2G0 is even closer to two touching cylinders when four-
fold deformations are added to the quadrupolar ones.

The linearly stable wires with three-, four-, five-, and six-
fold symmetry are shown in Fig. 3 as a function of tempera-
ture. For clarity, the stable cylindrical wires are omitted, and
a logarithmic scale is used for the temperature axis. The
value of the deformation parameter �m is encoded through a
gray�color� scale, which is common to all stability diagrams
shown in this figure, but is different than the one of Fig. 2.
Compared to the quadrupolar wires, the number of stable
configurations, the maximum temperature of stability, and

the size of the deformations involved, all decrease rapidly
with increasing order m of the deformation. For m�6, we no
longer find stable geometries in the temperature range con-
sidered. All this reflects the increase in surface energy with
increasing order m of the deformation.

From Fig. 3�b�, we can extract a series of stable wires
with fourfold symmetry, for which the maximum deforma-
tion of �4
0.1 is found at a conductance of G=4G0. Al-
though this geometry is expected to be far less stable than the
neighboring cylindrical and quadrupolar wires, it has never-
theless likely been observed as a shoulder in Na conductance
histograms.25

VI. MATERIAL DEPENDENCE

Within the NFEM there is only one parameter entering the
calculation apart from the contact geometry: the Fermi en-
ergy EF, which is material dependent and in general well
known �see Table II�. Nevertheless, we have seen in the pre-
vious section that the energy cost of a deformation due to
surface and curvature energy, which can vary significantly
for different materials, plays a crucial role in determining the
stability of a nanowire. Using the NFEM a priori implies the
macroscopic free energy density �=2EFkF

3 /15�2, the macro-
scopic surface energy �s=EFkF

2 /16�, and the macroscopic
curvature energy s=2EFkF /9�2. When drawing conclusions
for metals having surface tensions and curvature energies
that are rather different from these values, we have to think
of an appropriate way to include these material-specific prop-
erties in our calculation.

Other authors have calculated the surface energy using a
free-electron model with a rectangular confining potential of
finite height,40,41 depending on the electron work function,
without being able to reproduce the values found in experi-
ments. The agreement does not improve even when using a
self-consistent confining potential.41 When working with a
free-electron model, contributions of correlation and ex-
change energy are not included, which are found to play an
essential role for a correct treatment of the surface energy. A
discussion of the calculation of the surface energy of a jel-

TABLE I. Comparison of the most stable deformed wires with elliptic �columns 2–5�, quadrupolar �columns 6–8�, and more general
�columns 9–11� cross sections. The first column gives the quantized conductance of the corresponding wire. For the elliptic and quadrupolar
wires, both the aspect ratio and the value of the deformation parameters �obtained from Eq. �26� for the former	 are given. The maximum
temperature of stability Tmax is given for each wire. The values for the elliptic wires are taken from Ref. 24. Note that multiple values
indicate multiple stable wires with the same conductance. In all cases the surface tension was set to 0.22 N/m, corresponding to Na �Ref.
39�.

G/G0

Ellipse �2 cos�2�� �2 cos�2��+�4 cos�4��

! �2 �4 Tmax/T� ! �2 Tmax/T� �2 �4 Tmax/T�

2 1.65 0.24 0.0440 0.40 1.7 0.26 0.50 0.25 −0.04 0.50

5 1.32 0.14 0.0140 0.44 1.32 0.14 0.49 0.15 −0.03/ +0.08 0.49/0.23

9 1.24 0.11 0.0086 0.50 1.22 0.10 0.50 0.10 0.03/−0.03 0.48/0.44

29 1.14 0.07 0.0032 0.54 1.13 0.06 0.54 0.07/0.05 0.008/−0.015 0.44/0.44

59 1.09 0.04 0.0014 0.50 1.11 0.05 0.49 0.04 −0.01 0.49

72 1.08 0.04 0.0011 0.40 1.08 0.04 0.39 0.04 0.009 0.36
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lium metal beyond the free-electron model can be found in
Ref. 42.

A convenient way of modeling the material properties
without losing the pleasant features of the NFEM is via the
implementation of the constraint �4� on the deformation,

which interpolates between volume conservation ��s=�c
=0� and treating the semiclassical expectation value for the
charge NWeyl as an invariant ��s=3� /8, �c=1�.

Consider the grand canonical potential of a free-electron
gas confined within a given geometry by hard-wall bound-

FIG. 3. �Color online� Linear
stability of cos�m��-deformed
wires for m= �a� 3, �b� 4, �c� 5,
and �d� 6, as a function of tem-
perature �in units of T��. A loga-
rithmic scale is used for the tem-
perature since wires with m�4
are much less stable than those for
m�3. A sketch of the cross sec-
tion is shown on the right. The de-
formation parameter �m is en-
coded via a gray �color� scale,
common to all four diagrams. In
the interest of clarity, only noncy-
lindrical wires �with �m�0� are
shown. The surface tension was
chosen to represent Na.
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aries, as given by Eq. �3�. The change in energy due to a
deformation is

�	 = − ��V + �s�S − s�C + ���		

= −
�

kF
3�N + �s −

�

kF
�s��S − s −

�

kF
2�c��C + ���		 ,

�27�

where we have used the constraint �4� to eliminate V. Now
the prefactors of the change in surface �S and the change in
integrated mean curvature �C can be identified as effective
surface tension and curvature energy, respectively. They can
be adjusted to fit the material properties by appropriate
choice43 of the parameters �s and �c �see Table II�. As noted
previously, results in the long-wavelength limit are indepen-
dent of �c.

The stability diagrams discussed in the previous sections
all represent sodium nanowires. Results for other s-orbital
metals are similar in respect to the number of stable configu-
rations and the conductance of the wires. On the other hand,
the deviations from axial symmetry and the relative stability
of Jahn-Teller deformed wires is sensitive to the material-
specific surface tension �s and Fermi temperature TF. The
relative stability of the highly deformed wires decreases with
increasing surface tension �s /EFkF

2 , measured in intrinsic

units, and this decrease becomes stronger with increasing
order m of the deformation. Therefore, for the simple metals
under consideration �Table II�, deformed Li wires have the
highest and Au wires have the lowest relative stability com-
pared to cylinders of magic radii.

However, concerning absolute stability, one must consider
that the lifetime of a metastable nanowire also depends on
the surface tension �cf. Eq. �25�	. Thus, although the de-
formed wires have reduced relative stability in the noble
metals, this effect is compensated by the greater absolute
stability of these materials.

In Fig. 4, the linearly stable quadrupolar wires for gold
are shown. The vertical scale was adjusted according to the
arguments discussed above, in order to allow a comparison
with the absolute stability for Na wires, as shown in Fig. 2.

VII. SUMMARY AND DISCUSSION

In this paper, we have performed a complete linear stabil-
ity analysis of metal nanowires within the NFEM. That is to
say, we have examined the stability with respect to small,
long-wavelength perturbations of metal nanostructures of ar-
bitrary cross section, with translational symmetry along an
axis perpendicular to the cross section. We have considered
both cross sections for which the electron motion is inte-
grable, namely, circles and ellipses, and nonintegrable cross
sections, described by the multipole expansion �20�.

This general stability analysis confirms the central conclu-
sions of previous analyses, which were limited to
circular13,18,19 and elliptical cross sections.24,25 First, the ex-
istence of a sequence of magic cylindrical wires of excep-
tional stability, with electrical conductance G /G0
=1 ,3 ,6 ,12,17,23,34,42, 51 , . . ., was confirmed. Second,
the existence of a series of very stable deformed wires, with
twofold-symmetric cross sections, which occur at the nodes
of the cylindrical shell structure, at G /G0=2 ,5 ,9 ,29,59, . . .,
was verified. For the thinnest of these wires �G /G0=2 ,5�,
which have the largest deformations, the quadrupolar cross
section was found to be more stable than the ellipse, while
the cross sections of the thicker wires in the sequence were
found to be essentially elliptical. In addition, a number of
new stable structures with quadrupolar, hexapolar, and octu-
polar cross sections have been identified.

Perhaps the most surprising result of our general linear
stability analysis is the special role played by cylinders.

TABLE II. Material parameters of several monovalent metals:
Fermi energy EF �Ref. 44�, Fermi wave vector kF �Ref. 44�, surface
tension �s, and curvature energy s �Ref. 39�, along with the cor-
responding values of �s and �c.

Parameter

Element

Li Na K Cu Ag Au

EF �eV� 4.74 3.24 2.12 7.00 5.49 5.53

kF �nm−1� 11.2 9.2 7.5 13.6 12.0 12.1

�s �meV/Å2� 27.2 13.6 7.58 93.3 64.9 78.5

�s �EFkF
2� 0.0046 0.0050 0.0064 0.0072 0.0082 0.0097

�s 1.135 1.105 1.001 0.939 0.866 0.755

s �meV/Å� 62.0 24.6 14.9 119 96.4 161

s �EFkF� 0.0117 0.0082 0.0094 0.0125 0.0146 0.0240

�c 0.802 1.06 0.971 0.741 0.583 −0.111

FIG. 4. �Color online� Linearly
stable Au wires with quadrupolar
cross section. The deformation pa-
rameter �2�0 is coded via a color
�gray� scale.
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Roughly 75% of the principal structures observed in conduc-
tance histograms8 of alkali metals correspond to the magic
cylinders. The remaining 25% are comprised of wires with
elliptical or quadrupolar cross sections. Despite expanding
the configuration space of allowed structures significantly in
the present analysis, no new structures of comparable stabil-
ity have been identified for the alkali or noble metals. The
role of symmetry in the stability of metal nanowires is thus
fundamentally different from the case of atomic nuclei45 or
metal clusters,22,23 where the vast majority of stable struc-
tures have broken symmetry.

The crucial difference between the stability of metal
nanowires and metal clusters is not the shell effect, which is
similar in both cases, but rather the surface energy, which
favors the sphere, but abhors the cylinder.14 In order to un-
derstand the unique stability of metal nanocylinders, in con-
trast to other wire structures, it is useful to consider the semi-
classical size of the competing surface and shell
contributions: From Eq. �3�, the surface energy scales as

	s

EFkFL

 O�kF�� , �28�

where � is the rms radius of the wire. On the other hand, Eq.
�5� implies that

�	

EFkFL

 O�kF��−�, �29�

where �=1 for circular or elliptical cross sections, and 3/2
���1 for nonintegrable cross sections. For a typical metal
nanowire in the domain of validity of the NFEM, kF�
10
�i.e., GS /G0
20�. Thus, the term 	s which gives rise to the
Rayleigh instability14,18 is roughly two orders of magnitude
larger than the shell correction �	, which stabilizes the
wire—even in the best-case scenario of an integrable cross
section. �The volume contribution to 	, though larger still
than 	s, does not play a role in deformations that conserve
the number of atoms.� How then are we to understand the
stability of metal nanowires?

Stability is not determined by the energy itself, but by the
stationarity and convexity of the energy functional. Because
�	 is a rapidly oscillating function �cf. Eq. �5�	, its deriva-
tives are large in a semiclassical sense.46 The first and second
variations of �	 scale as

�	�1�

EFkFL

 O�kF��1−�,

�	�2�

EFkFL

 O�kF��2−�. �30�

Thus, for the case of an integrable cross section ��=1�, �	�2�

is of the same semiclassical size as 	s
�2�. However, �	�1� is

always semiclassically smaller than 	s
�1�. The stationarity

condition 	�1�=0 is more difficult to satisfy than the convex-
ity condition 	�2��0, which can be satisfied for any inte-
grable cross section.

Cylinders are special because 	�1�=0 by symmetry, so
stability is determined solely by convexity, where surface
and shell effects compete on an equal footing �cf. Fig. 1�. In
contrast, nonaxisymmetric shapes can only occur for small
kF�. More precisely, the maximum deviation from axisym-
metry is a decreasing function of kF� �see Figs. 2 and 3�.

Both �	�1� and 	s
�1� vanish as �→0, but whereas �	�1� is an

oscillatory function of � �cf. Eq. �5�	, 	s
�1� grows smoothly

with increasing �:

	s
�1�/L � �s�m�m2 − 1�2�� . �31�

The stationarity condition 	�1�=0 can therefore only be sat-
isfied for

��m� �
const

m2 − 1
EFkF

2

�s
��kF��−�. �32�

Indeed, the decrease in the maximum deformations as a func-
tion of kF� in Figs. 2–4 is consistent with Eq. �32� with
3/2���1.

Thus cylinders are the only generically stable structures,
and account for the principal peaks in conductance histo-
grams of monovalent metals, while structures with broken
symmetry are favored only at the nodes of the cylindrical
supershell structure.
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APPENDIX: ENERGY SPECTRUM OF A 2D BILLIARD

The essential input for the stability analysis of a nanowire
�Sec. III� is the energy spectrum of a two-dimensional bil-
liard for which the boundary �in polar coordinates r ,�� is
given in terms of the radius function R�� ;� ,���R� of the
wire, by the condition r=R�. This provides the transverse
eigenenergies En�� ,�� entering the expressions �18� and
�19�. It is helpful to introduce a change of coordinates, r̃
=r /R�, which simplifies the boundary to a circle of unit ra-
dius. The Hamiltonian in the new coordinates �r̃ ,�� can be
written as H=H�0�+�H, where H�0�=−R�

−2�r̃,� is the Hamil-
tonian for an axisymmetric problem and �r̃,� is the Laplace
operator. For simplicity of notation we use units in which
�2 /2me=1. On the other hand, �H contains the terms due to
deviations from axial symmetry and is found to read

�H = −
R��

2

R�
4

�2

�r̃2 + 2
R��

R�
3

1

r̃

�

�r̃

�

��
−

2R��
2 − R��R�

R�
4

1

r̃

�

�r̃
,

�A1�

where a prime indicates differentiation with respect to �. The
energy spectrum can be obtained by numerical diagonaliza-
tion of H in an appropriate basis, that we choose to be
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����r̃,�� =
1

��J�+1�u��
ei��J����r̃� , �A2�

where the �� are the roots of the Bessel functions J�. We
simplify the notation by using roman indices j as multi-
indices representing a set of quantum numbers �� j ,� j�. Note
that the states �A2�, though normalized, are not orthogonal,
since the scalar product in the new coordinates,

�j�k� ª �
0

2�

R�
2d��

0

1

r̃ dr̃ � j
*�r̃,���k�r̃,�� , �A3�

involves a factor R�
2 . However, the �� j� still form a basis and

the energy spectrum can be obtained by solving a general-
ized eigenvalue problem. Defining the matrices H jk
= �j�H�k� and B jk= �j �k� we have to solve det�H−EB	=0.
Taking matrix elements of �H we obtain after some algebra,

�j��H�k� = � j� j
2�j,k

+
� j

2k
2 − �k

2 j
2

 j
2 − k

2

1

r̃2�R��
2

R�
4 �k�

+ �� j + �k�� j� iR��

R�
3

1

r̃

�

�r̃
�k� , �A4�

where the terms could be simplified by making use of
Bessel’s equation.

We split the wave functions �A2� into angular and radial
parts, � j��� and � j�r̃�, respectively, and introduce the follow-
ing matrices of r̃ and � integrals:

R jk
�a	 = �

0

1

dr̃ r̃� j
*�k, I jk

�a	 = �
0

2�

d� � j
*R��

R�
�2

�k,

R jk
�b	 = �

0

1

dr̃
1

r̃
� j

*�k, I jk
�b	 = �

0

2�

d� � j
* iR��

R�
��k,

R jk
�c	 = �

0

1

dr̃� j
*��k

�r̃
, I jk

�c	 = �
0

2�

d�R�

�
�2

� j
*�k. �A5�

Note that the R�.	 do not depend on the deformation param-
eters �� ,�� and that the I�.	 only depend on �. Decomposing
the matrices H and B in terms of these newly defined matri-
ces we find

H jk

= � j
2� jk + � j

2 − � j
2R jk

�b	�I jk
�a	 if  j = k,

� j
2k

2 − �k
2 j

2

 j
2 − k

2 R jk
�b	I jk

�a	 + �� j + �k�R jk
�c	I jk

�b	 if  j � k, �
�A6�

B jk = ��2 if j = k ,

�2R jk
�a	I jk

�c	 otherwise.
� �A7�

These results can now be implemented to solve the general-
ized eigenvalue problem numerically. Obviously, the larger
the deviations from axial symmetry, the more basis functions
have to be used in order to achieve good convergence.

Expansion for small deformations of a cylinder

Moreover, Eqs. �A6� and �A7� also allow one to study
analytically the effect of a small deformation of a cylindrical
wire on the transverse eigenenergies and the lifting of the
degeneracies through the breaking of the rotational symme-
try. Hereby we can give a proof of the relations �21�–�23�
which ensure that the stability matrix of a cylindrical wire is
always diagonal.

Let the initial shape be deformed according to the radius
function �20�. The deformation parameters are considered to
be small so that we can expand the integrals I�.	 up to second
order in the �m. We find that they take nonzero values only if
the quantum numbers � j and �k satisfy one of the following
relations:

�k − � j = ± n · m , �A8�

��k − � j� = �m ± m̄� , �A9�

where n is an integer and m and m̄ are elements from the set
M of m-values appearing in the sum of Eq. �20�. The results
are summarized in Table III.

We can now straightforwardly derive the energy levels Ej
within perturbation theory of the generalized eigenvalue
problem. Therefore we expand all the quantities entering the
problem up to second order in the perturbation and solve
order by order. For nondegenerate states ��=0� it is found
that

�2Ej
�1� = H j j

�1� − Ej
�0�B j j

�1�, �A10�

�2Ej
�2� = H j j

�2� − Ej
�1�B j j

�1� − Ej
�0�B j j

�2� + �
k�j

�H jk
�1� − Ej

�0�B jk
�1��2

Ej
�0� − Ek

�0� ,

�A11�

where the matrix B in the equations above reflects the use of
a nonorthogonal basis. From Eqs. �A6� and �A7� and the first
row of Table III we deduce H j j

�1�=B j j
�1�=B j j

�2�=0, so that Ej
�1�

=0 and

TABLE III. Expansion of the integrals I�a	, I�b	, and I�c	 for
small perturbations. Nonzero values are only found if one of the
conditions given in the first column is satisfied.

I jk
�a	 I jk

�b	 I jk
�c	

�k−� j =0 �mm2�m
2 /2 0 1

�k−� j = ±m O��m
3 � ±m�m /2 �m

�k−� j = ±2m −m2�m
2 /4 "m�m

2 /4 �m
2 /4

��k−� j � = �m± m̄�
"

mm�
2

�m�m̄
1

2
�� j −�k��m�m̄

1

2
�m�m̄

Otherwise O��m
3 � O��m

3 � 0
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�2Ej
�2� = H j j

�2� + �
k�j

��k−�j�=m

�H jk
�1� − Ej

�0�B jk
�1��2

Ej
�0� − Ek

�0� = �
m

�m
2� j

2 − � j
2R j j

�b	

2/m2 + �
k�j

��k−�j�=m

�� j
2 − �k

2

2
R jk

�c	 +  j
2R jk

�a	�2

 j
2 − k

2 � . �A12�

Since Ej
�2� does not contain mixed terms ��m�m̄ �with m

� m̄� we have hereby derived the relation �21�.
The case ��0 is slightly more complicated as it requires

degenerate perturbation theory: In first order we have to
solve

�Hii
�1� Hij

�1�

H ji
�1� H j j

�1� � − E�0�Bii
�1� Bij

�1�

B ji
�1� B j j

�1� � − E�1��21� = 0,

�A13�

where 1 is the unit matrix, and i= �� ,��, and j= �−� ,��. Us-
ing the expansions given in Table III, we find

Ei
�1� = �±�i/��2 if 2� = m ,

0 otherwise.
� �A14�

The energy change in second-order degenerate perturbation
theory is found to read

Ei
�2� = Hii

�2� + Cii " �Hij
�2� − Ei

�1�Bij
�1� − Ei

�0�Bij
�2� + Cij�

�A15�

where we have used Bii
�1�=Bii

�2�=0, and the matrix

Cij = �
k�i,j

�H jk
�1� − Ei

�0�B jk
�1���Hik

�1� − Ei
�0�Bik

�1��

Ei
�0� − Ek

�0� . �A16�

Note that the quantity Hii
�2�+Cii appearing in Eq. �A15� is

equal to the full result �A12� for the nondegenerate case.
Therefore we conclude that relations �22� and �23� hold.
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