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Young’s modulus and the thickness of single wall carbon nanotubes �CNTs� obtained from prior atomistic
studies are largely scattered. In this paper we establish an analytic approach to bypass atomistic simulations
and determine the tension and bending rigidities of graphene and CNTs directly from the interatomic potential.
The thickness and elastic properties of graphene and CNTs can also be obtained from the interatomic potential.
But the thickness, and therefore elastic moduli, also depend on type of loading �e.g., uniaxial tension, uniaxial
stretching, equibiaxial stretching�, as well as the nanotube radius R and chirality when R�1 nm. This explains
why the thickness obtained from prior atomistic simulations is scattered. This analytic approach is particularly
useful in the study of multiwall CNTs since their stress state may be complex even under simple loading �e.g.,
uniaxial tension� due to the van der Waals interactions between nanotube walls. The present analysis also
provides an explanation of Yakobson’s paradox that the very high Young’s modulus reported from the atomistic
simulations together with the shell model may be due to the not-well-defined CNT thickness.
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I. INTRODUCTION

Numerous atomistic and continuum studies have shown
that carbon nanotubes �CNTs� possess high Young’s modulus
on the order of 1 TPa, which is 5�6 times stiffer than
steel.1–16 However, atomistic studies of single-wall CNTs,
such as molecular dynamic simulations based on the empiri-
cal interatomic potential,17,18 tight-binding model,19 and den-
sity functional theory,20 can determine the stiffness Eh of
single-wall CNTs which is the product of Young’s modulus E
and nanotube thickness h. One needs to assume a thickness h
for single-wall CNTs in order to determine their Young’s
modulus from atomistic studies, even though it is ambiguous
to define the thickness for a single layer of atoms. One ap-
proach is to take the interlayer spacing of graphite h
=0.34 nm as the CNT thickness.6,7,10,15,21 Such a thickness,
however, is an order of magnitude larger than other results
shown in Table I.

Another approach is to model single-wall CNTs as linear
elastic thin shells.4,12,14,22–28 Young’s modulus E and the shell
thickness h are determined by fitting the atomistic simulation
results of tensile rigidity Eh / �1−�2� and bending rigidity
Eh3 / �12�1−�2�� of single-wall CNTs, where � is Poisson’s
ratio. Such an approach gives the CNT thickness h much
smaller than the graphite interlayer spacing �0.34 nm�, rang-
ing from 0.06 to 0.09 nm �Table I�. The scattered CNT thick-
ness �0.06�0.09 nm� depends on the interatomic potential
as well as simulation details.

Why is the CNT thickness so scattered? Is it possible to
link the CNT thickness directly to the interatomic potential?
The objective of this paper is to establish an analytic method
that bypasses atomistic simulations, and determines the ten-
sion and bending rigidities of single-wall CNTs directly from
the interatomic potential. Analytical expressions of tension
and bending rigidities are obtained in terms of parameters in
the interatomic potential. The analytic expressions clearly
show the importance of multibody atomistic interactions,
without which the CNTs would have had no bending rigidity.

The CNT thickness could be defined from the tension and
bending rigidities as in some prior work,4,12,14,22–28 but such
thickness is not strictly a constant for each interatomic po-
tential. Instead, it also depends on the type of loading the
CNT is subject to �e.g., uniaxial tension, uniaxial stretching,
biaxial stretching�. For uniaxial tension, the CNT thickness is
around 0.06 nm, but it becomes approximately 0.09 nm for
equibiaxial stretching. This range �0.06�0.09 nm� given by
the analytic expression is the same as that reported by atom-
istic simulations and continuum shell models shown in Table
I.

The paper is outlined as follows. We briefly describe the
formulation of multibody interatomic potentials for carbon in
Sec. II, and identify parameters in the interatomic potential
that govern the tension and bending rigidities of CNTs. The
proposed analytical approach is shown in Sec. III for an ar-
bitrary interatomic potential. The CNT thickness, defined
from the tension and bending rigidities,4,12,14,22–24 are ob-
tained in Sec. IV, but is shown to depend on the type of
loading. Specific results are given for the Brenner potential17

and its second-generation potential18 in Sec. V. A discussion
in view of “Yakobson’s paradox”33 is given in Sec. VI.

II. FORMULATION OF MULTIBODY INERATOMIC
POTENTIALS FOR CARBON

There are many interatomic potentials for carbon.17,18,34,35

They can be generally written as

V = V�rij;�ijk,k � i, j� = V�rij; cos �ijk,k � i, j� �2.1�

for a pair of atoms i and j, where rij is the bond length, �ijk
is the bond angle between i– j and i–k bonds, and k��i , j�
represents atoms in the vicinity. The �ijk term, or equiva-
lently, cos �ijk term, represents the multibody atomistic inter-
actions in carbon. For the unstrained equilibrium state �i.e.,
strain �=0�, the equilibrium bond length and angle are de-
noted by �rij�0 and �cos �ijk�0, respectively.
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For an infinitesimal strain �, the changes of bond length
rij − �rij�0 and bond angle �ijk− ��ijk�0 are also infinitesimal
such that the interatomic potential in Eq. �2.1� can be ex-
panded to the Taylor series. We use graphene as an example
to illustrate this. The bond angle for graphene at the un-
strained, equilibrium state is ��ijk�0=120°. The equilibrium
bond length r0 is determined by minimizing the potential V
at the fixed bond angle 120°, i.e.,

� �V

�rij
�

rij=r0,�ijk=120o
= 0.

For an infinitesimal strain �, rij −r0 and cos �ijk+ 1
2 are also

infinitesimal.
The Taylor expansion of Eq. �2.1� for graphene becomes

V = V0 + �
k�i,j

� �V

� cos �ijk
	

0
�cos �ijk +

1

2
	 +

1

2
� �2V

�rij
2 	

0

�rij − r0�2 + �
k�i,j

� �2V

�rij� cos �ijk
	

0
�rij − r0��cos �ijk +

1

2
	

+
1

2 �
k,l�i,j

� �2V

� cos �ijk� cos �ijl
	

0
�cos �ijk +

1

2
	�cos �ijl +

1

2
	 , �2.2�

where the subscript “0” denotes the values at the unstrained
equilibrium state, rij =r0 and �ijk=120°; and the terms higher
than the second order are neglected since they do not con-
tribute to the tension and bending rigidities which are defined

at the infinitesimal strain. The first-order derivative
��V /�rij�0 vanishes and therefore does not appear in the Tay-
lor expansion �2.2�, which involves five constants of the in-
teratomic potential, namely the first-order derivative

TABLE I. The thickness and Young’s modulus of carbon nanotubes.

Authors Method

Wall
thickness

�nm�

Young’s
modulus

�TPa�

Lua Molecular dynamics 0.34 0.974

Hernández et al.b Tight binding molecular dynamics 0.34 1.24

Odegard et al.c Equivalent-continuum modeling 0.69

Li and Choud Structural mechanics: stiffness
matrix method

0.34 1.01

Jin and Yuane Molecular dynamics 0.34 1.238

Tserpes and
Papanikosf

Structural mechanics: FE method 0.147

Yakobson et al.g Molecular dynamics 0.066 5.5

Zhou et al.h Tight-binding model 0.074 5.1

Kudin et al.i Ab inito computations 0.089 3.859

Tu and Ou-yangj Local density approximation
model

0.075 4.7

Vodenitcharova and
Zhangk

Ring theory continuum mechanics 0.0617 4.88

Panatano et al.l Continuum shell modeling 0.075 4.84

Goupalovm Continuum model for long-
wavelength phonons

0.087

Wang et al.n Ab initio calculation 0.0665 5.07

aReference 6.
bReference 7.
cReference 29.
dReference 21.
eReference 15.
fReference 30.
gReference 4.

hReference 12.
iReference 14.
jReference 22.
kReference 31.
lReference 23.
mReference 32.
nReference 24.
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��V /� cos �ijk�0, and second-order derivatives ��2V /�rij
2 �0,

��2V /�rij� cos �ijk�0, ��2V /� cos �ijk� cos �ijk�0, and
��2V /� cos �ijk� cos �ijl�0�k� l�. These five constants evalu-
ated at the unstrained equilibrium state ��=0� can be analyti-
cally obtained for any interatomic potential. The tension and
bending rigidities are given in terms of these five constants
in Sec. III for any interatomic potential, while the thickness
is given in Sec. IV. Results are presented for two specific
potentials17,18 in Sec. V. For the Brenner potential,17 the
above five constants are given analytically in the Appendix
in terms of parameters in the potential, and they are
1.841 eV, 4337 eV nm−2, −49.49 eV nm−1, 3.014 eV and
−0.3728 eV, respectively, and the equilibrium bond length
determined analytically from ��V /�rij�0=0 in terms of pa-
rameters in the potential, and is r0=0.145 nm. For its
second-generation potential,18 these five constants and r0 be-
come 1.592 eV, 4356 eV nm−2, −59.14 eV nm−1, 3.099 eV,
−0.3673 eV, and 0.142 nm, respectively.

It is important to note that, even though the first-order
derivative ��V /�rij�0=0 at the unstrained, equilibrium state,
the other first-order derivative ��V /� cos �ijk�0 does not van-
ish and it reflects the multibody atomistic interactions. In
fact, as to be seen in Sec. III and IV, the graphene bending
rigidity and therefore thickness all result from the nonvan-
ishing ��V /� cos �ijk�0.

III. TENSION AND BENDING RIGIDITIES OF
GRAPHENE

We first study a graphene subject to uniform in-plane nor-
mal strains �11 and �22 and shear strain �12, as shown in Fig.
1�a�. It is important to note that the atom positions become
nonuniform even for a uniform strain because graphene does
not have a simple Bravais lattice. Zhang et al.36,37 developed
a simple, analytic method to determine atom positions by
decomposing the atomic structure of graphene to two simple
Bravais sublattices �marked by open and solid circles in Fig.
1�a��. A shift vector between two sublattices was introduced
to ensure the equilibrium of atoms by minimizing energy
with respect to the shift vector for each given strain �. The
distance rij between two nearest-neighbor atoms �from dif-
ferent sublattices marked by open and closed circles in Fig.
1�a�� is given by rij

2=r0
2����+2�����n�+x���n�+x��, where

r0 and n are the bond length and directions prior to deforma-
tion, ��� is the second-order identity tensor, and x=x��� is
the shift vector �normalized by r0� to be determined analyti-
cally via energy minimization.

We now consider the graphene subject to combined in-
plane strain ��� �� ,�=1,2� and curvature 	11, 	22, and 	12

�Fig. 1�, which cause stretching and bending of the graphene,
respectively. The distance between two nearest-neighbor at-
oms �from different sublattices� now becomes

rij
2 = r0

2���� + 2�����n� + x���n� + x��

− r0
4�	���n� + x���n� + x���2/12, �3.1�

where the first term on the right hand side is due to the
in-plane strain, and the second term represents the bond
length reduction due to the curvature; the shift vector x
=x�� ,�� is to be determined analytically via energy minimi-
zation. The bond angle �ijk between bonds i– j and i–k can
be similarly obtained as

cos �ijk =
r0

2

rijrik
�n�

�1� + x���n

�2� + x
�
��
 + 2��
 +

r0
2

12
	��	�


� �3�n�
�1� + x���n�

�2� + x�� − 2�n�
�2� + x���n�

�2� + x��

− 2�n�
�1� + x���n�

�1� + x���� , �3.2�

where n�1� and n�2� represent the directions of i– j and i–k
bonds prior to deformation, respectively.

The substitution of Eqs. �3.1� and �3.2� into the Taylor
expansion �2.2� gives the bond energy V as a quadratic func-
tion of strain �, shift vector x, and curvature �. The energy
associated with each atom is = 1

2� j=1
3 V�rij ; cos �ijk ,k� i , j�,

where the summation is for three nearest-neighbor atoms,
and the factor one half results from the equipartition of bond
energy. The shift vector is determined from energy minimi-
zation � /�x
=0 as

x
 =
2

3
A����

j=1

3

n�n�n
, �3.3�

which depends on the in-plane strain � but not curvature �,
and

FIG. 1. A schematic diagram of a graphene subject to �a� in-
plane strain and �b� curvature.
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A = 1 −

8r0
2� �2V

�rij
2 	

0

+ 12r0� �2V

�rij� cos �ijk
	

0

12� �V

� cos �ijk
	

0
+ 4r0

2� �2V

�rij
2 	

0

+ 18� �2V

� cos �ijk� cos �ijk
	

0
− 9� �2V

� cos �ijk� cos �ijl
	

0
+ 12r0� �2V

�rij� cos �ijk
	

0

. �3.4�

All five derivatives of the interatomic potential and the equi-
librium bond length r0 come into play.

The strain energy density �energy per unit area of
graphene�,  / �3�3r0

2 /4�, becomes a quadratic function of �
and � once the shift vector x is substituted by Eq. �3.3�. The
stress is the work conjugate of strain, and is given by

��11 + �22�h =
1
�3

� �2V

�rij
2 	

0

��11 + �22� ,


��11 − �22�h
�12h

� =
B

8�3

�11 − �22

�12
� , �3.5�

where the stress appears together with the “thickness” h of
graphene since the strain energy density is the energy per
unit area �instead of volume�; and

B =
3�1 − A�2

r0
2 4� �V

� cos �ijk
	

0
+ 6� �2V

� cos �ijk� cos �ijk
	

0

− 3� �2V

� cos �ijk� cos �ijl
	

0
� + 4�1 + A�2� �2V

�rij
2 	

0

− 12
�1 − A2�

r0
� �2V

�rij� cos �ijk
	

0
. �3.6�

The shear rigidity �ratio of �12h to �12� is proportional to B,
and the biaxial tension rigidity �ratio of ��11+�22�h to ��11

+�22�� is proportional to ��2V /�rij
2�0. On the other hand, the

classical plane-stress linear elastic relation38 is

�11 + �22 =
E

1 − �
��11 + �22�

and


�11 − �22

�12
� = 2�
�11 − �22

�12
� .

Its comparison with Eq. �3.5� gives Poisson’s ratio �, shear
modulus �, and Young’s modulus E of the graphene as

� =
� �2V

�rij
2 	

0

−
B

8

� �2V

�rij
2 	

0

+
B

8

, �shearh =
B

16�3
,

Eh =
B

4�3

� �2V

�rij
2 	

0

� �2V

�rij
2 	

0

+
B

8

. �3.7�

Here the shear and Young’s moduli also appear together with
the thickness h, and the subscript “shear” is added to the
shear modulus � in order to distinguish it from the shear
modulus to be obtained later from the bending rigidity. For
uniaxial stretching ��11�0, �22=0�, the tension rigidity is

Eh

1 − �2 =
1

2�3
� �2V

�rij
2 	

0

+
B

8
� .

The bending moment is the work conjugate of curvature,
and is given by

M11 + M22 =
�3

2
� �V

� cos �ijk
	

0
�	11 + 	22� ,


M11 − M22

M12
� = 0. �3.8�

It has vanishing torsion rigidity �since M12=0�, and the bi-
axial bending rigidity �ratio of �M11+M22� to �	11+	22�� is
proportional to ��V /� cos �ijk�0, which reflects the multibody
atomistic interactions. In other words, a pair potential �V
=V�rij�� would give vanishing bending stiffness for
graphene. The moment-curvature relation �3.8� is different
from the classical linear elastic shell theory39 in the follow-
ing aspects.

�i� The torque always vanishes, M12=0, and the normal
components of bending moment always equal, M11=M22,
such that the graphene can only sustain equibiaxial bending.

�ii� The bending moment is proportional to the sum of
principal curvatures 	11+	22, and is independent of the de-
viatoric components of curvatures. For example, curvatures
	11=−	22 give vanishing bending moments.
On the other hand the moment-curvature relation in the clas-
sical linear elastic shell theory39 is

M11 + M22 =
Eh3

12�1 − ��
�	11 + 	22�

and


M11 − M22

M12
� =

�h3

6

	11 − 	22

	12
� .

Its comparison with Eq. �3.8� gives the biaxial bending rigid-
ity and torsion rigidity as
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Eh3

12�1 − ��
=

�3

2
� �V

� cos �ijk
	

0
,

�torsionh
3

6
= 0. �3.9�

Here the subscript “torsion” is added to the shear modulus �
in order to distinguish it from �shear above. For unxiaxial
curvature �	11�0, 	22=0�, the bending rigidity is ��3/4�
���V /� cos �ijk�0.

It should be pointed out that the above torsion rigidity, as
well as tension, shear, and bending rigidities, are defined for
the unstrained equilibrium state of graphene, i.e., infinitesi-
mal strain. It is unintuitive that the torsion rigidity of
graphene vanishes. We use a graphene subject only to curva-
tures 	11, 	22, and 	12 to illustrate this. The torsion rigidity is
directly proportional to the coefficient of 	12

2 in the Taylor
expansion of the energy for each atom 
= 1

2� j=1
3 V�rij ; cos �ijk ,k� i , j�. With the vanishing in-plane

strain �=0 �and therefore vanishing shift vector x=0�, the
curvature introduces an out-of-plane displacement field. It
can be easily verified the changes of bond length rij −r0 and
angle cos �ijk+ 1

2 are on the order of 	2 such that all terms
associated with the second-order derivatives in the Taylor
expansion �2.2� are on the order of O�	4� and therefore do
not contribute to the tension and bending rigidities. Only the
term associated with the first-order derivative
�k�i,j��V /� cos �ijk�0�cos �ijk+ 1

2
� in Eq. �2.2� contributes to

	2. �It is important to recall the other first-order derivative
��V /�rij�0=0.� For graphene, ��V /� cos �ijk�0 is the same for
all bonds, and the 	2 term becomes 9

32��V /� cos �ijk�0r0
2�	11

+	22��	11+	22�, which depends only on the curvature sum
	11+	22. Therefore, for the twist curvature 	12 or for curva-
ture 	11=−	22, the 	2 term vanishes which leads to vanishing
torsion rigidity.

Equations �3.5� and �3.8� are constitutive relations for the
graphene since they give the force and moment in terms of
the in-plane strain and curvature. They are both isotropic
even though they give vanishing torsion rigidity. It is unnec-
essary to define the thickness of graphene unless one wants
to determine the stress ��� and Young’s modulus E from the
force ���h and tension rigidity.

IV. THICKNESS OF GRAPHENE

For the classical linear elastic shell theory,39 the bending
rigidity �M11/	11� is Eh3 / �12�1−�2�� for uniaxial curvature
�	22=0�, and the tension rigidity ��11h /�11� is Eh / �1−�2� for
uniaxial stretching ��22=0�. The ratio of bending to tension
rigidities is h2 /12. It can be easily verified that the ratio of
bending rigidity �M11/	11� to tension rigidity ��11h /�11� is
also h2 /12 for uniaxial tension and bending ��22=0 ,M22

=0�, equibiaxial stretching and curvature ��11=�22,	11

=	22� and for equibiaxial tension and bending ��11

=�22,M11=M22�. It remains the same, h2 /12, because the
ratio of torsion rigidity to biaxial bending rigidity, �1
−�� / �1+��, is always the same as the ratio of shear to biaxial
moduli in the classical linear elastic shell theory.39 Accord-
ingly, the effective thickness of graphene �or CNTs� has been
defined as4,12,14,22–24

h =�12 bending rigidity

tension rigidity
. �4.1�

For graphene, the moment-curvature relation �3.8� gives
vanishing torsion rigidity but �3.5� gives nonvanishing shear
rigidity. Therefore the torsion to bending rigidity ratio, which
is zero, is different from the shear to biaxial moduli ratio. For
uniaxial stretching ��22=0� and curvature �	22=0�, the ten-
sion rigidity is

1

2�3
� �2V

�rij
2 	

0

+
B

8
�

and the bending rigidity is

�3

4
� �V

� cos �ijk
	

0
,

which gives the thickness

huniaxial stretching = 3�2� �V

� cos �ijk
	

0

� �2V

�rij
2 	

0

+
B

8

�which would be zero without the multibody coupling term,
��V /� cos �ijk�0=0�. For equibiaxial stretching ��11=�22� and
curvature �	11=	22�, the thickness becomes

hequibiaxial stretching = 3�2� �V

� cos �ijk
	

0

� �2V

�rij
2 	

0

,

while for equibiaxial tension-compression ��11=−�22,	11

=−	22�, the thickness is zero and the graphene loses its bend-
ing rigidity. Therefore, the thickness defined in Eq. �4.1� is
not a constant, and it depends on the type of loading. For the
proportional biaxial stretching �22=
�11 and curvature 	22
=
	11, the thickness given by Eq. �4.1� becomes

h = 3� 2� �V

� cos �ijk
	

0

� �2V

�rij
2 	

0

+
1 − 


1 + 


B

8

, �4.2�

which clearly depends on the type of loading represented by

. However, even Eq. �4.2� cannot represent the general
loading since it requires the curvature ratio 	22/	11 and
strain ratio �22/�11 to be the same.

For the graphene subject to uniaxial tension ��22=0�, 

=�22/�11=−� �=	22/	11�, the effective thickness becomes
very simple:
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huniaxial tension = 3�� �V

� cos �ijk
	

0

� �2V

�rij
2 	

0

, �4.3�

which is about 70% of the thickness for equibiaxial stretch-
ing and curvature. However, Eq. �4.3� is for uniaxial tension
but not uniaxial bending �i.e., M22�0�.

It should be emphasized that the tension and bending ri-
gidities in Eqs. �3.7� and �3.9� are well defined, and are in-
dependent of the type of loading. The dependence on the
type of loading appears only when one wants to define the
thickness.

V. RESULTS FOR THE BRENNER POTENTIAL

The Brenner potential17 is widely used in the atomistic
study of CNTs since it gives accurate binding energy and
lattice constants of graphite, diamond, simple cubic, and
face-centered-cubic carbon, as well as the vacancy formation
energy for diamond and graphite. Its five constants and equi-
librium bond length are given in Sec. II. Table II gives the
thickness �defined in Eq. �4.1��, Young’s modulus, and Pois-
son’s ratio of graphene for uniaxial tension, uniaxial stretch-
ing, and equibiaxial stretching. The thickness, and therefore
Young’s modulus, depend on the type of loading, and are
therefore not strictly constants, but Poisson’s ratio is. The

thickness varies from 0.0618 nm to 0.0874 nm, which is
consistent with the range of thickness reported in Table I for
atomistic simulations together with the shell model.

The second-generation Brenner potential18 has been de-
veloped to improve its agreement with Young’s moduli of
graphite and diamond, as well as the bond breaking energy.
The five constants and equilibrium bond length are also
given in Section II. Table III shows the graphene thickness,
Young’s modulus, and Poisson’s ratio. The range of thickness
is similar to that in Table II for the Brenner potential, and is
also consistent with the range in Table I for atomistic simu-
lations together with the shell model.

Figure 2 shows the graphene thickness h versus 
 for both
interatomic potentials, where 
=�22/�11=	22/	11 represents
different type of loading. For equibiaxial tension-
compression 
=−1, the graphene thickness is zero since
	11=−	22 leads to zero bending moments and therefore van-
ishing bending rigidity. The thickness reaches the maximum
at equibiaxial stretching �
=1�. Different types of loading,
including the uniaxial tension, are clearly marked in Fig. 2.

Following the same approach we have studied the single-
wall CNTs subject to uniaxial tension. Instead of giving the
thickness, which depends on the type of loading, we show
the well-defined tension rigidity versus the nanotube radius R
in Fig. 3 for armchair and zigzag CNTs. For R�1 nm, the
tension rigidity is essentially independent of the nanotube
radius and chirality, and is the same as that for the graphene.
For R�1 nm, the effect of nanotube radius becomes signifi-
cant, particularly for the second-generation potential,18

TABLE II. Results for gaphene given by the Brenner
potential.a

Thickness
Young’s
modulus

Poisson’s
ratio

Uniaxial tension 0.0618 nm 3.81 TPa 0.412

Uniaxial stretching 0.0734 nm 3.21 TPa 0.412

Equibiaxial stretching 0.0874 nm 2.69 TPa 0.412

aReference 17.

TABLE III. Results for gaphene given by the second-generation
Brenner potential.a

Thickness
Young’s
modulus

Poisson’s
ratio

Uniaxial tension 0.0574 nm 4.23 TPa 0.397

Uniaxial stretching 0.0678 nm 3.58 TPa 0.397

Equibiaxial stretching 0.0811 nm 2.99 TPa 0.397

aReference 18.

FIG. 2. The effective thickness
h of graphene, where −1�
�1
represents different types of load-
ing, including equibiaxial stretch-
ing, uniaxial stretching, uniaxial
tension, and equibiaxial
tension-compression.
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which also shows a strong dependence on the CNT chirality
�armchair versus zigzag at small CNT radius�. It is observed
that Brenner’s interatomic potential17 and second-generation
potential18 predict opposite dependence of tension rigidity on
the nanotube radius.

VI. DISCUSSION ON “YAKOBSON’S PARADOX”

The well-known “Yakobson’s paradox”33 refers to the
contradicting values of Young’s modulus reported in the lit-
erature for single-wall CNTs. Young’s moduli reported in
experiments, first-principle calculations, and classical mo-
lecular dynamics simulations based on empirical interatomic
potentials are around 1 TPa,33 if the interlayer spacing of
graphite, 0.34 nm, is taken as the CNT thickness h. This
value is also consistent with Young’s modulus of graphite.

Young’s modulus of single-wall CNT ropes is
0.81±0.41 TPa reported in experiments and first-principle
calculations.33 Unlike an individual single-wall CNT, a CNT
rope consists of many CNTs and can be considered as a
three-dimensional bulk solid in the first-principle calcula-
tions such that its Young’s modulus does not require any
assumption of CNT thickness.

Young’s moduli of single-wall CNTs reported from the
atomistic simulations together with the linear elastic shell
model, however, are between 4 and 5 TPa, much higher than
those reported above.33 Here, Young’s modulus is obtained
by the ratio of well-defined stiffness Eh to the thickness h,
where h is obtained from Eq. �4.1� and is not well defined
due to its dependence on the type of loading.

In the following we use a simple model to estimate
Young’s modulus of single-wall CNT ropes. Figure 4 shows
a schematic diagram of a single-wall CNT rope consisting of
periodically distributed, parallel single-wall CNTs that form
a hexagonal pattern. Let R denote the CNT radius, l0 the
center-to-center distance between CNTs, and l0 is governed
by the van der Waals force.40 For a given strain � along the
CNT axial direction, the net force on each CNT is
2�R�Eh��, where Eh is the well-defined stiffness. The net
area per CNT is ��3/2�l0

2. Young’s modulus of the single-
wall CNT rope is then estimated as �4�R�Eh�� /�3l0

2. Equa-

tion �3.7� gives Eh=236 GPa nm for the Brenner potential.17

The CNT radius is taken as R=0.349 nm for �5,5� armchair
CNTs.41 The center-to-center distance l0 between CNTs is
l0=2R+dvdW, where dvdW is the distance between CNT
walls. For dvdW=0 �neglecting the van der Waals force�,
Young’s modulus of the single-wall CNT rope is 1.23 TPa.
For the other limit, dvdW may be estimated by the equilibrium
distance between two graphene planes, 0.341 nm. This gives
Young’s modulus of the single-wall CNT rope 0.554 TPa.
These estimates from 0.554 to 1.23 TPa are in the same
range with the experimentally reported values
0.81±0.41 TPa.

The very high Young’s modulus 4�5 TPa reported in the
shell model results from the small and not-well-defined
thickness. The tension rigidity was obtained from atomistic
simulations for a CNT under simple tension ��11�0,�22

=0�.4 The bending rigidity was obtained by fitting the energy
stored in a CNT prior to deformation via the R−2 relation,4

where R is the CNT radius. This corresponds to the special
curvature 	11=0 and 	22=R−1. For other curvatures or bend-
ing moments, the bending rigidity may be quite different.

FIG. 3. The tension rigidity of
carbon nanotubes versus the nano-
tube radius R.

FIG. 4. A schematic diagram of carbon nanotube rope.
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VII. CONCLUDING REMARKS

The tension and bending rigidities of graphene and carbon
nanotubes �CNT� are obtained analytically such that one can
bypass the molecular dynamics simulations to determine
them directly from the interatomic potential. The thickness
and elastic properties of graphene and CNTs can also be
obtained from the interatomic potential. But the thickness,
and therefore elastic moduli, also depend on type of loading
�e.g., uniaxial tension, uniaxial stretching, equibiaxial
stretching�, as well as the nanotube radius R and chirality
when R�1 nm. This dependence on the interatomic poten-
tial, loading type, nanotube radius, and chirality explains
why the thickness obtained from prior atomistic simulations
is scattered. This analytic approach is particularly useful in
the study of multi-wall CNTs23 since their stress state may be
complex even under simple loading �e.g., uniaxial tension�
due to the van der Waals interactions between nanotube
walls.

The present analysis also provides an explanation of Ya-
kobson’s paradox.33 The very high Young’s modulus reported
from the atomistic simulations together with the shell model
may be due to the not-well-defined CNT thickness.
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APPENDIX

The Brenner potential17 takes the form V=VR�rij�
−BijVA�rij�, where

VR�r� =
D�e�

S − 1
e−�2S��r−R�e�� · fc�r�

and

VA�r� =
D�e�S

S − 1
e−�2/S��r−R�e�� · fc�r�

are the repulsive and attractive pair terms �depending only
on r�. D�e�=6.00 eV, R�e�=0.1390 nm, S=1.22, �=21 nm−1,
fc is the cutoff function, and the multi-body coupling term Bij
is given by

Bij = 1 + �
k��i,j�

G��ijk��−�
.

Here

G��� = a01 +
c0

2

d0
2 −

c0
2

d0
2 + �1 + cos��2� ,

�=0.5, a0=0.00020813, c0=330, and d0=3.5
The equilibrium bond length r0 can be solved analytically

from

� �V

�rij
�

rij=r0,�ijk=120°
= 0

as

r0 = R�e� −
1

�

�S/2

�S − 1�
lnB0, �A1�

where B0 is the multi-body coupling term Bij evaluated at
�ijk=120°, and B0=0.96. The equilibrium bond length is r0
=0.145 nm. The other derivatives can be obtained analyti-
cally as

� �V

� cos �ijk
	

0
=

D�e�S

S − 1
�a0c0

2 1

�d0
2 + 1/4�2B

0

�+1
�

+ 1
S−1 , �A2�

� �2V

�rij
2	

0

= 2D�e��2B
0

S
S−1 , �A3�

� �2V

�rij�cos�ijk
	

0
= −

D�e��2S

S − 1
��a0c0

2 1

�d0
2 + 1/4�2B

0

�+1
�

+ 1
S−1

�A4�

� �2V

� cos �ijk� cos �ijl
	

0
�k � l�

= −
D�e�S

S − 1
��� + 1�a0

2c0
4 1

�d0
2 + 1/4�4B

0

�+2
�

+ 1
S−1 �A5�

� �2V

� cos �ijk� cos �ijk
	

0

=
D�e�S

S − 1
�a0c0

2 1

�d0
2 + 1/4�3B

0

�+1
�

+ 1
S−1

�2d0
2 −

3

2
−

�� + 1�B
0

1
�a0c0

2

d0
2 + 1/4

� �A6�
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