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We have investigated the shot noise of a system with a toroidal carbon nanotube �TCN� coupled to two metal
leads with applied microwave fields. The tunneling current operator is derived by determining the electron
operators in different parts of the system. The Landauer-Büttiker-like current operator is also obtained, from
which we obtain the time-dependent current fluctuation correlations, and consequently the spectral density of
shot noise. The photon-assisted shot noise exhibits interesting behaviors due to the special properties of the
TCN and the transport behaviors of electrons in multichannel mesoscopic systems. The quantum steps of the
shot noise with respect to the source-drain bias reflect the quantum nature of the TCN, as well as the applied
microwave field. The saturated value of the shot noise is suppressed by the applied microwave fields, and the
suppression is strongly associated with the structure of the TCN. The obtained shot noises are sub-Poissonian
when the source-drain bias increases to a definite value, and super-Poissonian shot noise appears below this
value.
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I. INTRODUCTION

In mesoscopic systems, electrons travel through the
sample maintaining coherence of the single-particle wave
function. The current I�t� tunneling through a conductor may
fluctuate in time even under constant operation conditions.
The noise is usually characterized by its power spectrum at
frequency �, and it is defined as the Fourier transform of the
current correlation function.1,2 It is well known that for a
conventional macroscopic dissipative conductor at equilib-
rium there exists a generalized Nyquist current noise spectral
density3 P���=4G��� ,T�, where ��� ,T� is the energy of a
harmonic oscillator, and G is the conductance of the conduc-
tor. It is well known that there are two types of equilibrium
fluctuations: Johnson-Nyquist noise4 due to random motion
of the charged carriers, and the noise due to time-dependent
fluctuations in the resistance. The shot noise is a nonequilib-
rium fluctuation which is caused by the discreteness of
charged carriers.5–7 From the investigation of shot noise, we
can learn additional information about the electronic struc-
ture and transport properties, since the shot noise is directly
related to the degrees of randomness in carrier transfer. In-
vestigation of the deviations from purely Poissonian shot
noise in mesoscopic systems has been an increasingly inter-
esting subject. Due to the Poissonian distribution in a mac-
roscopic system, the current is related to the shot noise by
the well-known Schottky formula8 SP=2e�I�. However, for a
mesoscopic system, the electrons are correlated due to coher-
ent transport, and they are governed by the Fermi distribu-
tion and the Pauli principle. The Pauli suppression of shot
noise has been demonstrated experimentally by several
groups.9–12 The shot noise suppression in the one-
dimensional hopping model13 and suppression by the Fermi
and Coulomb interactions14 have been discussed. The en-
hanced shot noise was derived theoretically by considering a
diode-biased resonant tunneling system in the negative dif-

ferential resistance regions.15 The enhancement of shot noise
was observed in the case of resonant tunneling via localized
states.16

Carbon nanotubes �CNs� are prospective materials for fu-
ture electronic devices due to their metallic and semicon-
ducting behaviors. Some electronic devices like field effect
transistors17,18 and diodes19 have been fabricated, which have
great potential for application. This opens up a new artificial
laboratory to study transport properties of low-dimensional
systems, and provides physical predictions for further device
application.20–26 The toroidal carbon nanotube �TCN� is a
form of carbon structure that has a torus structure formed by
bending the carbon tube such that the two edges are con-
nected. Theoretical27–29 and experimental30 investigations of
the electron properties of the carbon toroid revealed the
quantum nature of the quasi-one-dimensional ring. Com-
pared with a normal-metal or semiconductor ring, the TCN
can carry a larger persistent current due to the modification
of the energy structure and energy gap,31 and it provides
much richer physical properties due to its structure. Many
properties such as the conductance of a TCN coupled with
normal metals �N-TCN-N�, Andreev reflection in a TCN
coupled to a normal metal and a superconductor �N-TCN-S�,
and the dc Josephson current through a system with a TCN
coupled to two superconducting leads �S-TCN-S� �Ref. 32�
have been investigated and show novel electronic transport
properties. For a TCN that is threaded with a static magnetic
flux �, the interference of the electrons traversing different
arms of the ring induces Aharonov-Bohm-like effects. The
conductance and tunneling current are found to show reso-
nant and oscillating behaviors associated with magnetic flux.
The Aharonov-Bohm-like magnetic flux controls the tunnel-
ing current since it causes the metal-semiconductor transition
in the TCN.33 In the previous work, we have investigated
photon-assisted mesoscopic transport through the N-TCN-N
system by imposing microwave fields on metal leads, and by
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considering a terahertz �THz� magnetic flux threaded through
a TCN.34,35

In this paper, we investigate the photon-assisted shot
noise in a mesoscopic system with a TCN coupled to two
normal-metal leads perturbed by ac fields. The tunneling cur-
rent is characterized by the oscillating features of the exter-
nal microwave field. The external microwave fields split the
transmission channels to form sidebands, and drive electrons
resonantly in the TCN. In the presence of ac fields, the tun-
neling features deviate from those in situations where there
are no time-dependent perturbations.36–40 This is because
time-reversal symmetry is broken due to the ac disturbance.
We find that the tunneling current strongly depends on the
structure of the TCN and the applied fields, and the multi-
channel transport behaviors are determined by the detailed
structure of the TCN and the sideband of photon irradiations.
We derive the photon-assisted tunneling current operator by
using the method of the equation of motion. The correspond-
ing photon-assisted shot noise spectral density is obtained by
studying the current correlation functions. The shot noise
formula is found to be similar to the Büttiker formula37 by
using scattering theory. Since the energy level differences of
the TCN are larger as the TCN gets smaller, we consider
applied microwave fields located in the THz regime. Al-
though a similar formula for the shot noise in the presence of
photon-assisted tunneling in a single-level quantum dot sys-
tem has been presented in Ref. 39, our study displays un-
usual physical properties due to the detailed specific elec-
tronic structure of the TCN.

II. HAMILTONIAN AND FORMALISM

The TCN is formed by rolling a finite graphite sheet from
the origin to the vectors Rx=m1a1+m2a2, and Ry = p1a1
+ p2a2 simultaneously, where a1 and a2 are the two primitive
lattice vectors possessing the same magnitude as a= �a1 �
= �a2 � =b�31/2. Here b=1.44 Å is the C-C bond length of
CNs, known to be slightly larger than that of graphite.41 We
denote the TCNs by �m1 ,m2 ; p1 , p2� as convention. The TCN
satisfies the periodical boundary conditions along both of the
longitudinal and transverse directions. Two kinds of TCN
with highly symmetric structures are the armchair �m ,m ;
−p , p� TCN and the zigzag �m ,0 ;−p ,2p� TCN. The armchair
TCN possesses symmetry with the armchair structure along
the transverse direction and zigzag structure along the longi-
tudinal direction. The zigzag TCN has zigzag structure in
both directions. We denote the diameter of the CN as dt, and
the diameter of the mesoscopic ring as Dt. The diameters of
the armchair �m ,m ;−p , p� TCN are dt=3bm /�, and Dt

=31/2bp /�; the diameters of the zigzag �m ,0 ;−p ,2p� are
given by dt=31/2bm /�, and Dt=3bp /�. In the absence of
magnetic flux, the armchair TCN is a metal when p=3�
�type I TCN�, while it is a semiconductor with narrow energy
gap when p=3�±1 �type II TCN�, where � is an integer. The
zigzag TCN exhibits semiconductor behavior with large en-
ergy gap of the order Eg=0.1–1.0 eV, and is referred to as a
type III TCN. We investigate a system with the diameter
ratio of the nanotube dt to the diameter Dt of the mesoscopic
ring being much smaller than 1, i.e., �=dt /Dt	1. In the

absence of magnetic flux, the energy gap of the type II TCN
can be calculated by Eg=2
0 �1−z����, where z���=cos���
−31/2sin���, and �=b / �31/2Dt�.32,33 The energy gap of the
�7,7 ;−160,160� TCN is calculated to be Eg�68.77 meV.

Our system consists of three parts: the central TCN, and
two normal metal leads. The central TCN is applied with a
static magnetic field B perpendicular to the ring, which in-
duces a magnetic flux � threaded through the TCN. The
electrons are free from the magnetic field B, but the vector
potential A affects the behaviors of electrons due to the
Aharonov-Bohm effect. The electrons of the leads are de-
scribed by the grand canonical ensemble, and the central
TCN is described by the tight-binding Hamiltonian. The mi-
crowave field with frequency � is applied to the 
th lead

forming the potential drops by eṼ
dcos��t�, so that the elec-
tron energy in the 
th lead is associated with the time-

dependent one �
k�t�=�
k
�0�+eṼ
dcos��t�. We show the geo-

metric structure of our system in Fig. 1 in order to
understand it graphically. We consider the circumstance that
the two leads are biased by the dc voltage V which equals the
chemical potential drop between the two leads as L−R
=eV. In the diagonalized representation of the TCN, the elec-
tronic properties can be determined by the total Hamiltonian
of the system, which is the summation of the three sub-
Hamiltonians and the tunneling interaction term34

H = �

k�

�
k�t�a
,k�
† a
,k� + �

j���

E�,�j���c��,j�
† c��,j�

+ �

k�

�
j��

�R
�,j�
* c��,j�

† a
,k� + H.c.	 , �1�

where a
,k�
† �a
,k�� and c��,j�

† �c��,j�� are the creation �anni-
hilation� operators of electron in the two leads and the TCN,
respectively. R
�,j��k� is the interaction strength of particles
between the 
th lead and the TCN. In the Hamiltonian Eq.
�1�, E�,�j��� is the energy of the TCN, which is closely re-
lated to the structure of a specific TCN. The energy of the
armchair TCN in tight-binding approximation is given by31

FIG. 1. Schematic diagram of a TCN coupled to two normal
metal leads. The TCN is well connected to the two leads which
serve as the source and drain. The ac fields are applied to the two
leads to induce ac bias voltage.
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E�,�j��� = �
0
1 + 4 cos��j

m
�cos���� + �/�0�

p
��


+ 4 cos2���� + �/�0�
p

�1/2

. �2�

The energy of the zigzag TCN in the tight-binding approxi-
mation is given by

E�,�j��� = �
0
1 + 4 cos��j

m
�cos���� + �/�0�

p
��


+ 4 cos2��j

m
�1/2

, �3�

where j=1,2 , . . . ,m; �=1,2 , . . . ,2p; �=±, 
0=3.033 eV,
and �0=h /e is the flux quantum. j and � are the quantum
numbers of energy describing the transverse and longitudinal
quantization of the TCN, respectively. The upper half of the
energy dispersion curves expresses the �*-energy antibond-
ing band �unoccupied state�, and the lower half of the energy
dispersion curves describes the �-energy bonding band �oc-
cupied state�.

In order to investigate the shot noise of our system, we
first find the time-dependent current operator, and then
consider the current fluctuation correlations at different
times. It is convenient to make the gauge transformation

over the Hamiltonian by letting ��t�= Û�t��̃�t� in the
Schrödinger equation. The unitary operator is defined by

Û�t�=exp�−i�
k��
a
,k�
† a
,k�sin��t�	, with �
=eṼ
d / ����.

The transformed Hamiltonian H̃= Û−1�t�HÛ�t� is obtained

simply by letting �
k�t�→�
k
�0� and R
�,j�→ R̃
�,j��t�

=R
�,j�exp�i�
sin��t�	 in Eq. �1�. This procedure indicates
that the gauge transformation transforms the time-dependent
term in the electron energies �
k�t� to the tunneling interac-

tion terms R̃
�,j��t�.
The tunneling current operator of the 
th lead is deter-

mined from the Heisenberg equation and continuity equation.

Substituting the gauge-transformed Hamiltonian H̃�t� into
the definition of current, the current operator is expressed by
the creation and annihilation operators of electrons in the
normal metal leads and the TCN as

Î
�t� = −
ie

�
�
j��

�
k�

�R̃
�,j�
* �t�c��,j�

† �t�a
,k��t�

− R̃
�,j��t�a
,k�
† �t�c��,j��t�	 . �4�

Due to the coupling of different parts of the subsystems and
the time-dependent perturbation, the electrons in the leads
and the TCN are in nonequilibrium states, which are deter-
mined by the time-dependent electron operators a
,k�

† �t�,
a
,k��t� and c��,j�

† �t�, c��,j��t�. The shot noise is determined
by the current correlation as

�

��t,t�� = ��Î
�t��Î
��t��� + ��Î
��t���Î
�t�� , �5�

where �Î
�t�= Î
�t�− �Î
�t��. The symbol �¯� in the above
formula denotes the quantum expectation over the electronic

state, and the ensemble average over the system. In order to
obtain the shot noise, one has to find the current operator
explicitly. We derive the electron operators by solving the
equation of motion in the Heisenberg picture. The electron
operator in the 
th lead for the coupled system is expressed
as the integral form

a
,k��t� =� dt1g
,k�
r �t,t1��

j��

R̃
�,j��t1�c��,j��t1� + â
,k��t� ,

�6�

where â
,k��t� is the annihilation operator of electron in the

th lead when there is no tunneling at the initial time t0. This
means that â
,k��t� describes the equilibrium state of electron

as R̃
�,j��t1�=0. We refer to it as â
,k��t�=exp�−�i / � ��
k
�0��t

− t0�	â
,k��t0�. The electron number in the leads satisfies the
Fermi distribution �â
,k�

† �t�â
,k��t��= f��
k
�0��. The retarded

Green’s function of the 
th lead is denoted as g
,k�
r �t , t1�. We

still need the definition of the time-dependent electron opera-
tor in the TCN c��,j��t1� in order to find the solution of
a
,k��t�. One can find that the nonequilibrium electron opera-
tor of the TCN is determined by solving the Heisenberg
equation to give in the integral form

c��,j��t� = �

k
� dt1g��j

r �t,t1�R̃
�,j�
* �t1�a
,k��t1� + ĉ��,j��t� ,

�7�

where g��j
r �t , t1� is the retarded Green’s function of the iso-

lated TCN, and ĉ��,j��t� is the electron operator of the iso-
lated TCN defined by ĉ��,j��t�=exp�−�i / � �E�,�j����t
− t0�	ĉ��,j��t0�. The initial electron operator ĉ��,j��t� of the
TCN can be neglected since it has no contribution to the
current for our system. This is also true for the shot noise due
to the fact that there exists no correlation between the initial
operators â
,k��t� and ĉ��,j��t�. We consider the interaction of
electrons only in the same channels, i.e.,

R̃
�,j�
* �t�R̃
�1,j1�1

�t��= R̃
�,j�
* �t�R̃
�,j��t�����1

� j j1
���1

, which
means the self-energy of electrons in the 
th lead

�
�,j�
r �t , t��=�kR̃
�,j�

* �t�R̃
�j��t��g
,k�
r �t , t��. Combining Eqs.

�6� and �7�, and employing the iteration procedure, we can
find the electron operator

c��,j��t� = �

k
� dt1G��j

r �t,t1�R̃
�,j�
* �t1�â
,k��t1� . �8�

In the above equation we have dropped the contribution of
the initial electron operator ĉ��,j��t� of the TCN. In the elec-
tron operator c��,j��t� above, we have introduced the retarded
Green’s function G��j

r �t , t1� of the coupled TCN, which is
determined by the Dyson equation. Substituting the operator
c��,j��t� given in Eq. �8� into Eq. �6�, we therefore obtain the
electron operator a
,k��t�. The conjugate operator of c��,j��t�
can be found by taking conjugation over Eq. �8�, and by
using the relation G��j

r* �t , t1�=G��j
a �t1 , t� of the retarded and

advanced Green’s functions. This means that the electron
operators in the nonequilibrium state can be expressed by the
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nonequilibrium Green’s functions and the electron operators
in equilibrium state. From Eq. �8� and its conjugate expres-
sion, one can derive an expression for the product of c��,j�

† �t�
andc��,j��t� to describe the nonequilibrium electron popula-
tion operator in the TCN, from which we can obtain the
electron number in the TCN by taking quantum average and
ensemble average.

The current operator formula is obtained from Eq. �4� by
substituting all of the required equations above. In the wide-
band limit, R
�,j� is a constant, and does not depend on the
concrete energy levels. We denote it as R
�,j�=R
. The line-
width function �
�=2��kR


*R����−�
k
�0�� becomes an

energy-independent constant in the wideband limit. After
straightforward calculation, the time-dependent current op-
erator is found to be

Î
�t� =
e

h
�
��j

�
mn�

�
���

� � d�1d�2Jm�����Jn����

� exp� i

�
�12

nmt�A���,mn

 ��1,�2�â��

† ��1�â�����2� , �9�

where �ij
nm=�i−� j + �n−m���, and Jn��� is the Bessel func-

tion of the first kind. We have defined the transmission func-
tion of the time-dependent system by

A���,mn

 ��1,�2� = − �
����
G��j

a ��1 + n � ��G��j
r ��2 + m � ��

+ i��
����G��j
r ��2 + m � ��

− i���
����G��j
a ��1 + n � �� .

The transmission function A���,mn

 ��1 ,�2� in the current op-

erator satisfies the relation A���,mn

 ��1 ,�2�=A���,nm


* ��2 ,�1�.
The retarded �advanced� Green’s function of the coupled
TCN system in energy space is obtained by solving the
Dyson equation to give G��j

r�a����=1/ ��−E�,�j���± i� /2	,
where �=�
�
 represents the summation of the linewidth
constant in the wideband limit for the two leads, with the
notation �
=�

. From Eq. �9� we can derive the tunneling

current I
�t�= �Î
�t�� by taking the ensemble and quantum
average. By taking the grand canonical ensemble average
over Eq. �9�, and employing the relation �â��

† ��1�â������2��
=�����������1−�2�f���1�, we have the time-dependent cur-
rent formula in the 
th lead,

I
�t� =
e

h
�
��j

�
mn�

�
�
� d� Jm����Jn����

� ei�n−m��tA��,mn

 ��,��f���� , �10�

where the Fermi distribution function of the �th lead is given
by f����=1/ �exp���−�� /kBT	+1�. This formula describes
the time-oscillating mesoscopic transport through the TCN
system in the presence of ac fields. The structure of the os-
cillating tunneling current is strongly associated with the ac
fields, as well as the coupled TCN system. Experimentally,
the observed tunneling current is associated with the time-
averaged characteristics. The time-averaged tunneling cur-
rent is given by taking the time average over Eq. �10�, which

is obtained simply by letting n=m in the formula. The cur-
rent conservation �
I
=0 is satisfied for the time-averaged
current. The photon-assisted tunneling takes place as the ap-
plied ac fields induce sidebands for electrons to tunnel
through the channels �=E�,�j���−n��, �n=0, ±1, ±2, . . . �.
The photon-electron pumping effect takes place when the
magnitudes of the ac fields are not equal, i.e., �L��R, in the
absence of dc bias. This means that as the source-drain bias
is zero, there may exist a tunneling current due to the photon
absorption effect for electrons to overcome the threshold in
the TCN system. As the magnitudes of the applied ac fields
are equal, i.e., �L=�R=�, the tunneling current is zero when
the source-drain bias is removed. This results from the fact
that the pumped electrons from the two leads to the TCN are
equal because of the equal ac biases. The energy gap alter-
nates with �, and the metal-semiconductor transition takes
place on varying the magnetic flux. Therefore, the magnetic
flux controls the energy gap Eg��� for forming periodic os-
cillation of current with respect to � in period �0. The side-
bands of photon energy also shift the energy threshold up
and down to modify the energy gap. If �� is large enough to
smear the energy gap for the electron to tunnel, the effective
semiconductor-metal transition takes place.

The fluctuation of the time-dependent current associated
with the correlations of 
 and 
� leads at times t and t� is
now can be completely solved by substituting Eq. �9� into
Eq. �5�. The current correlation contains the correlations of
four electron operators â�1�1

† ��1�, â�2�2
��2�, â�3�3

† ��3�,
â�4�4

��4� for the isolated leads in equilibrium states. We em-
ploy Wick’s theory to decompose the four operator correla-
tions into the products of two operators with one creation
and one annihilation operator. As a result, the current corre-
lation �

��t , t�� between 
 and 
� leads at times t and t�,
respectively, is derived as

�

��t,t�� = � e

h
�2

�
��j

�
����j�

�
mnm�n�

�
����

� � d�1d�2Jm�����

� Jn����Jm�����Jn������

�exp� i

�
�12

nmt�exp� i

�
�21

n�m�t��
�A���,mn


 ��1,�2�A���,m�n�

� ��2,�1�F�����1,�2� ,

�11�

where we have defined the notation F�����1 ,�2�= f���1��1
− f����2�	+ f����2��1− f���1�	. The function F�����1 ,�2� satis-
fies the symmetry relation F�����1 ,�2�=F�����2 ,�1�. This ex-
pression of current correlation indicates that the currents tun-
neling through the mesoscopic system are correlated not only
between the currents in the same leads and times, but also
between different leads and times. The correlations of elec-
trons tunneling through different channels of the TCN and
sidebands are also involved in the formula. Therefore, time-
dependent current noise is contributed by the structure of the
TCN, and by all of these correlations stated above. The fea-
tures of the microwave fields play an important role in the
current noise. Usually, we are interested in the spectral den-
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sity of current noise S

���� in the pseudoequilibrium state,
which is defined as the Fourier-transformed current correla-
tion function of Eq. �5� by the expression shown in Ref. 5,
S

�������+���= �1/2���

��� ,���. Making a Fourier
transformation over t and t� corresponding to the frequencies
� and �� in �

��t , t��, and considering the pseudoequilib-
rium state in the presence of ac fields, we find the spectral
density of current noise. The effect of photon absorption and
emission induced by the microwave fields is included in the
noise spectral density. In order to obtain the observed noise
spectral density, the absorption and emission of photon num-
bers are required to satisfy the constraint n−m+n�−m�=0.
This constraint comes from the requirement of Fourier trans-
formation of the current correlation function in the pseu-
doequilibrium state. In fact, it is the selection rule for the
absorption and emission of photons associated with the en-
ergy conservation, i.e., the total absorbed photon energy
equals the total emitted photon energy in the system. This
equation indicates the two cases that we will study: case I for
n=m, n�=m�, which we refer to balanced absorption; case II
for m�=n−m+n�, which we refer to as unbalanced absorp-
tion.

A. Balanced absorption

For simplicity, we consider a symmetric situation for the
ac fields by letting �L=�R=�. The noise spectral density for
the balanced absorption case is determined by the formula

S

���� =
e2

h
�
��j

�
����j�

�
nn�

�
����

� d�Jn
2���Jn�

2 ���

�A���,nn

 ��,� + � ��A���,n�n�


� �� + � �,��

�F�����,� + � �� . �12�

Equation �12� describes the current noise spectral density,
which contains the thermal noise and shot noise in the pres-
ence of ac fields. When the ac fields are weak, the major
contribution to the noise comes from a few photon-assisted
processes. For the balanced absorption situation, the absorp-
tions and emission of photons in the same lead are equal, and
there is no correlation between the sidebands of photon be-
tween currents in different leads.

Now we investigate the shot noise of the left lead by
considering the special case as 
 ,
�=L in Eq. �12� for �
=0, i.e., S=SLL�0�. This noise spectral density is originated
from the self-correlations of the tunneling current in the
same leads. From Eq. �12� and substituting the coefficients
A���,nn


 defined in Eq. �9� into the spectral density of noise
formula, one finally arrives at the noise expressed by the
transmission coefficient T����j�

LR ��� in the following form:

S = 4
e2

h
�
��j

�
����j�

�
nn�
� d�Jn

2���Jn�
2 ���T��j

LR �� + n � ��

� T����j�
LR �� + n� � ��� �

���L,R�
f�����1 − f����	

+ W��j,����j�
�n,n�� ���FLR��,��� . �13�

In the noise formula, T��j
LR ���=�L�R �G��j

r ����2 represents
the transmission coefficient of an electron tunneling
from the right lead to the left one, and it satisfies
the symmetry relation T��j

LR ���=T��j
RL ���. We have used the

notation W
��j,����j�
�n,n�� ���= ���−E�,�j���+n��	��−E��,��j����

+n���	+ �� /2�2� / ��L�R�−1. The summation over spin vari-
able � contributes a factor 2 in our spin-degenerate system.
The first term of Eq. �13� represents the thermal noise of the
system, and the second term is the photon-assisted shot
noise. As �→0, the noise reduces to the case without micro-
wave fields. Since the thermal noise comes from the equilib-
rium statistical property, it decreases to zero on reducing the
temperature to zero. The shot noise is the excess noise as the
temperature approaches zero. By taking the zero-temperature
limit T→0, and employing the property of the Fermi distri-
bution function, we obtain the photon-assisted shot noise

S = 4
e2

h
�
��j

�
����j�

�
nn�

��
eV�0

0

+ �
0

eV�0 �d�Jn
2���Jn�

2 ���

� T��j
LR �� + n � ��T����j�

LR �� + n� � ��W��j,����j�
�n,n�� ��� .

�14�

For our multichannel system, the shot noise is not com-
pletely determined by the transmission coefficient, since the
cross-channel correlations contribute to the noise.

For the symmetric system where �L=�R=� /2, the
photon-assisted spectral density of shot noise is simplified to
the form

S =
e2

h ��eV�0

0

+ �
0

eV�0 �L2���d� . �15�

This represents the positive results due to the self-correlation
in the same lead, but there also exist cross-channel correla-
tions. We have defined the function in the above formula for
simplifying our expression

L��� = �
��jn

L��jn��� ,

and the function L��jn��� is defined by

L��jn��� = Jn
2���

��� − E�,�j��� + n � �	
�� − E�,�j��� + n � �	2 + ��/2�2 .

The shot noise spectral density presented in Eq. �15� is com-
plicated due to the correlations of electrons tunneling in dif-
ferent channels of the TCN, as well as in the sideband chan-
nels induced by the perturbation of microwave fields. This
complication can be observed by expanding the integrand
L2��� among the tunneling channels as

L2��� = 4 �
��jn

Jn
4���T��j

LR �� + n � ���1 − T��j
LR �� + n � ��	

+ �
��jn�����j�n�

L��jn���L����j�n���� . �16�

The first term in Eq. �16� is contributed by the self-
correlations of electrons tunneling in the same channels
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given by Büttiker et al.5 for a contact system, while the sec-
ond term represents the correlations of electrons tunneling in
different channels, which are not involved in their formulas.
The cross-channel correlations are much smaller compared
with the self-correlations of electrons in the same channels.
Furthermore, resonant transport through a mesoscopic sys-
tem is the main behavior of tunneling electrons, and most
properties of nano-devices are related to the resonant trans-
port. For this situation, the second term disappears, and the
remaining shot noise in the presence of ac fields is described
by the transmission coefficient T��j

LR ��+n��� entirely. It
should be pointed out that this result is not restricted by the
requirement of symmetric couplings.

It is interesting to study the variation of shot noise with
respect to the source-drain bias, from which we can learn the
behaviors of shot noise similar to the investigation of differ-
ential conductance. The differential shot noise spectral den-
sity versus source-drain bias voltage V of our system is de-
termined by

dS

dV
=

e3

h
�L2�eV � 0� − L2�eV � 0�� . �17�

This result tells us that when eV�0, the differential shot
noise dS /dV is positive, while when eV�0, it is negative.
However, the detailed structure of the differential shot noise
spectral density is determined by the coupled TCN and ac
fields.

B. Unbalanced absorption

For the case of unbalanced absorption, the spectral den-
sity of current noise is derived by considering the condition
that the sidebands of photon may possess correlations in the
same terminal currents, as well as in different terminal cur-
rents. Direct derivation results in

S

���� =
e2

h
�
��j

�
����j�

�
nmn�

�
����

� d�Jm�����Jn����

� Jn������Jp����A���,mn

 ��, �̃nm�A���,pn�


� ��̃nm,��

� F�����, �̃nm� , �18�

where we have used the notations in the above formula with
p=n+n�−m, and �̃nm=�+ �n−m���+ ��. Equation �18�
contains all the information of our system in the presence of
ac fields, as well as the magnetic flux for the unbalanced
absorption situation. This case indicates that the absorption
and emission of photons in the same terminal current are not
necessarily equal, but the total absorption and emission of
photons in the correlated currents are equal. This also means
that the absorbed photons in a terminal current may be emit-
ted from the other terminal currents due to the correlation of
current effects. The current noise includes the thermal noise
and shot noise, which are strongly related to the applied ac
fields and the structure of the TCN. The noise is contributed
from the current correlations in the same lead as well as
different leads. It is also contributed by the correlations of
current branches tunneling in the same and different chan-

nels. This form of current noise is given by Pedersen and
Büttiker37 from the scattering matrix approach for a mesos-
copic conductor, and by Sun et al. from the equation of mo-
tion method39 for a single-level quantum dot system. How-
ever, the application of their formulas to our TCN system is
not straightforward due to the special structure of our multi-
level system. Here we should point out that the formula of
Pedersen and Büttiker in Ref. 37 involves multiple channels
in different leads, and the leads are connected through a con-
tact. An electron tunneling from a channel in one terminal
directly to a channel in the other terminal. For our system,
the transport of electrons is quite different due to the differ-
ent central regime. The TCN provides a multiple channel for
electrons to tunnel; scattering and interference may exist in
the central regime. An electron may be ejected from a termi-
nal to a channel of the TCN, and then merge to the other
terminal. The correlations may exist in different channels of
tunneling electrons in the same terminal and different termi-
nals. An electron in one channel of the TCN may absorb
photons to jump to another channel as the photon energy is
larger than the energy spacing of the TCN. The electron may
jump back to a lower level of the TCN by emitting photons.

We also consider the situation for symmetric magnitudes
of ac fields by letting �L=�R=�. The shot noise spectral
density of the left lead S=SLL�0� is now derived as

S = 4
e2

h
�
��j

�
����j�

�
nmn�

� d�Jm���Jn���Jn����Jp���

�T��j
LR �� + n � ��T����j�

LR �� + p � ���1

2 �
���L,R�

F����, �̃nm�

+ W��j,����j�
�n,p� ���FLR��, �̃nm�� . �19�

In the formula, the first term containing F���� , �̃nm� repre-
sents the thermal noise and shot noise in the presence of
photon absorption and emission, which does not disappear in
the presence of ac fields even at zero temperature. The sec-
ond term represents the shot noise, which is nonzero when
the source-drain bias is set to zero due to the absorption and
emission of photons for the unbalanced situation. The dy-
namical current noise is obtained by setting the electro-
chemical potential of both leads to zero, i.e., L=R=0. For
this case the current noise is contributed by the transmission
noise between different terminals as well as the noise in the
same terminals. At zero temperature the current noise is
given by

S = 4
e2

h
�
��j

�
����j�

�
nmn�

Jm���Jn���Jn����Jp���

���
�m−n����0

0

+ �
0

�m−n����0 �T��j
LR �� + n � ��

�T����j�
LR �� + p � ���1 + W��j,����j�

�n,p� ���	d� , �20�

where p=n+n�−m. The ac field perturbation on the leads
causes two effects: one is to modify the electron energy lev-
els of the TCN forming sidebands, and the other is that it
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induces the photon bias energy which takes the role of the
source-drain bias. The noise spectral density is contributed
by four electron operators each of which represents an elec-
tron in the terminals. Unbalanced absorption indicates that
absorption and emission of photons between every two elec-
tron operators are not necessarily equal, but the total absorp-
tion and emission of photons for the four electron operators
are conserved. One notes that, for the symmetric ac-biased
system where �L=�R=� and �L=�R=�, there is no net cur-
rent when eV=0. However, the shot noise may not be zero
for the unbalanced situation. In order to obtain nonzero shot

noise, the condition �m−n � ��� Ẽg /2 is required, where Ẽg
is the effective energy gap for our system. The effective en-
ergy gap means the photon-energy-modified energy gap
which is not the same one as Eg for a TCN.

III. NUMERICAL CALCULATION AND RESULTS

In the following we perform the numerical calculations of
shot noise S, differential shot noise dS /dV, and Fano factor
F=S / �2eI� versus source-drain bias eV, and photon energy.
The symmetric system is studied by setting �=2�L=2�R and
�L=�R=�. We perform the numerical calculations separately
for the balanced and unbalanced photon absorption situations
at zero temperature. The photon energy of the fields is scaled
by the parameter 
0 as ��=0.01
0, which is related to the
frequency in the microwave region as �=7.36�1012 Hz.

Figure 2�a� displays the shot noise spectral density of the
type II �7,7 ;−74,74� TCN system at different strengths of
microwave fields � for the balanced photon absorption situ-
ation. A small energy gap is exhibited and step-like shot
noise characteristics are seen on increasing the source-drain
bias eV. This quantum step behavior comes from the discrete
energy spectrum of the TCN and the sidebands induced by
photon absorption. The shot noise changes abruptly at about
eV�0.44
0. Applying the ac fields one observes that as the
magnitude � is increased, the shot noise is decreased. This
kind of shot noise suppression comes from the effect of in-
creasing the tunneling channels due to applying the ac fields,
and the magnitude of the tunneling current is suppressed as a
compensation for increasing the channel number. The mag-
nitude of total tunneling current is also suppressed by the
fields. The shot noise characteristic is strongly dependent on
the structure of TCN shown in Fig. 2�b�. A large energy gap
is obviously seen for a type III �7,0 ;−75,150� TCN system,
and there is no energy gap for the type I �7,7 ;−75,75� TCN
system. The shot noise of type I TCN systems possesses a
zero energy gap, and it behaves quite differently from type
III TCN systems. The shot noise versus eV displays nonlin-
ear characteristics for the different TCN systems.

The Fano factor tells us whether the shot noise is sub-
Poissonian �F�1�, or super-Poissonian �F�1�. The detailed
behavior of the Fano factor also presents the difference of the
shot noise spectral density from corresponding current. Usu-
ally, the shot noise is suppressed in the positive conductance
regime, but enhanced in the negative conductance regime.
We show the variation of Fano factor versus source-drain
bias eV in Fig. 3 at different system parameters for the bal-
anced photon absorption situation. The curves shown in dia-

grams �a� and �b� are associated with the different �7,7 ;
−74,74� and �7,7 ;−75,75� TCN systems when �=0.5. We
observe that at small eV, the Fano factors of the two systems
behave quite differently. The Fano factor of the type II
�7,7 ;−74,74� TCN drops rapidly to 0.25 as eV=15 meV. It
rises rapidly to the value 0.59, and then it drops again. The
Fano factor fluctuates around 0.4 when the source-drain bias
eV is large enough for both �7,7 ;−75,75� and �7,7 ;
−74,74� TCN systems. For the type I �7,7 ;−75,75� TCN
�=0, the Fano factor approaches the saturated value at about
0.5 when eV�0.18
0 as shown in diagram �c�. The saturated
value of the shot noise as well as the Fano factor are sup-
pressed by the applied microwave field.

In order to display the detailed resonant structure of
dS /dV and the effects related to differential shot noise, we
depict dS /dV in the small regime �eV � �5�10−2
0 in Fig. 4.
Diagrams �a� and �b� display different behaviors of differen-
tial shot noise for the unbalanced and balanced absorption
cases. For the unbalance absorption, dS /dV exhibits a Fano
type of peak splitting behaviors with one peak and one valley
asymmetry. This arises from the absorption of photons caus-
ing unbalanced behaviors of the emitting photons. For the
balanced absorption case, resonant structures and the sup-
pression of resonance caused by the microwave fields are
clearly seen. We can only find the splitting of dS /dV, but the
Fano-type asymmetry disappears. We also depict the differ-
ential conductance in diagram �c� for comparison. The small

FIG. 2. Shot noise S versus source-drain bias eV at zero tem-
perature for balanced absorption. We set the parameters as �=0,
�=0.001
0, and ��=0.01
0. �a� displays the case for �7,7 ;
−74,74� with different ac field strengthes for �=0.8,0.5,0.3,0.2
corresponding to the solid, dashed, dotted, and dash-dotted curves,
respectively. �b� shows the shot noise for comparing different TCNs
and �. The solid, dotted, and dash-dotted curves are depicted asso-
ciated with �=0.5 corresponding to �7,7 ;−74,74�, �7,7 ;−75,75�,
and �7,0 ;−75,150�, respectively. The dashed curve is related to
�7,0 ;−75,150� as �=0.8.
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energy gap Eg�2.26�10−2
0 of the type II �7,7 ;
−160,160� TCN in the absence of microwave fields is ob-
served. This energy gap is also reflected in the resonant
structure of the dS /dV shown in diagram �b�. The energy gap
disappears on applying a microwave field, which can be seen
in the differential conductance by adding a split peak at V
=0. However, we do not find the resonant peaks at V=0 in
the structure of dS /dV for the balanced absorption case,
which indicates that the behaviors of differential conduc-
tance are different from those of corresponding to differential
shot noise.

We perform the numerical calculations of shot noise ver-

sus photon energy �� at zero temperature as Ṽ
d=0.8
0 for
the unbalanced absorption case. To consider the behavior of
shot noise associated with the photon energy we set magnetic
flux to zero. We display the shot noise for �=0.01
0 at zero
source-drain bias V=0 in Fig. 5. This kind of shot noise is
induced by the applied ac fields entirely. One observes that
the shot noise is zero as ���0.08
0 for the type I �7,7 ;
−75,75� and type II �7,7 ;−74,74� TCNs, and in the regime
���0.15
0 for the type III �7,0 ;−75,150� TCN. We denote
�=0.08
0 for �7,7 ;−75,75� and �7,7 ;−74,74� TCNs, and
�=0.15
0 for the �7,0 ;−75,150� TCN. When ����, the
shot noise increases rapidly as the photon energy increases.
Steplike nonlinear behaviors are exhibited clearly, and they
are intimately associated with the detailed electron structures
of TCNs. This field-induced shot noise originates from sev-
eral effects. First, the argument �
 of the Bessel functions is

determined by �
=eṼ
d / ����, which is inversely propor-

FIG. 3. Fano factor versus source-drain bias eV at zero tempera-
ture for balanced absorption. We set the parameters as �=0, �
=0.001
0, and ��=0.01
0. �a� is related to �7,7 ;−74,74� as �
=0.5; �b� and �c� are related to �=0.5 and 0, respectively, for
�7,7 ;−75,75�.

FIG. 4. Differential shot noise dS /dV and differential conduc-
tance dI /dV versus source-drain bias eV for �7,7 ;−160,160�. We
set the parameters as �=0, �=0.001
0, and ��=0.01
0. �a� dis-
plays the situation for unbalanced absorption as �=0.8, while �b�
shows the balanced absorptions for �=0.8 �solid� and �=0 �dotted�.
�c� shows the differential conductance dI /dV−eV characteristics for
comparison. The solid and dotted curves are associated with �
=0.8, �=0, correspondingly.

FIG. 5. Shot noise S of the unbalanced absorption case versus
the photon energy �� at zero temperature as eV=0. The parameters

are chosen as �=0, eṼ
d=0.8
0, and �=0.01
0. The solid, dotted,
and dashed curves are related to the �7,7 ;−75,75�, �7,7 ;−74,74�,
and �7,0 ;−75,150� TCNs, respectively.
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tional to ��, so that the arguments of the Bessel functions
are very large when the photon energy ��	
0. There exists
a photon-electron threshold � due to the ac fields and the
nature of the TCNs. In order to obtain large shot noise, we
have to increase the photon energy to force the tunneling
electron to overcome the threshold ����. Second, the side-
bands induced by the ac fields are incorporated with the en-
ergy levels of the TCN to form hybrid electron resonant lev-
els. These energy levels enable electrons to tunnel through
the system resonantly, and small steps are related to them.
Since different TCNs possess different energy dispersion
curves, we have different shot noise spectral density for dif-
ferent TCNs.

We perform numerical calculations of Fano factor versus

photon energy �� at zero-temperature as Ṽ
d=0.8
0 for the
unbalanced absorption case. Figure 6 depicts the Fano factor
for �=0.001
0 in the presence of source-drain bias eV
=0.25
0. The Fano factor is very small when the photon
energy is small, and it increases to exhibit several resonant
peaks in the regime 0� ���0.16
0. The Fano factor in-
creases rapidly in the regime 0.16
0� ���0.22
0 to reach
the magnitude F�0.1–0.12. Then the Fano factor increases
very slowly to reach the value F�0.13 when the photon
energy ���0.6
0. The Fano factor of the unbalanced situa-
tion is much smaller than that of the balanced absorption
situation. The resonant peaks of the Fano factor in the regime
0� ���0.16
0 indicate the distinct different behaviors of
shot noise and tunneling current versus photon energy. When
the photon energy is small ���0.21
0, the Fano factors of
type I �7,7 ;−75,75� TCN and type III �7,0 ;−75,150� TCN
systems almost overlap each other, while there is an obvious
difference as ���0.21
0. The shot noise for the unbalanced
absorption case also belongs to the sub-Poissonian case since
F�1 when eV=0.25
0.

We present the shot noise and Fano factor for the unbal-
anced absorption cases in Figs. 7�a� and 7�b�. It is clearly

observed that the shot noise is nonzero for the two systems
even though the corresponding current is zero for the sym-
metric system. This indicates that the shot noise induced by
the pure photon absorption in the two leads contributes to the
excess noise. Modified steps are obviously seen for the
�7,7 ,−159,159� TCN system. This modification comes from
the unbalanced absorption procedure, and it cannot be ob-
served in the balanced absorption situation compared with
Fig. 2. The Fano factor drops rapidly as the source-drain bias
increases, and it reaches the saturated value F�0.04. As the
source-drain bias is very small, eV�0, the Fano factor is
large enough to surpass 1, i.e., F�1 can be realized. This
means that for our special case the super-Poissonian shot
noise exists in the unbalanced absorption case although most
of the shot noises belong to the sub-Poissonian cases.

IV. CONCLUDING REMARKS

We have investigated the shot noise of a system with a
toroidal carbon nanotube coupled to two metal leads in the
presence of microwave fields. The tunneling current operator
is derived by determining the electron operators in different
parts of the system, and the Landauer-Büttiker-like current
operator is obtained from which we find the time-dependent
current fluctuation correlations, and the spectral density of
shot noise consequently. Our formula contains all effects
concerning the TCN and applied microwave fields. The
photon-assisted shot noise exhibits unusual behaviors due to
the special properties of TCNs and the transport behaviors of
electron in multichannel mesoscopic systems. The electron

FIG. 6. Fano factor of the unbalanced absorption case at the
source-drain bias eV=0.25
0 versus photon energy. The parameters

are chosen as �=0, eṼ
d=0.8
0, and �=0.001
0. The solid and
dotted curves are associated with �7,7 ;−75,75�, and �7,0 ;
−75,150� TCNs, respectively.

FIG. 7. Shot noise and Fano factor of unbalanced absorption
cases versus source-drain bias. The parameters are chosen as �=0,
��=0.01
0, and �=0.001
0. The solid and dotted curves are asso-
ciated with �7,7 ;−160,160�, and �7,7 ;−159,159� TCNs,
respectively.
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transport is determined by the ac and dc driving forces, and
the electrons tunnel in different channels of the TCN and
sidebands. The quantum steps of shot noise with respect to
the source-drain bias reflect the quantum nature of the TCN,
as well as the applied microwave fields.

For the balanced absorption situation, the photon absorp-
tion and emission in the same lead are equal, and there exist
no correlations between the sidebands of photon between
different terminal currents. The shot noise disappears as the
source-drain bias is removed at zero temperature. Nonlinear
characteristics for the shot noise versus eV are displayed
clearly for different TCN systems. The saturated value of the
shot noise is suppressed by applying microwave fields, and
the suppression is strongly associated with the structure of
the TCN. The magnitude of the saturated Fano factor is
around 0.4, and different TCN systems show different oscil-
lation configurations. For the type II TCN system, the sup-
pression can cause the Fano factor to reach 0.25 in a small
regime of source-drain bias. This type of shot noise is sub-
Poissonian.

For the unbalanced absorption situation, the absorption
and emission of photons in the same terminal current are not
necessarily equal, but the total absorption and emission of
photons in the correlated currents are equal. The shot noise is
contributed from the current correlations in the same lead as
well as different leads. It is also contributed from the corre-
lations of current branches tunneling in the same channel and

different channels, which includes the correlations between
different sidebands. There exists shot noise even if in the
absence of source-drain bias. The photon energy plays the
role of source-drain bias to induce shot noise, and shot noise
may exist as the tunneling current becomes zero. In order to
obtain obvious shot noise, we have to increase the photon
energy to force the tunneling electron to overcome the
threshold ����. The Fano factor of the unbalanced situa-
tion is much smaller than that of the balanced absorption

situation for a definite value of eṼ
d as the photon energy is
small. Negative differential shot noise may be exhibited in
the positive regime of eV, which shows rich physical behav-
iors of the shot noise. The shot noises of unbalanced system
are sub-Poissonian as the source-drain bias eV increases to a
definite value. However, super-Poissonian shot noise appears
when the source-drain bias lies below this definite value.
These resonant structures of shot noise indicate that the shot
noise and tunneling current behave quite differently.
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