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An analytical approach to calculation of the conductivity tensor � of a two-dimensional electron system with
Rashba spin-orbit interaction �SOI� in an orthogonal magnetic field is proposed. The electron momentum
relaxation is assumed to be due to electron scattering by a random field of short-range impurities, which is
taken into account in the Born approximation. An exact expression for the one-particle Green’s function of an
electron with Rasba SOI in an arbitrary magnetic field is suggested. This expression allows us to obtain
analytical formulas for the density of states and � in the self-consistent Born and ladder approximations,
respectively, which hold true in a wide range of magnetic fields, from the weak ��c��1� up to the quantizing
��c��1� ones. It is shown that in the ladder approximation the Rashba SOI has no effect at all on the
conductivity magnitude in the whole range of classical �nonquantizing� magnetic fields. The Shubnikov–de
Haas oscillation period is shown to be related to the total charge carrier concentration by the conventional
formula, irrespective of the SOI magnitude. A simple equation defining the location of the SdH oscillation
beating nodes is obtained. The results are in good agreement with the experimental and recent numerical
investigations.
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I. INTRODUCTION

The growing interest in studying the spin-orbit interaction
�SOI� in semiconductor two-dimensional �2D� structures is
mostly due to its potential application to the spin-based elec-
tronic devices.1 There are two main types of SOI in a quan-
tum well based on zinc-blende-lattice semiconductors: first,
the Dresselhaus interaction2 which originates from the bulk
inversion asymmetry; second, the Rashba interaction3 in-
duced by structural inversion asymmetry of the confining
field of a quantum well. Both of these interactions lead to the
momentum-dependent spin splitting of the electron energy
spectrum and to the formation of quantum states with the
hard linked spatial and spin degrees of freedom of the elec-
trons. They are responsible for many interesting effects in the
transport phenomena like beatings in the Shubnikov–de Haas
�SdH� oscillations;3,4 weak antilocalization;5–8 current-
induced nonequilibrium spin polarization;9–11 spin Hall
effect;12,13 and so on.

At present there are some sufficiently well-developed
theories of the kinetic and spin phenomena in 2D systems
with SOI in zero or classical weak ��c��1� orthogonal
magnetic fields. Here �c= �e �B /mc is the cyclotron fre-
quency, and � is the electron scattering time. As for theoret-
ical studies of the considered systems in strong, and espe-
cially in quantizing ��c��1� magnetic fields, there is still no
satisfactory analytical description of the kinetic phenomena
even in the usual diffusive regime �without quantum correc-
tions�. The complex form of the eigenspinors and energy
spectrum of an electron in the presence of SOI and a strong
magnetic field3 is the main cause of such a situation. Direct
employment of this basis forces one to proceed almost right
from the start to the numerical analysis of very cumbersome
expressions.14–16,24

The strong magnetic field is, however, one of the most
efficient tools for investigation4 of SOI and manipulation of

the spin degrees of freedom in semiconductor 2D structures.
Thus, a rather simple theoretical description of the kinetic
phenomena in 2D systems with SOI in a strong orthogonal
magnetic field becomes a necessity. In the present work, we
consider the problem of calculation of the longitudinal and
Hall resistances of a 2D Rashba system in the ladder ap-
proximation assuming that the electron momentum relax-
ation is due to elastic scattering by short-range impurities
which is taken into account in the Born approximation.

We have found the exact relation between the one-particle
Green’s function �GF� of the Rashba 2D electron in an arbi-
trary orthogonal magnetic field and the well-known GF of an
“ideal” electron, that is, an electron with the ideal value of
the Zeeman coupling �g0=2� and without SOI. This allows
one to obtain analytical expressions for the density of states
�DOS� in the self-consistent Born approximation �SCBA�,
and the conductivity tensor �̂ in the ladder approximation.
The total DOS in the SCBA is defined as the sum of the
partial DOS’s of two spin-split subbands. At the same time,
the conductivity in the ladder approximation looks as if the
current were generated by charge carriers of one type with
total concentration n and mobility �. These expressions hold
good in a wide range, from classically weak magnetic fields
��c��1� up to quantizing ones ��c��1�. On the basis of
these results, we perform a numerical analysis of the beatings
of the SdH oscillations of the considered kinetic coefficients,
as well as of their behavior in the classical magnetic field
region. The results are in good agreement with the experi-
mental data,18,19 and with the results of a recent numerical
investigation.17

II. MODEL

Let us consider a two-dimensional ���OXY� degenerate gas
of electrons with effective mass m and effective Zeeman
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coupling g. The electrons move in an external orthogonal
�B � �OZ� magnetic field B=��A in the presence of a ran-
dom field U�r� due to pointlike impurities distributed by the
Poisson law in the sample. We assume the Rashba interaction
to be the dominant mechanism of energy spin splitting in the
absence of a magnetic field. This situation occurs, for ex-
ample, in the narrow-gap semiconductor heterostructures,
such as InAs/GaSb �Ref. 4� and InxGa1−xAs/InyAl1−yAs.18,19

The one-particle Hamiltonian of the considered system has
the form

H + U =
�2

2m
+ ��� � �� · n +

1

4
g�c�z + U�r� �1�

�	=1�. Here �=p−eA /c=mv is the operator of the kine-
matic electron momentum; �= ��x ,�y ,�z� is the vector
formed by the Pauli spin matrices; � is the Rashba spin-orbit
coupling; g is the effective Zeeman coupling �g factor�.

In the gauge A= �0,Bx ,0�, the components of the eigen-
spinors of the Hamiltonian H �1� of a free �U�r�=0� Rashba
electron are expressed through the Landau wave functions

n,X�r� depending on the Landau level number n
=0,1 ,2 , . . . and the X coordinate of the cyclotron orbit center
X=−ky /m�c

3

�̂��r� =
1

�1 + Cs,n
2 �Cs,n
n−1,X�r�


n,X�r� �, � = �s,n,X� . �2a�

The corresponding energy levels have the following form:

Es,n = 	− �c� , n = 0, s = + 1,

�c�n + s��2 + 22n� , n � 0, s = ± 1.



�2b�

Here Cs,n=�2n / �s��2+22n−�� is a normalizing coeffi-
cient; �= �g−2� /4 is the relative deviation of the effective
Zeeman coupling from its ideal value g0=2 �for definiteness,
it is assumed that ��0 in these equations, but all the follow-
ing results are valid for any sign of ��; and, finally, 
=��m /�c is the dimensionless Rashba spin-orbit coupling.

The quantum number s= ±1 describes the helicity of the
Rashba electron eigenstate in the absence of a magnetic
field.11 Indeed, it can be verified immediately that s= ±1 is
the eigenvalue of the operator

� =
��� � � + �c��� · n

�2m�2H0 + �c
2�2

, �3�

which is diagonal in the basis �2a� and approaches the helic-
ity operator ���p� ·n / �p� as B→0. Here n is the unit nor-
mal vector to the considered 2D system;

H0 =
�2

2m
+

1

2
�c�z �4�

is the Hamiltonian of the ideal �g0=2� electron in a magnetic
field, which commutes with � ·n, ����� ·n, and H �1�.

In spite of this analogy with the B=0 case, we cannot say
that the Rashba electron has in the states �2a� the spin pro-
jection ±1/2 onto the direction ���n+�c�n, because the
components of the kinematic momentum operator � are not

commuting motion integrals. Nevertheless, this interpretation
makes sense in the quasiclassical limit, when one can speak
about the electron path in a magnetic field; namely, the quan-
tum number s= ±1 determines the value of the spin projec-
tion on the instant direction of ���n+�c�n which changes
along the quasiclassical electron path. Thus, the spin con-
figurations of the Rashba electron states form vortices in the
XY plane with center at the origin.

The conductivity tensor �̂ of the considered system has
just one independent circularly polarized component �=�xx
+ i�yx. In the one-electron approximation, it has the form20

� = �I + �II =
e2

8�
Tr V+���2�EE

RA − �EE
RR − �EE

AA��E=EF

+ �
−�

EF

���E − �E����EE�
AA − �EE�

RR ��E�=E
dE� . �5�

Here, �EE�
XY = �ĜX�E�V−ĜY�E�� is the current vertex operator;

V±=Vx± iVy =v±±2i��± are circularly polarized components
of the full velocity operator �the corresponding components
� are defined as �±= ��x± i�y� /2�, where the last term oc-

curs due to SOI �1�. ĜR�A��E�=1/ �E−H−U± i0� is the resol-
vent �retarded �R� or advanced �A�� of the Hamiltonian �1�,
and angular brackets �¯ denote averaging over the random
field U configurations. Finally, the symbol �E denotes the
derivative with respect to energy E.

III. ONE-ELECTRON GREEN’S FUNCTION

By definition, the one-particle GF is the averaged resol-

vent of the Hamiltonian �1� �ĜR�A��E�= �1/ �E−H−U± i0�.
It is connected with the electron self-energy operator

�̂R�A��E� by the relation �X=R ,A�

�ĜX�E� = ��G↑↑
X �E� �G↑↓

X �E�
�G↓↑

X �E� �G↓↓
X �E�

� =
1

E − H − �̂X�E�
.

�6�

The direct employment of the eigenspinors �2� for calcu-
lation of �6� or kinetic and thermodynamic properties of the
Rashba system in a strong magnetic field leads to very com-
plicated expressions. One is forced almost from the first
steps either to turn to numerical calculations,14,16,24 or to
make simplifying approximations like a momentum-
independent spin-splitting energy.15 This makes more diffi-
cult the interpretation of the results obtained in such a way,
as well as the understanding of the whole physical picture.
But it turns out that the GF of the free �U=0� Rashba system
is expressed exactly through the GF of the ideal electron in a
magnetic field. This opens up new possibilities for analytical
studies of the considered system. Indeed, it is easy to check
that the Hamiltonian of the free Rashba systems can be pre-
sented in the following form:

H = H0 + ��2m�2H0 + �c
2�2. �7�

Here � is the helicity operator defined in Eq. �3� and H0 is
the Hamiltonian of the ideal electron �4�.
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The substitution of the Hamiltonian �7� into the resolvent

Ĝ�E�= �E−H�−1 gives, after some simple algebra, the fol-
lowing result �here and below, we drop superscripts R �A�, if
this does not lead to misunderstandings; sometimes, for brev-
ity of notation, we shall not write explicitly the energy argu-
ments of the resolvents or GF’s�:

Ĝ�E� =
E − H0 + ���� � n� + �c�n� · �

�E + m�2 − H0�2 −
1

4
�B

2

, �8�

where

�B = 2�2m�2E + m2�4 + �c
2�2 = ��2 + 4�c

2�2. �9�

The quantity �B is equal to the magnetic-field-dependent
frequency of the spin precession of the electron with energy
E that is responsible for the Dyakonov-Perel spin relaxation
mechanism;21 � is the same frequency in the absence of a
magnetic field. It should be noted that the same representa-
tion of the one-electron GF can be also obtained for a system
with the momentum-linear Dresselhaus SOI. For example, in
the case of a �001�-grown quantum well based on the AIIIBV

semiconductors, it is sufficient to replace �→ �̃= ��y ,�x� in
the definition of the helicity operator �3�, change the sign
before the Zeeman term �g0=−2� in the Hamiltonian of the
ideal electron �4�, and, finally, redefine the parameter �
→�D= �g+2� /4.

The denominator of the right-hand side of Eq. �8� depends
on the ideal electron Hamiltonian alone. Expanding this ex-
pression into partial fractions, we obtain the desired repre-
sentation of the one-electron GF of the free Rashba system,

Ĝ�E� =
1

2�B
�

s=±1/2

�B + 4s�m�2 − �c��z − ��� � n� · ��
E + m�2 + s�B − H0

= �
s=±1/2

��s − 2s
��� � n� · �

�B
�Ĝ�E + m�2 + s�B� .

�10�

We use here the same notation �Ĝ� for the GF of the Rashba
electron and for the GF of the ideal electron. However, this
does not lead to confusion since the latter depends always on
energy arguments like E+m�2+s�B, etc.

It is important that the same representation can be ob-
tained for the averaged resolvent of the Rashba system in the
SCBA. We restrict ourselves here to an approximation in
which the electron self-energy operator is diagonal in spin
space. Then, the SCBA equation for �X�E� has the following
form:

�̂�E� = W�SpĜ�E� = ��↑↑�E� 0

0 �↓↓�E� � . �11�

Here Sp denotes the trace only over the spatial degrees of
freedom; W=nIU0

2, where nI is the impurity concentration,
U0 is the magnitude of the pointlike potential of an isolated
impurity. Therefore, it is sufficient to make everywhere in
Eq. �10� the following substitutions:

E → E − �e�E�, g�c → g�c + 4�o�E� �12�

to obtain the desired representations for the averaged GF’s in
the SCBA. Here �e�o��E�= ��↑↑�E�±�↓↓�E�� /2 are the even
and odd parts of the electron self-energy. The first ��e

=�e± i /2�e� describes the perturbation �shift �e and broad-
ening 1/�e� of the one-electron energy levels by a random
field. The real part of �o=�o± i /2�o defines the renormaliza-
tion of the Zeeman coupling �12�, while its imaginary part,
proportional to 1/�o, makes a contribution to the overall
broadening of the one-electron energy levels. As a result, we
obtain a expression like Eq. �10� for the averaged GF, where

ĜR�A��E + m�2 + s�B� =
1

E + m�2 + s�B − H0 ±
i

2�s

�13�

is the averaged retarded �advanced� GF of the ideal electron,
and

�B =
1

2
��B

R + �B
A� ,

1

�s
=

1

�e
− is��B

R − �B
A� = �1 + s

4m�2

�B

 1

�e
+ s

4�c�

�B

1

�o

�14�

are the disorder-modified frequency of the spin precession
�9� and the inverse lifetime of an electron in the sth spin-split
subband. As usual, we do not take explicitly into consider-
ation in �13� the one-electron energy level shift �e that is
absorbed by the normalization condition, but we mean here
that the odd shift �o is included in the definition of the ef-
fective g factor in accordance with �12�. The explicit allow-
ance for the Zeeman coupling renormalization is particularly
important in the SdH oscillation regime.

IV. DENSITY OF STATES AND SELF-ENERGY

We first consider the calculation of the DOS n�E�
=Im�Tr ĜA�E� /� using the above-obtained expression for
the one-particle GF �10�. Here, the symbol Tr denotes the
trace over the spatial and spin degrees of freedom. For the
sake of simplicity, we shall deal with the case of large filling
numbers �E��c�. Calculating the trace of the resolvent �10�
over the spatial and spin degrees of freedom, we obtain the
following expression for the DOS:

n�E� = �
s=±1/2

ms

m
n�0��E + m�2 + s��B ± �c�� = �

s=±1/2

ms

m
ns

�0��E� .

�15�

Here, we take into account that the DOS of a spinless elec-
tron in an orthogonal magnetic field n�0��E� satisfies n�0��E�
=n�0��E±�c� at large filling factors �E��c�. The sign before
�c is chosen in such a way as to ensure the right-hand limit
s��B±�c�→ ±sg�c /2, as the spin-orbit coupling approaches
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zero. The effective mass ms in the sth subband is defined as

ms = m�1 + s
4m�2

�B

 = m�E�E + s�B� . �16�

In the considered case this expression coincides with the
usual definition of the transport and cyclotron effective
masses in the isotropic nonparabolic band.22

In full accordance with the two-subband model, the DOS
in Eq. �15� is presented as a sum of partial contributions.
Using this expression for the DOS, we can obtain the ana-
lytical form of the equation for the electron concentration n
=�EFn�E�dE which is the normalization condition for the
Fermi level determination. So, a more correct expression for
the DOS is needed, which adequately describes its behavior
not only in the vicinity of the Fermi level EF ��0�, but also
near the lower boundary of the spectrum. For example, at
B=0 we have

n�E� =
m

�� m�

�2mE + m2�2
, −

1

2
m�2 � E � 0,

1, E � 0.

�17�

In the energy interval −m�2 /2�E�0, the DOS is formed
by the states of the lower spin-split subband and has the
typical one-dimensional behavior. Integrating �17� between
−m�2 /2 and EF, we obtain

n =
m

�
�EF + m�2� =

m

�
E0, EF � 0. �18�

Thus, the energy E0=EF+m�2 corresponds to the Fermi
level in the absence of SOI. Notice that the partial electron
concentrations ns=m�E0+s�B� /2� depend nonlinearly on
the Fermi energy, in contrast to n �18�. The correction to the
Fermi energy in �18� comes from the low-energy tail of the
DOS �17�. Of course, the difference between E0 and EF is
small for weak SOI �m�2�EF�. However, as shown below,
it is of crucial importance to take it into account for a correct
interpretation of the spin-orbit interaction effect on both the
conductivity in the absence of a magnetic field, and the SdH
oscillations.

The representation �15� allows one to obtain a simple ana-
lytical expression for the DOS that holds good up to the
quantizing fields region ��c��1�. Indeed, the DOS of a
spinless electron in the large filling factors region �E��c�
has the form

n�0��E� =
m

2�

sinh
�

�c�

cosh
�

�c�
+ cos 2�

E

�c

. �19�

Inserting Eq. �19� into Eq. �15�, we obtain for the oscillating
part of the DOS the following expression:

�n�EF� =
2m

�
exp�−

�

�c�



��cos 2�
E0

�c
cos �

�B

�c

−
2m�2

�B
sin 2�

E0

�c
sin �

�B

�c

 �20�

which is valid in the magnetic field region under consider-
ation. The second term in Eq. �20� appears due to the differ-
ence between the effective masses ms �16�.

It follows from �20� that the energy E0 defines the main
period of the SdH oscillations. In other words, in the large-
filling-factor region �EF��c� the SdH period is determined
by the total electron concentration �see Eq. �18��, regardless
of the spin-orbit interaction magnitude. On the other hand,
the period of the SdH oscillation beatings �20� �see Fig. 1�a��
defines the spin precession frequency �9� which depends on
the magnetic field even in the absence of Zeeman splitting
�g=0�.

FIG. 1. Plots of the SdH oscillations of the total DOS �a� and of
the difference of the partial DOS’s �b� of the 2D Rashba system at
fixed g=2.8 and kFl=35.0, and different ��=3.0, 1.5, 0.75 �top to
bottom�. The arrows point the node locations with their numbers
k=2,3 ,4 ,5 that are calculated with Eq. �21�.
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In the case of weak SOI ���E�, the oscillations of the
DOS are determined completely by the first term in Eq. �20�.
Then, the location of the kth node of beatings is determined
by the condition

Bk =
2mc

�e�
�

��2k + 1�2 − �g − 2�2
. �21�

This limit was considered in Ref. 23. Unlike the results of
that work, the above-obtained equations still stand in the
case of strong SOI, where it is important to take account of
the difference E0 and EF for correctly defining the SdH os-
cillation period. In addition, we have taken into account the
Zeeman splitting of the electron spectrum which allows us to
describe more correctly the oscillation pattern. For example,
Eq. �21� allows us to determine both the spin-orbit, �, and
Zeeman, g, couplings by the measured locations of two dif-
ferent nodes �see the top curve in Fig. 1�a��. On the other
hand, the spin precession frequency �B approaches �� ��c as
the magnetic field B increases. Therefore, in this case a
gradual transition from the beatings of the SdH oscillations
to the familiar Zeeman splitting of the oscillating peaks
should be observed. The beginning of this transition can be
seen on the bottom curve in Fig. 1�a�.

Another important characteristic of the one-electron states
of the 2D Rashba system is the difference of the partial
DOS’s with opposite spin projections onto the OZ axis,

�n�E� = n↑↑�E� − n↓↓�E� = −
4�c�

�B
�

s=±1/2
sns

�0��E� . �22�

This quantity is proportional to the derivative of the trans-
verse spin magnetization with respect to energy E and, there-
fore, it enters in the definition of the effective concentrations
of current carriers in the dissipative part of the 2D Rashba
system conductivity in an orthogonal magnetic field �see the
next section�.

Evidently, the difference of the partial DOS’s �22� van-
ishes in the region of classical magnetic fields ��c��1�, but
it plays an important role in the SdH oscillation regime. In
the case of large filling factors, the oscillating behavior of
this quantity is described by the following expression:

�n�EF� =
2m

�

2�c�

�B
exp�−

�

�c�

sin 2�

E0

�c
sin �

�B

�c
.

�23�

Unlike the total DOS �20�, this expression contains just one
oscillating term, because �n�E� does not depend on the ef-
fective masses ms �16�. Indeed, the difference of the partial
DOS’s �n�E� is nonzero, which is entirely due to the spin
degrees of freedom of the electrons. The typical SdH oscil-
lation patterns of �n�E� are depicted in Fig. 1�b�.

Now, let us turn to the discussion of the electron lifetime
�s in the sth spin-split subband which is defined, according to
Eq. �14�, by the imaginary parts of the even and odd self-
energies �e�o�. In other words, the total lifetime of the one-
electron states �s is determined by the sum of the weighted
relaxation rates of the orbital and spin degrees of freedom.
The first term in this expression is proportional to the above-

considered total DOS; hence its magnetic-field dependence
coincides up to the scale factor with the patterns shown in
Fig. 1�a�. Of particular interest is the last term in Eq. �14�
stemming from the Zeeman coupling renormalization. It is
proportional to the difference of the partial DOS’s �22� and,
therefore, plays an important role in the SdH oscillation re-
gime, as shown in Fig. 2. Notice that the beatings of the SdH
oscillations are suppressed with the increase of the relative
magnitude of the second term in Eq. �14�. Indeed, Eq. �21�
determines the location of the beating loops of the oscillation
instead of the nodes. Thus, the broadening of the Zeeman
levels leads to observable suppression of the beatings of the
electron lifetime �s oscillations.

V. CONDUCTIVITY

The general expression for the conductivity �5� consists of
two different terms. The first of them describes the contribu-
tion of the electrons at the Fermi level; the second one con-
tains the contributions of all filled states below the Fermi
level. We begin the calculation of the conductivity with the
last term of �5�, �II. First of all, it is purely imaginary and,
therefore, makes a contribution in the Hall conductivity
alone. Středa and co-workers26 were first to show that, for
spinless electrons, this part of the conductivity is equal to

�II = i�e�c� �n

�B



EF

, �24�

where n is the electron concentration. It should be pointed
out that Eq. �24� is exact, and with the thermodynamic Max-
well relation �II can be expressed through ��M /�E�B, where
M is the orbital magnetization of the electron gas. Detailed
discussion of �II and its physical interpretation can be found
in the survey.27

This result is extended immediately to electron systems
with SOI. Following Středa et al.’s argument, it can be
shown that the part �II of the 2D Rashba system conductivity
is expressed as

FIG. 2. Plots of the SdH oscillations of the inverse lifetime of
one-electron states in the sth spin-split subband at different values
of Zeeman factor g=1.8, 1.0, 0.2 �top to bottom�, and fixed values
of kFl=35.0 and ��=1.5.
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�II = i�e�c�� �n

�B



EF

− � �Mp

�E



B
� , �25�

where Mp is the spin magnetization of the electron gas. It
follows that in the general case �II is determined only by the
diamagnetic part of the electron gas magnetization. By direct
differentiation of the electron concentration n with respect to
the magnetic field induction B we obtain

� �n

�B



EF

=
n

B
+ �EF

Tr
�

�B
�GA − GR�

dE

2�i

=
n

B
− �EF

Tr� �H
�B

�ĜA

�E
+

��A

�B

�ĜA

�E

−
��A

�E

�ĜA

�B
− H.c.
 dE

2�i
, �26�

where the symbol H.c. denotes the Hermitian conjugate of

the terms. Considering that in the SCBA �=W Tr Ĝ /2, it is
easily seen that the expression in large parentheses is the
total derivative with respect to energy. As a result, integra-
tion by E in �26� is performed explicitly, and after some
simple algebra the expression for �II takes on the form

�II = i
�e�c
B

�n − n�� , �27�

where

n� =
1

2�i
Tr�E0 −

1

4
g�c�z
�ĜA − ĜR� . �28�

Equation �27� is a generalization of the known SCBA
expression for �II in the case of spinless electrons.27 In par-
ticular, the quantity n� �28� is the counterpart of the familiar
parameter n�=En�0��E� which stands for the current carrier
concentration in the dissipative part of the conductivity ten-
sor of spinless 2D electrons in a magnetic field in the
SCBA.20 In the classical �i.e., nonquantizing, �c��1� mag-
netic field region, it is equal to the total electron concentra-
tion n.

Now, we turn to the first term in the conductivity �5�. It is
quite easy to show, by identical transformations, that

e2

8�
Tr V+��EE

AA + �EE
RR� = −

e2

4�m
Tr�ĜA + ĜR� . �29�

The main contribution to the dissipative part of the conduc-
tivity is proportional to the current vertex �EE

RA in Eq. �5�. If

we accept the SCBA �11� for the electron self-energy �̂, we
must evaluate this part of the conductivity in the ladder ap-
proximation in order to satisfy the particle conservation law
�see Fig. 3�.

Replacing, as a first approximation, Tr V+�EE
RA

→Tr V+ĜRV−ĜA, we obtain the “bare” conductivity

�bare
I =

e2

4�
Tr�V+ĜRV−ĜA +

1

m
�ĜA + ĜR�
 , �30�

depicted by the first diagram in Fig. 3�a�. In what follows,
for simplicity, we neglect everywhere the odd part of the
electron self-energy �o �14�. In this approximation one can
obtain the following equations:

��c +
i

�e

ĜRV−ĜA

= V−ĜA − ĜRV− + 2i���−ĜA − ĜR�− −
i

�e
ĜR�−ĜA
 ,

��c +
i

�e

ĜAV+ĜR

= ĜAV+ − V+ĜR − 2i��ĜA�+ − �+ĜR −
i

�e
ĜA�+ĜR
 .

�31�

Using these relations, we perform a series of transformations
of the bare conductivity �30�, neglecting the terms that are
small in the parameter 1 /EF� and lying beyond the accuracy
of the ladder approximation. Omitting intermediate transfor-
mations of purely technical character, the final result can be
written as

�bare
I =

e2�e

m

1

1 − i�c�e
�n� −

2m�2nF

1 − i�c�e
�1 − P�
 , �32�

where nF=Tr�ĜA− ĜR� /4�i is the DOS at the Fermi level
per spin,

P = W Tr �+ĜR�−ĜA. �33�

The ladder correction to the conductivity shown by the
second diagram in Fig. 3�a� is presented by the following
analytical expression:

��lad
I =

e2

4�
tr�Sp�ĜAV+ĜR�D̂Sp�ĜRV−ĜA�� . �34�

The bare current vertices Sp�ĜA�R�V±ĜR�A�� involved in �34�
can be expressed by the parameter P �33� and the relaxation

FIG. 3. �a� The diagrams depicting the conductivity in the ladder
approximation; �b� the impurity ladder series in the particle-hole
channel �diffusion�.

S. G. NOVOKSHONOV AND A. G. GROSHEV PHYSICAL REVIEW B 74, 245333 �2006�

245333-6



time �e, using relations �31�. In the main order in the small
parameter 1 /EF� they have the form

Sp�ĜA�R�V±ĜR�A�� = � i�±
4��nF�e

1 − i�c�e
�1 − P� . �35�

The diffusion D̂ depicted in Fig. 3�b� by a ladder series in
the particle-hole channel is a 4�4 matrix in the representa-
tion of the total spin of the electron-hole pair. The Bethe-

Salpeter equation for D̂ �see the second row in Fig. 3�b��
has the same structure. However, as seen from �34� and �35�,
the contribution to ��lad

I comes from the scalar quantity D
=tr �+D̂�− which is the projection of the diffusion on the
triplet state �1,−1 of the electron-hole pair. Projecting the
Bethe-Salpeter equation on this state, we obtain a closed sca-
lar equation for D with solution of the form

D =
W

1 − P
, �36�

where P is defined in �33�.
Substitution of �36� and �35� into �34� yields the expres-

sion for the ladder correction to the conductivity which ex-
actly cancels the second term in the large parentheses in �32�.
As a result, the final expression for the conductivity of the
Rashba system in a transverse magnetic field in the ladder
approximation takes on the form

� = i
�e�c
B
�n −

n�

1 − i�c�e

 . �37�

Equation �37� looks as if the current were generated by
charge carriers of one type with mobility �= �e ��e /m and
concentration n. This would be expected, because the con-
ductivity tensor in the absence of a magnetic field is diagonal
in the original spin space ��↑↓=�↓↑�0� by virtue of the
momentum parity of the GF’s, and the full conductivity is
equal to �=�↑↑+�↓↓.

28 In the classical �nonquantizing� mag-
netic fields this property is retained, since the difference of
the partial DOS’s with opposite spin projections onto the OZ
axis �22� is equal to zero in this region �see Fig. 1�.

Of course, the simple structure of Eq. �37� for the conduc-
tivity breaks down in the region of sufficiently strong mag-
netic fields, �c��1, where the contribution 1/�o to the in-
verse lifetime of the one-electron states �14� cannot already
be neglected. As shown in the previous section, this may lead
to flattening of the SdH oscillation beatings �see Fig. 2�.
Therefore we believe the approximation used in this section,
1 /�o=0, to be correct in the magnetic field region where
well-defined beating nodes of magneto-oscillation are ob-
served.

VI. RESULTS AND DISCUSSION

First of all, let us summarize briefly the main results ob-
tained in this work. We have shown that the eigenstates of
the 2D Rashba electron in an orthogonal magnetic field are
characterized by a special motion integral �3� that generalizes
the notion of helicity.11 Using this fact, we have found the
relation �10� between the GF’s of the 2D Rashba electron

and the ideal one that holds good for arbitrary orthogonal
magnetic fields as well as for strong spin-orbit coupling.
With the help of this relation, we have obtained, in contrast
to Refs. 14–16, analytical expressions for the DOS in the
SCBA �15� and for the magnetoconductivity in the ladder
approximation �37� of the 2D Rashba system that are valid in
a wide range from classical magnetic fields up to quantizing
ones ��c��1�. The spin-orbit as well as the Zeeman splitting
of the electron energy are properly allowed for in these ex-
pressions, unlike the results of Refs. 23 and 24. In particular,
we have obtained a simple expression �21� for the node lo-
cations of the SdH oscillation beatings. We have shown that
the competition of the relaxation rates of the orbital and spin
degrees of freedom in the total inverse lifetime 1/�s of the
one-electron states in the sth subband leads to the partial
suppression of beatings of the 1/�s SdH oscillations.

We start the discussion of the results with the conductivity
in the classical magnetic field region ��c�e�1�. In this case,
it follows immediately from Eqs. �28� and �37� that the con-
ductivity of a 2D Rashba system takes the usual Drude-
Boltzmann form

� =
�D

1 − i�c�e
, �38�

where

�D =
e2�e

�
�EF + m�2� =

e2n�e

m
�39�

is the Drudian conductivity in the absence of a magnetic
field; �e=1/mW is the lifetime of a one-electron state at
B=0. It immediately follows that in the ladder approxima-
tion the classical magnetoresistance of a 2D Rashba system
is zero, ��B�=�D=1/�D, and the Hall coefficient RH

=−1/ �e �nc.
Thus, in the ladder approximation the Rashba spin-orbit

interaction has no effect at all on the conductivity magnitude
everywhere over the region of classical magnetic fields,
�c�e�1 �including the case of B=0�. Note that the first
relation for the Drudian conductivity �39� formally coincides
with that obtained in Ref. 28. However, as mentioned above,
the correction m�2 to the Fermi energy does not lead to an
observable change in �, since it is absorbed by the normal-
ization condition �18�.

Let us proceed now to the discussion of the magnetotrans-
port in the 2D Rashba system in the large filling factors
�E��c� region, where the SCBA and the ladder approxima-
tion are applicable to the description of the one-electron
states and kinetic phenomena, respectively. As usual, we ex-
tract in the linear approximation the oscillating parts of the
conductivity that enter through DOS into the effective con-
centration n� �28� and mobility �. As in the ladder approxi-
mation the conductivity �37� has the form characteristic of a
conductor with one type of charge carriers, we can immedi-
ately use the expression obtained in Ref. 25 for the oscillat-
ing parts of the longitudinal resistance � and the Hall coef-
ficient RH,
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���B�
�0

= 2
�n�EF�

nF
�0� , �40a�

�RH�B�
RH

0 =
1

�c
2�e

2

�n�EF�
nF

�0� . �40b�

Here, �0=1/�D and RH
0 =−1/ �e �nc are the resistance �see Eq.

�39�� and Hall coefficient in zero magnetic field, respectively.
Thus, in the linear approximation the SdH oscillations � and
RH are entirely determined by the magnetic–field dependence
of the DOS, �n�EF�, the first harmonics of which are of the
form �20�. From this we can draw two conclusions that are of
great importance for an adequate interpretation of the SdH
oscillation pattern in systems with spin-orbit interaction.

First, the period of the SdH oscillations of � and RH is
defined by energy E0=EF+m�2, and not by the Fermi energy
EF, as was stated in Refs. 23 and 24. From this and the
normalization condition �18� it follows that the SdH oscilla-
tion period is related to the total charge carrier concentration
n by the well-known formula

�� 1

B

 =

�e�
�cn

, �41�

which holds true irrespective of the magnitude of the spin-
orbit interaction constant.

Second, the SdH oscillation beating period is defined
by the magnetic-field-dependent spin precession frequency
�B=��2+ �g−2�2�c

2 /4 �see Eq. �9��. From this follows a
simple equation for the beating node location Bk �21� that
allows the constants � and g to be found from the measured
Bk values. This is illustrated in Fig. 4, which presents
the results of least-squares fitting of Eq. �21� in variables
B−2, �2k+1�2 to the measured19 locations of the SdH oscilla-
tion beating nodes of the longitudinal resistance of an
In0.65Ga0.35As/ In0.52Al0.48As-type heterostructure. The slope

of the fitted straight line and the point of its intersection with
the ordinate axis yield the values �=2.47 meV and g=4.25
for the spin precession frequency in the absence of magnetic
field and the g factor, respectively. This values are in good
agreement with the results �=2.46 meV and g=4.4±0.2 ob-
tained in Ref. 19.

It should be stressed that �B=��2kF� only at g=2.
Only in this case are the beating node locations strictly peri-
odic in the reverse magnetic field and are described by the
condition 2kF�= �k+1/2��c obtained in Refs. 23 and 24.

Using Eq. �37�, we have performed numeric analysis
of the SdH oscillations of the longitudinal resistance �
�Fig. 5� and the Hall coefficient RH �Fig. 6� for parameters
�g=4, E0=108.93 meV, �=5.13 meV, and g=3.8, E0
=98.85 meV, �=5.59 meV� corresponding to the gate volt-
ages Vg=0 and −0.3 V for the InxGa1−xAs/InyAl1−yAs het-

FIG. 4. Measured locations Bk of the SdH oscillation beating
nodes as compared to the behavior predicted by Eq. �21�. The points
correspond to the values B1=0.873 T, B2=0.460 T, B3=0.291 T,
B4=0.227 T, B5=0.183 T, and B6=0.153 T, measured for the
In0.65Ga0.35As/ In0.52Al0.48As heterostructure �Ref. 19�. The straight
line is the result of least–squares fitting of Eq. �21�.

FIG. 5. The theoretical curves of the � magnetooscillation as
compared with the measured �Ref. 18� results for the
InxGa1−xAs/InyAl1−yAs heterostructure at gate voltages Vg=0 and
−0.3 V. The experimental data are denoted by the solid lines and
the theoretical ones by dashed lines.

FIG. 6. Plots of the SdH oscillations of the Hall coefficient of
the 2D Rashba system calculated for the parameters corresponding
to the InxGa1−xAs/InyAl1−yAs heterostructure �Ref. 18� for gate
voltages Vg=0 and −0.3 V �from the bottom upward�.
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erostructure investigated in Ref. 18. The parameters g and �
were calculated from the positions of two successive nodes
B1 and B2, using Eq. �21�, while E0 was adjusted to the SdH
oscillation period. At Vg=0 V, the calculated value �
=5.13 meV is close to the result �=5.4 meV of Ref. 18,
whereas at Vg=−0.3 V, the calculated value �=5.59 meV is
in excellent agreement with the value �=5.6 meV obtained
in Ref. 18. The results of � calculation are compared in Fig.
5 to the experimental curves from Ref. 18. It can be seen that
the theoretical results reproduce well the period and beating
node location of the measured magnetoresistance oscilla-
tions. Some difference in oscillation amplitude is due to the
fact that the temperature smearing of the Fermi level was not
taken into account in our analysis for simplicity. The nega-
tive magnetoresistance observed in Ref. 18 lies outside the
ladder approximation.

In conclusion it should be stressed once more that the
results of this work have been obtained with rigorous ac-

count taken of both the spin-orbit and the Zeeman splitting
of the energy levels. Up till now this was done by using
numeric analysis only.14,16,17 Our results reproduce quantita-
tively all the peculiarities of the magneto-oscillation curves
obtained in this way for models with Rashba spin-orbit
interaction,14,17 except for the anomalously large positive
magnetoresistance obtained in Ref. 14. Our conclusion about
the absence of positive magnetoresistance is in drastic con-
tradiction with Ref. 14, but agrees with the results of
analytical23,24 and recent numerical17 studies.

ACKNOWLEDGMENTS

We thank A. K. Arzhnikov, A. V. Germanenko, G. I.
Kharus, G. M. Minkov, and V. I. Okulov for helpful discus-
sions of results of this work. This work was supported by the
RFBR, Grant No. 04-02-16614.

1 I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
�2004�.

2 G. Dresselhaus, Phys. Rev. 100, 580 �1955�.
3 E. I. Rashba, Fiz. Tverd. Tela �Leningrad� 2, 1224 �1960� �Sov.

Phys. Solid State 2, 1109 �1960��; Yu. A. Bychkov and E. I.
Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 �1984� �JETP Lett.
39, 78 �1984��; J. Phys. C 17, 6039 �1984�.

4 J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 38,
10142 �1988�; 41, 7685 �1990�.

5 S. V. Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus, Pis’ma
Zh. Eksp. Teor. Fiz. 60, 199 �1994� �JETP Lett. 60, 206 �1994��.

6 F. G. Pikus and G. E. Pikus, Phys. Rev. B 51, 16928 �1995�.
7 W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska,

D. Bertho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V.
Iordanskii, V. Mosser, K. Zekentes, and Yu. B. Lyanda-Geller,
Phys. Rev. B 53, 3912 �1996�.

8 L. E. Golub, Phys. Rev. B 71, 235310 �2005�.
9 L. S. Levitov, Yu. V. Nazarov, and G. M. Eliashberg, Zh. Eksp.

Teor. Fiz. 88, 229 �1985� �Sov. Phys. JETP 61, 133 �1985��.
10 A. G. Aronov and Yu. B. Lyanda-Geller, Pis’ma Zh. Eksp. Teor.

Fiz. 50, 398 �1989� �JETP Lett. 50, 431 �1989��.
11 V. M. Edelstein, Solid State Commun. 73, 233 �1990�.
12 M. I. Dyakonov and V. I. Perel’, Zh. Eksp. Teor. Fiz. Pis’ma Red.

13, 657 �1971� �JETP Lett. 13, 467 �1971��.
13 S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348

�2003�.
14 X. F. Wang and P. Vasilopoulos, Phys. Rev. B 67, 085313 �2003�.

15 M. Langenbuch, M. Suhrke, and U. Rössler, Phys. Rev. B 69,
125303 �2004�.

16 X. F. Wang and P. Vasilopoulos, Phys. Rev. B 72, 085344 �2005�.
17 W. Yang and K. Chang, Phys. Rev. B 73, 045303 �2006�.
18 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett.

78, 1335 �1997�.
19 B. Das, D. C. Miller, S. Datta, R. Reifenberger, W. P. Hong, P. K.

Bhattacharya, J. Singh, and M. Jaffe, Phys. Rev. B 39, 1411
�1989�; B. Das, S. Datta, and R. Reifenberger, ibid. 41, 8278
�1990�.

20 R. R. Gerhardts, Z. Phys. B 22, 327 �1975�.
21 M. I. Dyakonov and V. I. Perel’, Fiz. Tverd. Tela �Leningrad� 13,

3581 �1971� �Sov. Phys. Solid State 13, 3023 �1971��.
22 I. M. Tsidil’kovskii, Zonnaya Struktura Poluprovodnikov �Nauka,

Moscow, 1978� �Band Structure of Semiconductors �Pergamon
Press, Oxford, 1982��.

23 S. A. Tarasenko and N. S. Averkiev, Pis’ma Zh. Eksp. Teor. Fiz.
75, 669 �2002� �JETP Lett. 75, 562 �2002��.

24 N. S. Averkiev, M. M. Glazov, and S. A. Tarasenko, Solid State
Commun. 133, 543 �2005�.

25 A. Isihara and L. Smrčka, J. Phys. C 19, 6777 �1986�.
26 L. Smrčka and P. Středa, J. Phys. C 10, 2153 �1977�; P. Středa,

ibid. 15, L717 �1982�.
27 A. M. M. Pruisken, in The Quantum Hall Effect, edited by R. E.

Prange and S. M. Girvin �Springer-Verlag, New York, 1990�.
28 J. I. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys. Rev. B

67, 033104 �2003�; 70, 041303�R� �2004�.

DIFFUSIVE MAGNETOTRANSPORT IN A TWO-… PHYSICAL REVIEW B 74, 245333 �2006�

245333-9


