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A strained-modified, single-band, constant-potential three-dimensional model is formulated to study the
dependence of electronic states of InAs/GaAs quantum dots �QDs� on shape and size variation. The QD shapes
considered are �i� cuboid, �ii� cylindrical, �iii� pyramidal, �iv� conical, and �v� lens shaped. Size variations
include �i� QD volume �ii� QD base length, and �iii� QD height, taking into account aspect ratio variation.
Isovolume QD shapes with narrow tips were found to have higher ground-state energies than those with broad
tips, and this is attributed to the smaller effective volume. The volume, base length, and height dependencies
were obtained and found to tally well with both experimental results and advanced calculations. Hence, upon
growth parameter variation, this can provide an alternative to confirm whether the change to the size of the
uncapped QDs implies a similar change to the capped ones. Ground-state energy as function of aspect ratio
does not follow a monotonic trend. Owing to the competing effect of a decrease in base length and an increase
in height, the energy trend exhibits a sharp decrease to an optimum aspect ratio, followed by gentle, almost
linear increase. The optimum aspect ratio varies among shapes and is predicted to be smaller for shapes with
broad tips. The effective volume ratio of both shapes �Veff,CUBOID/Veff,PYRAMID� was determined, and found to
vary with aspect ratio. Furthermore, a “cross-over” of lens-shaped QD from “lower energy” to “higher energy”
group is predicted due to significant shape transition.
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I. INTRODUCTION

Semiconductor research and development has seen pro-
gressive reduction in dimension, from bulk material to quan-
tum well, then to quantum wire, and eventually to quantum
dot �QD�. Being the ultimate limit in carrier confinement,
semiconductor QDs are the center of research attention due
to their unique electronic and optical properties. This is due
to their three-dimensional �3D� carrier confinement property,
thus bringing with them superior characteristics of atomlike
density-of-states �DOS�, large exciton binding energies, and
enhanced oscillator strength.

These desired properties of quantum dots have spun new
research in various QD devices, e.g., laser, infrared photode-
tector �QDIP�, and electroabsorption modulator �EAM�.
However, as there are specific requirements for different QD
devices, there is a need to alter the dimensions of the active
material to suit the requirements. For example, larger QDs
�and thus lower transition energy� are required for long
wavelength emission and detection, taller QDs �and thus
larger confinement in the growth direction� will exhibit
larger quantum confined stark effect �QCSE�, and smaller
QDs �with single confined state� are useful for quantum com-
puting for single photon emission and detection. Further-
more, the energy difference between ground-state energy and
excited-state energy is important for carrier dynamics �e.g.,
relaxation time for laser and escape time for detector� and is
of great concern for high-speed device operation.

Presently, by growing an uncapped QD at the top of the
growth structure, atomic force microscopy �AFM� is conve-
niently being used to provide a fast feedback loop upon
growth parameters variations. However, due to the difference

in growth structures and procedures after the QD growth
�capping materials, annealing time and temperature, etc.�,
capped QDs can be significantly different from the uncapped
ones. The current way to check them will then be the use of
sophisticated tools such as the high resolution transmission
electron microscope �HREM�. Thus, it is desirable to find an
easier way to determine the amount of size deviation of the
capped QD from the uncapped QD upon a growth parameter
variation.

In practice, the QD shape and size will exert a significant
influence on its electronic structure, optical property and
hence wavelength characteristic. Presently, data on cuboid,1

cylindrical,2,3 pyramidal,1,4–16 conical,4,17–19 and
lens-shaped1,15,20–22 QDs have been published in literature.
However, most of the electronic structure calculations in
present literature were performed based on a fixed QD shape
and size. To date, there is limited data on the effects of QD
shape and size variations on its electronic states.

This paper presents our work on the electronic states of
InAs/GaAs QDs and the effect of shape and size variation.
Our study aims to understand the energy trends as a function
of QD shape and size, to obtain the energy dependency on
each QD dimension variation, and thus to apply that knowl-
edge to investigate an easier method for determining the
amount of size deviation of the capped QDs from the
uncapped ones.

II. MODELS

Table I illustrates the various QD shapes considered in
this study, namely, the cuboid, cylindrical, pyramidal, coni-
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cal, and lens shaped. The cross-sectional and plan views of
these QD shapes are shown and identified by their abbrevia-
tions. The different boundary conditions for performing the
band structure calculation are indicated in the table. Note
that cubic is a special case of CUBOID �i.e., when h=b�.

Table II illustrates the physical parameters considered in
this study, namely, the volume �Vol.�, base length �b�, height
�h�, and aspect ratio �AR�. As QD volume is varied, aspect
ratio of all QD shapes is fixed at 0.5 �i.e., AR�0.5�, so that
the height-to-base ratio is kept constant throughout. The

TABLE II. Physical parameters considered.

TABLE I. Quantum dot shapes considered.
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range of volume variation �from 104 to 107 Å3� is considered
realistic, as these translate to a base of �50 Å and height
�25 Å �as shown in Refs. 1 and 2� to a base of �400 Å and
height of �200 Å, respectively. The relatively high upper
limit dimensions are investigated to provide an insight into
the effect on electronic states at high QD volumes.

The QD height was maintained at 25 Å as the base length
is varied. This is to isolate the effect of height and focus on
the impact of base length variation on the energy states.
Likewise, for the case of height variation, the base length
was fixed at 250 Å as the height is varied, so as to isolate the
effect of base and focus on the impact due to height varia-
tion. Likewise, the high upper limit dimensions are to pro-
vide an insight into the effect on electronic states at high QD
base or height dimensions.

To investigate the effect of QD aspect ratio �AR� varia-
tion, the volume of all QD shapes was fixed at 8�105 Å3.
This will allow us to focus on the effect of AR changes on
the energy states as the volume is held constant. This volume
is again realistic as it translates to QD base of �280 Å and
QD height of �28 Å �as reported in Refs. 4 and 22�. Inter-
estingly, as QD aspect ratio increases, the QD will undergo a
“transformation” from one of larger base and shorter height
to one of smaller base and taller height �as shown in Table
II�. This leads to the question of how the energy states will
change as the aspect ratio is varied, i.e., as the base length
decreases and height increases. We know that bound state
energies increase following increase in confinement. Hence,
the question lies in whether bound energies will increase
�since base length decreases, implying a larger lateral con-
finement� or decrease �since height increases, implying a
smaller vertical confinement� in such cases.

The authors recognized that it is not common to have QDs
with AR �0.5. Nevertheless, the upper AR limit of 2.0 was
investigated to reveal other possible observations; and this
will be discussed in Sec. III. Such observations may be use-
ful for growth techniques that are capable of producing AR
�0.5, e.g., templated QD growth.

The single-band effective-mass approximation to
Schrödinger’s equation has been used to calculate the
electron and heavy-hole energy levels. Comparisons between
single-band, eight-band k ·p and �the more accurate�
direct-diagonalization empirical-pseudopotential-method
�DD-EPM� were reported in Ref. 11. It was shown that the
commonly used eight-band k ·p model did not fare signifi-
cantly better in terms of accuracy for determining the elec-
tronic band structure. The ground-state energy calculated by
the single-band model �1103 meV� gave a value of 144 meV
�15%� higher than that given by the DD-EPM method
�959 meV�. The eight-band k ·p model �1045 meV� gave a
value of 86 meV �8%� higher, despite its greater computa-
tional complexity compared to the single-band model. The
simplicity in the calculation and computational efforts, and
the fact that the result from the single-band model only dif-
fered by �5.5% from that of the eight-band k ·p model thus
makes it very attractive. Hence, the single-band model is
used in this study to investigate the dependence of the elec-
tronic states with respect to the physical variations illustrated
in Tables I and II.

Within the framework of the envelope function and effec-
tive mass theory, the Hamiltonian can be written as

H =
− �2

2
�

1

m * �x,y,z�
� + V�x,y,z� �1�

where

m*�x,y,z� = �mInAs
* , in QD

mGaAs
* , otherwise,

V�x,y,z� = �0, in QD

�EV or �EC, otherwise,

where mInAs
* , mGaAs

* are the effective mass of carriers in InAs
and GaAs, respectively. �EV and �EC are the valence band
and conduction band discontinuity, respectively.

Assuming that the wave functions are expanded in terms
of normalized plane waves,

��x,y,z� =
1

�LxLyLz
�

nx,ny,nz

anx,ny,nze
i�knxx+knyy+knzz�, �2�

where Lx, Ly, Lz are lengths of the unit cell along the x, y,
and z directions, respectively; nx, ny, nz are the number of
plane waves along the x, y, and z directions, respectively;
knx=kx+nxKx, Kx=2� /Lx; kny =ky +nyKy, Ky =2� /Ly; and
knz=kz+nzKz, Kz=2� /Lz.

As reported,23 the attraction of the normalized plane-wave
approach lies in the fact that there is no need to explicitly
match the wave functions across the boundary of the barrier
and QD materials. Hence, this method is easily applied to an
arbitrary confining potential problem.

The electron and hole energy states were calculated using
the discretized Schrödinger’s equation technique. As such,
this method is useful for treating problems with complex
geometry. The main drawback of this technique lies in the
possible errors involved in the large computation. The au-
thors are aware of this and steps were taken to ensure the
errors involved in the calculation are as small as possible,
typically less than 0.001%.

Seven normalized plane waves in each direction were
used to form the Hamiltonian matrix, i.e., with nx, ny, nz each
ranging from −3 to 3. Hence, a 343�343 matrix is formed,
and the energy eigenvalues and eigenfunctions can be solved
using relatively modest computing resources. By taking
more plane waves, e.g., nx, ny, nz each ranging from −4 to 4,
a 729�729 matrix can be formed that gives more accurate
results. However, it was found that since the difference in the
calculated results between using the 343�343 matrix and
729�729 matrix was only �1 meV, the significantly longer
computation time involved by using the larger dimension
matrix does not justify using a basis of nine normalized
plane waves in each direction. Therefore, only seven normal-
ized plane waves in each direction have been considered.

The parameters listed in Table III �Refs. 8 and 23–27�
were used in the calculation, and the results will be discussed
in Sec. III. The strain in the InAs layer and GaAs barrier
layer was considered as constant and zero, respectively, im-
plying a constant confining potential. In addition, the
strained-modified InAs band gap was used in the calculation.
Some reports28,29 have indicated two different values for the
hole effective mass, namely, mhh,z

* and mhh,xy
* along the z
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direction and xy plane, respectively, to account for mass an-
isotropy. However, this increases the computational effort
without significant improvement to the results �2.5% differ-
ence as calculated by Grundmann et al.28�. Hence, we chose
to use a single value for the hole effective mass, which is
0.59m0. This value was proven to reproduce well the ground-
state energies considered in Ref. 12.

We have chosen to exclude the wetting layer since this
paper aims to investigate the impact of parameter variation
on the electronic states. Hence, when a particular parameter
is varied, we would aim to reduce and, if possible, isolate the
effect of remaining parameters on the electronic states. We
have also ignored additional effects, such as potential due to
piezoelectricity, Coulombic interaction, and strain distribu-
tion within the QD. The effect of piezoelectric potential is
ignored since its effect on the energy levels involved in op-
tical transitions is only marginal28 ��1 meV�. Furthermore,
the QDs considered in this paper are within the strong con-
finement regime, i.e., the effective radius is much smaller
compared to the bulk exciton Bohr radius. Therefore, Cou-
lombic interaction effects can be ignored.30,31 Strain distribu-
tion was reported to depend primarily on the QD shape and
not QD size.28 Therefore, while different QD shapes result in
different strains within the QD, thus leading to different con-
fining potentials and effective masses, the strain distribution
for any given shape should be similar. Hence, the study of
QD size variation should reveal the true trend for the energy
states. Furthermore, the strain distribution in the major part
of the QD structure is very similar for different shapes,32

especially since the hydrostatic component depends weakly
on the QD shape. Therefore, even though our model did not
incorporate the complexities to account for the above addi-
tional effects, it still retains key elements of the essential
physics.

III. RESULTS AND DISCUSSION

This section discusses the results and physics behind the
observed trends as the physical parameters are varied. In all
the figures illustrated in this section, the electron energy
states are taken with respect to the InAs conduction band,
while the heavy-hole energy states are taken with respect to
the InAs valence band. All energies are in unit of meV and
dimensions are in unit of Å.

A. QD volume variation

The prediction of decrease in the energy states following
increase in the QD dimension can be understood from reduc-
tion in the quantum confinement. Analytically, it can be in-
ferred from equations �A5�, �A7�, and �A8� in the Appendix
for the case of volume, base length, and height variations,
respectively. The electron ground-state energies of various
QD shapes, as function of QD volume, are shown in Fig.
1�a�, while the heavy-hole ground-state energies are shown
in Fig. 1�b�. In addition, the insets in Figs. 1�a� and 1�b�
show the validation of our model �hollow triangles with dot-
ted line� for InAs/GaAs pyramidal QDs against the theoret-
ical models from Cusack et al.23 �hollow squares� and
Grundmann et al.28 �filled squares�. In this case, all the py-
ramidal QD shapes have a fixed aspect ratio of 0.5 and both
Cusack et al. and Grundmann et al. have calculated the
bound energy states with multiband models that account for
strain and piezoelectric effect. The small energy discrepancy

TABLE III. Parameters used in the calculations.

Parameters Unit Values

me�GaAs�
* m0 0.0665

me�InAs�
* m0 0.04

mhh�GaAs�
* m0 0.377

mhh�InAs�
* m0 0.590

EgGaAs eV 1.424

EgInAs eV 0.720

�EC / �EgGaAs−EgInAs� - 0.54

�EV / �EgGaAs−EgInAs� - 0.46

FIG. 1. Plot of �a� electron ground-state energy and �b� heavy-
hole ground-state energy as function of QD volume, for various QD
shapes �QD aspect ratio fixed at 0.5�. The lines are guides to the
eyes. �Inset� Validation of our model �hollow triangles with dotted
line� for InAs/GaAs pyramidal QDs against the theoretical models
from Cusack et al. �hollow squares� and Grundmann et al.
�filled squares�.
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is reasonable, considering the assumptions made in our
single-band model.

Despite similar decreasing trend, there is an obvious en-
ergy difference between isovolume QD shapes. In general, it
can be divided into two groups, with CONE and PYRAMID

having higher energy states while CUBOID, CYLINDER, and
LENS having lower energy states. As shown in Eq. �A5� in
the Appendix, E�V−	 with 	=2/3 for the CUBOID QD with
infinite barrier. Hence, to investigate this energy difference,
we aim to find the volume dependency 	 of the two distinct
groups by fitting our results from the electron and heavy-hole
energy states. The pyramidal shape is taken to represent the
“higher energy” group and the CUBOID shape is taken to rep-
resent the “lower energy” group. The CUBOID shape also al-
lows us to differentiate the real case of a finite energy barrier
from the ideal case of infinite energy barrier as discussed in
the Appendix.

Table IV shows the volume dependency for electron
�	electron

calc� and hole �	hole
calc� energy states for PYRAMID

and CUBOID. As seen from the table, the values of 	hole
calc are

closer to the ideal case of �0.67, while that of 	electron
calc

differ significantly. This is due to the heavier hole mass.
Hence, the holes are more confined and the energy barrier
seen by the holes at the ground-state energy is much larger
and approximately equals that of an infinite energy barrier. In
addition, 	electron

calc for PYRAMID is much smaller than that of
CUBOID. In fact, 	hole

calc for PYRAMID also shows weaker
volume dependency, but the difference is relatively smaller
due to the heavier mass. We believe that, despite the same
QD volume, the effective volume of the pyramidal shape is
actually smaller than that of the CUBOID shape. From Eq.
�A6�, it is known that the energy spacing between the first
excited-state energy and ground-state energy is volume de-
pendent. Following this, we present in Fig. 2 the plot of
electron ground-state energy and first excited-state energy as
a function of QD volume for PYRAMID and CUBOID. Indeed,
it was noted that the decrease in energy spacing is more
significant for CUBOID, implying a larger increase in the ef-
fective volume compared to PYRAMID. This validates our
above-mentioned reason regarding the difference in the ef-
fective volume for different shapes. In fact, similar trends
were observed for the remaining shapes �i.e., CONE is similar
to PYRAMID, while Lens and Cylinder are similar to CUBOID�
of the two groups. Thus, we believe that for QDs of the same
volume, those with narrow tips �e.g., pyramidal shape� will
have a higher energy state compared to those with broad tips
�e.g., lens shape�. As mentioned, this is due to smaller effec-
tive volume in QDs with narrow tips.

To validate our explanation, we compared our calculated
results with experimental data for different QD shapes. There

have been reports on �truncated� pyramidal31 and
lens-shaped33 QDs taken by transmission electron micros-
copy �TEM�. However, as reported in Ref. 31, conventional
TEM is likely to show lens-shaped images even though the
real QD shape is pyramidal. Only special imaging condition
of the high-resolution TEM will show the real pyramidal
shape. Therefore, to ensure we are comparing QD shapes
with narrow tip to those of broad tip, we refer to a publica-
tion by Guzelian et al.34 in which a comparison is made
between spherical InAs colloidal QDs with pyramidal InAs
QDs of comparable volume. Their results have shown that
the photoluminescent �PL� energy peak of the spherical QDs
of 52 Å diameter ��7.4�104 Å3� is �80 meV lower than
that of pyramidal QDs of similar volume. This agrees with
our explanation of lower transition energy for QD shapes
with broader tip. However, due to limitation of the colloidal
QD growth process, we are unable to compare our work with
experimental results for QDs larger than 60 Å diameter
��1.0�105 Å3�.

Furthermore, our work is consistent with the calculations
reported by Gunawan et al.1 Although the effects we inves-
tigated are totally different from what they reported, their
starting point with no interdiffusion is relevant to our work,

TABLE IV. Calculated volume dependency for electron
�	electron

calc� and hole �	hole
calc� energy states for PYRAMID and

CUBOID.

	electron
calc 	hole

calc

PYRAMID 0.24 0.57

CUBOID 0.40 0.61

FIG. 2. Plot of electron ground-state energy and first excited-
state energy of �a� PYRAMID and �b� CUBOID as function of QD
volume. The lines are guides to the eyes.
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and it corresponds to a point on Fig. 1, i.e., volume of
�1.67�105 Å3 with an aspect ratio of 0.5.

B. QD base length (height) variation

The increase in the QD volume, base length, or height
results in decrease in the energy states due to reduction in the

confinement effect. However, comparing Eq. �A5� with Eqs.
�A7� and �A8�, the volume dependency 	Vol. and base length
�height� dependency 	b�	h� are significantly different; i.e.,
while 	Vol.�0.67, 	b=	h�2. This significant difference in
the dependency can be used as a means to understand the QD
formation process, i.e., whether addition of InAs coverage
will result in increase of the volume or height �base length�
of the QD.

To investigate this issue, we fitted our calculated results
from the ground-state energy as function of volume, base
length, and height and obtained values for 	Vol.

calc , 	b
calc, and

	h
calc, respectively. The trend is again divided into two

groups, namely, shapes with narrow tips and broad tips.
Hence, for same reasons above, PYRAMID and CUBOID were
chosen. The normalized logarithm �base 10� plots of PYRA-

MID and CUBOID for volume, base length, and height depen-
dencies are shown in Figs. 3�a�–3�c�, respectively. The di-
mension dependencies are seen from the gradients of the
straight line graphs. The insets in Figs. 3�a�–3�c� show the
electron ground-state energy as function of volume, base
length, and height, respectively. Values of 	Vol.

calc , 	b
calc, and

	h
calc for PYRAMID and CUBOID, together with results from

others, are shown in Table V; and found to be lower than the
ideal case of 	Vol.�0.67 and 	b=	h�2. This is due to finite
energy barrier considered in the actual case and thus a
smaller dependency on the dimensions. Hence, we expect the
values of 	 to approach that of the ideal case if the energy
barrier is higher, e.g., by using AlGaAs instead of GaAs as
the barrier layer.

Heitz et al.16 have demonstrated shell-like �onionlike� for-
mation of Sb-surfactant mediated InAs/GaAs QD growth. It
was shown that each monolayer of InAs coverage resulted in
volume increment and not just height increment. We fitted
the experimental PL data from their paper, and obtained a
value for volume dependency 	Vol.

expt �0.32. This value agrees
well with our calculated value of 	Vol.

calc �0.33. Furthermore,
our calculated value of 	h

calc was validated with data from
Ref. 35, which considered optical properties of different QD
heights with similar lateral size. A value of 	h

expt�0.85 was
obtained by fitting to their experimental PL data. This value
is lower than our calculated value of 	h

calc�1.10 since the
barrier layer is InGaAs instead of GaAs. The lower energy
barrier results in weaker height dependency compared to that
of our work.

FIG. 3. Plot of normalized logarithm �base 10� graphs of PYRA-

MID and CUBOID for �a� volume, �b� base length, and �c� height
dependencies. The lines are guides to the eyes. The abbreviation
E1-HH1 denotes the ground-state energy. �Inset� Graphs of electron
ground-state energy as function of �a� volume, �b� base length, and
�c� height.

TABLE V. Comparison of various 	Vol., 	b, and 	h for PYRAMID

and CUBOID.

PYRAMID CUBOID

	Vol. 0.33a, 0.32b 0.43a

	b 0.78a 1.34a

	h 1.10a, 0.85c 1.22a, 0.95d, 1.09e

aOur work.
bReference 16.
cReference 35.
dReference 36, using single-particle pseudopotential plane-wave
method.
eReference 36, using many-particle configuration-interaction
method.
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Narvaez et al.36 reported calculations of the dependence
of electronic structure of lens-shaped InGaAs QD as function
of height. They compared values of 	h calculated by the
single-particle pseudopotential plane-wave method and
many-body screened configuration-interaction �CI� approach.
The values of 	h were found to be 0.95 and 1.09, respec-
tively. Both values of 	h are lower than our calculated values
�	h

calc�1.22�. This is because our calculation was based on
InAs QD instead of InGaAs QD. Hence, the larger energy
barrier resulted in stronger dependency compared to that of
their work.

Most importantly, note that the energy dependencies are
significantly different, i.e., 	Vol. is approximately three times
smaller than 	h �or 	b�. This large difference can be very
useful for verification of QD formation. For example, if we
increase the QD coverage in succession and find similar in-
crease in the volume of the uncapped QD, we can check
whether there is similar volume increment in the capped QD
by taking PL measurements of the capped ones, plotting the
logarithm �base 10� plot similar to ours, and obtaining the
energy dependency 	Vol. from the gradient. Hence, by check-

ing whether the value of 	Vol. deviate significantly from that
in Table IV, we can verify if the capped QD experienced a
similar change as the uncapped ones.

Comparing with sophisticated tools like HREM, which
requires longer turnaround time and sample preparation pro-
cedures, this method provides a relatively fast and inexpen-
sive alternative to determine how much the capped QD had
deviated from the uncapped ones upon growth parameter
variation.

C. QD aspect ratio variation

Our calculated results of energy states as function of as-
pect ratio for different isovolume QD shapes are shown in
Fig. 4. The energy states do not follow monotonic trends.
Instead, there is an “optimum” aspect ratio for each QD
shape where the energy state is the lowest. To understand the
energy trend analytically, we derived Eq. �A9� in the Appen-
dix . It is seen that the energy state exhibits two different
trends: a steep decrease ��AR−4/3� for smaller aspect ratio
followed by a gentle, almost linear increase ��AR2/3�. The
lowest ground-state energy is expressed in Eq. �A10� corre-
sponding to an optimum aspect ratio of 1. The expression is
derived for the ideal case of CUBOID QD with infinite energy
barrier, and we have used it to explain the observed energy
trend. We believe that, similar to 	Vol.

calc , 	b
calc, and 	h

calc, the
aspect ratio dependency 	AR

calc will be smaller due to the finite
energy barrier.

To explain the observed energy trend in Fig. 4 and results
derived in the Appendix, we consider the competing effects
of decrease in base length and increase in height, as aspect
ratio increases. For smaller aspect ratio, decrease in confine-
ment energy due to increase in height is much larger than
increase in confinement energy due to decrease in base
length. This explains the steep decrease in the ground-state
energy following a small increase in aspect ratio. The inverse
is also true for large increase in aspect ratio. However, the
effect is smaller and the increase more gentle. When the
effect due to the increase in height equals that due to the

FIG. 4. Plot of �a� electron ground-state energy and �b� heavy-
hole ground-state energy as function of QD aspect ratio, for various
QD shapes �QD volume fixed at 8�105 Å3�. The predicted trend
�dashed line� of the ground-state energy for AR�0.5 is also in-
cluded for LENS. The lines are guides to the eyes.

FIG. 5. Plot of the ratio of effective volume of CUBOID to that of
PYRAMID for both electron and hole as function of aspect ratio. The
lines are guides to the eyes.
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decrease in base length, the lowest ground-state energy was
obtained, i.e., the optimum aspect ratio ARopt is reached. As
a result, the QD energy is height dominant before ARopt and
base-length dominant after that. Since 	h

calc is larger �smaller�
than 	b

calc for PYRAMID �CUBOID�; indicating shapes with nar-
row �broad� tips have stronger �weaker� height dependency,
we expect shapes with broad tips to reach the optimum as-
pect ratio faster than those with narrow tips.

In addition to the observed energy trend, there exists an
obvious energy difference between shapes with narrow and
broad tips. This is due to different effective volumes among
the various shapes. This volume dependency on E0 can be
seen from Eq. �A9�. Hence, for a given aspect ratio, E0
�Veff

−2/3 �e.g., E0,PYRAMID�Veff,PYRAMID
−2/3 and E0,CUBOID

�Veff,CUBOID
−2/3 �, where Veff is the effective volume of a par-

ticular shape. Taking the ratio of the energy at a particular
aspect ratio and rearranging it, we obtain
Veff,CUBOID/Veff,PYRAMID= �E0,PYRAMID/E0,CUBOID�3/2. Thus,
the ratio of energy of various shapes provides us a direct
means to quantify the ratio of �effective� volume seen by
both electrons and holes. Therefore, by considering
E0,PYRAMID/E0,CUBOID from Fig. 4, the ratio of effective vol-
ume of electrons and holes as function of aspect ratio is
plotted in Fig. 5. Indeed, Veff,CUBOID/Veff,PYRAMID�1
throughout the aspect ratio variation considered in our work.
This justifies the explanation of a larger effective volume for
shapes with broad tips. The difference in the effective vol-
ume seen by both carriers is attributed to the different effec-
tive masses and confining potentials. Initial increase of
Veff,CUBOID/Veff,PYRAMID is due to larger increase in effective
volume for the broad tip shapes; while the almost constant
ratio of the volume after �0.5 implies that carriers in both
shapes see similar changes in the effective volume of the
QD, with Veff,CUBOID always larger than Veff,PYRAMID.

Note that computation for aspect/ratio �0.5 was not per-
formed for lens-shaped QDs �LENS� since the boundary con-
dition defined only caters for AR 
0.5, i.e., only up to the
point when the lens-shaped QDs become hemispherical QDs.
However, we predict that there will be a transition from the
“lower energy” group to the “higher energy” group as the
aspect ratio increases beyond 0.5. This is due to transition of
the lens-shaped tip from rounded to pointed one, as illus-
trated in Table VI. The predicted trend of LENS for aspect
ratio �0.5 is shown in Fig. 4.

Due to the low aspect ratio of most InAs QDs reported in
current literature, increasing the aspect ratio �or height�
seems to be the obvious way to redshift the transition energy.
This is due to the smaller QD height of �5 nm as compared
to the base of �24 nm.37 Hence, a slight increase in the
vertical dimension is sufficient to produce a significant re-
duction in the confinement energy. However, as the current

QD aspect ratio is �0.1–0.3, we are unable to find any re-
ported experimental result with larger aspect ratio of �1.0 to
validate our calculations. Nevertheless, knowing that tem-
plated growth38 and growth parameters variations 39,40 do
have an effect on the size, shape, and aspect ratio of QDs, the
results in Fig. 4 will provide valuable insight into the energy
trends for QD of different shapes.

We do not deny that more sophisticated models, e.g., the
eight-band k ·p model, will be needed for accurate represen-
tation of the full energy spectra, i.e., the correct energy cal-
culation of the excited states. However, the focus of this
paper is in the calculation of the confined ground-state ener-
gies and it is thus important to point out that simple single-
band, effective mass model is sufficient for the calculation of
the confined ground-state energy.6,10 Currently, a lot of input
parameters of the involved bulk materials are still unknown.
While parameters such as the fundamental energy gap, spin-
orbit energy, and �-point conduction band mass are well
known from experiments; the band gap deformation potential
and band offsets are more difficult to determine. Therefore,
even the most detailed QD energy calculations will suffer
from the lack of knowledge of the essential input parameters.
In fact, with proper choice of the input parameters, simple
single-band, effective mass model can accurately calculate
the ground-state energy.12 As mentioned in our work, the
consistency of our work with theoretical 1,23,28,36 and experi-
mental 16,34,35 results of others thus justified the approxima-
tions and parameters used in our calculations.

IV. CONCLUSIONS

This paper reports a strained-modified, single-band,
constant-potential three-dimensional model to study the de-
pendence of electronic states of InAs/GaAs quantum dots
�QDs� of different shapes and sizes. Our calculations were
found to be consistent with experimental results and atomis-
tic calculations from current literature. Our results can be
summarized as follows: �i� monotonically decreasing energy
trends with increasing QD size, i.e., E�size−	; �ii� smaller
effective volume for QD shapes with narrow tips; �iii� energy
dependency 	 was approximately three times larger for base
length �height� variation than volume variation; �iv� non-
monotonic energy trends for all QD shapes as function of
aspect ratio; �v� prediction of smaller optimum aspect ratio
for QD shapes with broad tips; �vi� ratio of effective volume
of both shapes �Veff,CUBOID/Veff,PYRAMID� was found to vary
with aspect ratio; and �vii� prediction of a “crossover” from
“lower energy” to “higher energy” group for lens-shaped
QDs. As discussed, the difference in the energy dependency
	 as function of base length �height� and volume can be used
as an easier alternative to check on how much the capped
QD had deviated in size from the uncapped ones. This will
provide a faster and relatively inexpensive feedback loop, as
compared to the use of more sophisticated tools, for growth
experimentalists. In addition, the calculated energy trend as
function of aspect ratio will provide valuable insight for QDs
with higher than normal ��0.5� aspect ratio.
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APPENDIX

In this section, we present the expressions for the energy
dependence on the size variation that was discussed in this
paper. The expressions below are derived based on the ideal
case of a square-based cuboid quantum dot with infinite po-
tential barrier. The abbreviation used is the same as that de-
scribed in Table II.

For the case of a square-based cuboid with base length b
and height h, we can write the confinement energy as

Enx,ny,nz =
�2�2

2m* �nx
2

b2 +
ny

2

b2 +
nz

2

h2� , �A1�

and the energy spacing as

�E =
�2�2

2m* �nx�
2 − nx

2

b2 +
ny�

2 − ny
2

b2 +
nz�

2 − nz
2

h2 � . �A2�

Therefore, the ground-state energy �i.e., nx=ny =nz=1� is

E0 =
�2�2

2m* � 2

b2 +
1

h2� , �A3�

and the energy spacing from the first excited-state energy is

�E =
�2�2

2m* � 3

b2� , �A4�

since the height h is much smaller as compared to the base
length b.

For the case of volume variation with constant aspect ra-
tio of 0.5,

E0
Vol =

3�2�2

4m* �Vol.

4
�−2/3

, �A5�

�EVol =
3�2�2

2m* �2Vol . �−2/3, �A6�

where b=2h, E0
Vol and �EVol are the ground-state energy and

energy spacing due to volume variation, respectively.
For the case of base length variation with constant height

h0,

E0
b =

�2�2

2m* � 2

b2 +
1

h0
2� , �A7�

where E0
b is the ground-state energy due to base length varia-

tion.
Similarly, for the case of height variation with constant

base length b0,

E0
h =

�2�2

2m* � 2

b0
2 +

1

h2� , �A8�

where E0
h is the ground-state energy due to height variation.

For the case of aspect ratio variation with constant
volume V0,

E0
AR =

�2�2

2m* V0
−2/3�AR−4/3 + 2AR2/3� , �A9�

where E0
AR is the ground-state energy due to aspect ratio

variation.
In this case, the energy does not follow a monotonic

trend. For smaller AR value, it exhibits an AR dependency of
−4/3; for larger AR value, it exhibits an AR dependency of
2/3. Graphically, it means that there will be a sharp decrease
in energy as the AR starts to increase from a small value
��0.1�, and it approaches a gentle and almost linear increase
as the AR becomes larger.

In addition, the lowest ground-state energy is

E0,min =
3�2�2

2m* V0
−2/3, �A10�

and the corresponding aspect ratio is AR0=1.
Note from Eq. �A10� that the minimum ground-state en-

ergy is �effective� volume dependent.
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