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We calculate the resistance and mean free path in long metallic and semiconducting silicon nanowires
�SiNW’s� using two different numerical approaches: a real-space Kubo method and a recursive Green’s-
function method. We compare the two approaches and find that they are complementary: depending on the
situation a preferable method can be identified. Several numerical results are presented to illustrate the relative
merits of the two methods. Our calculations of relaxed atomic structures and their conductance properties are
based on density functional theory without introducing adjustable parameters. Two specific models of disorder
are considered: Unpassivated, surface reconstructed SiNW’s are perturbed by random on-site �Anderson�
disorder whereas defects in hydrogen passivated wires are introduced by randomly removed H atoms. The
unpassivated wires are very sensitive to disorder in the surface whereas bulk disorder has almost no influence.
For the passivated wires, the scattering by the hydrogen vacancies is strongly energy dependent and for
relatively long SiNW’s �L�200 nm� the resistance changes from the Ohmic to the localization regime within
a 0.1-eV shift of the Fermi energy. This high sensitivity might be used for sensor applications.
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I. INTRODUCTION

Semiconducting nanowires are a very promising building
block for future nanoelectronic and nanophotonic applica-
tions as witnessed by several recently demonstrated
devices.1–6 Silicon nanowires �SiNW’s� are especially attrac-
tive candidates due to their compatibility with conventional
Si technology and due to the accurate control of diameter
and electronic properties during synthesis.7 Furthermore, in
recent years SiNW’s have been applied as label-free real-
time chemical and biological sensors with very high sensi-
tivity and, e.g., capability of single-virus detection.8

Thin SiNW’s with diameters below 5 nm have been syn-
thesized by several groups. Recently, Ma et al.9 obtained
very thin wires grown in the �110� and �112� directions with
diameters down to 1.3 nm and Holmes et al.10 previously
reported 4–5-nm �100� and �110� SiNW’s. Wu et al.7 re-
cently demonstrated that the growth directions depend on the
diameter, which can be controlled by the size of a catalytic
nanoparticle.11

Concerning theoretical modeling of the structural proper-
ties, Rurali and Lorente12 recently showed, using ab initio
calculations, that thin �100� unpassivated SiNW’s could be
either metallic or semimetallic depending on the surface re-
construction. In another recent work, Singh et al.13 theoreti-
cally studied pristine �110� SiNW’s and found that these
were indirect band gap semiconductors. Fernández-Serra et
al.14 used ab initio calculations to study the surface segrega-
tion of dopants in both passivated and unpassivated SiNW’s,
and Vo et al.15 very recently used ab initio calculations to
simulate the structural and electronic properties of hydrogen-
passivated SiNW’s grown in different directions.

The large surface to bulk ratio in the thin wires implies
that surface effects such as defects, vacancies, or adatoms
will have a large influence on the transport properties. This
was experimentally demonstrated by Cui et al.4 showing in-
creased mobilities after passivation of surface defects. Also,

electron-phonon scattering might be suppressed in thin
wires. Indeed, recent experiments by Lu et al.16 indicated
ballistic transport in undoped Si/Ge core-shell wires at room
temperature with an estimated phonon scattering mean free
path �MFP� lph�500 nm. This might imply that even at
room temperature defects could be the most important scat-
tering source, and a thorough understanding of the scattering
processes is thus required.

A number of transport calculations have been reported for
wires with various diameters. Das and Mizel17 used the Bolt-
zmann equation to calculate the carrier mobility in relative
thick �d=10–90 nm� GaAs wires, focusing on the diameter
dependence. Sundaram and Mizel18 also used the Boltzmann
equation to study surface effects on the transport in large-
diameter wires. Zheng et al.19 applied a tight-binding model
of a hydrogen-passivated wire and studied the effect of wire
thickness on the band gap, effective masses, and transmis-
sion.

Real SiNW’s with lengths up to the scale of micrometers
consist of millions of atoms and are likely to have many
randomly placed defects. To our knowledge, no theoretical
works concerning SiNW’s, based on ab initio methods and
including many scattering events, have yet been published.

A calculation of the conductance of a SiNW with many
randomly positioned defects puts strong requirements on the
method. The quasi-one-dimensional nature of the SiNW’s
requires on the one hand an atomistic model taking quantum
effects and charge transfer around the defect into account.
On the other hand, the method should be able to treat more
than 105 atoms and include many scattering events due to the
�m length of the wires.

In this work, two methods are used to study the effect of
disorder including many randomly placed H vacancies in
H-passivated long SiNW’s. Both methods are based on ab
initio calculations and scale linearly with the length of the
sample. The first approach uses a relatively recent real-space
method developed by Roche and Mayou and co-workers
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over the last decade to study transport properties primarily in
carbon nanotubes and quasiperiodic systems.20–28 The
method is based on the Kubo-Greenwood formalism29,30 re-
written in a real-space framework, and we will refer to it as
the Kubo method. The second and more well-known ap-
proach is based on the Landauer formula where the conduc-
tance is found by recursive calculations of Green’s functions
�GF’s�. We will refer to this as the GF method.

The Kubo method was shown to predict the elastic MFP
at the Fermi energy in randomly disordered carbon nano-
tubes �CNT’s�,24 in agreement with a Fermi’s golden rule
estimate.31 Besides that, we are aware of no comparison with
other theoretical methods. One of the primary goals of this
paper is to report such a comparison over several energies.
We show that the Kubo and GF methods are in general in
qualitative agreement, however with quantitative differences
especially around band edges. We analyze the pros and cons
of the two methods and give an assessment of when they
should be applied and which quantities they can calculate.

The rest of the paper is organized as follows. In Sec. II we
summarize the two numerical methods and describe how a
Hamiltonian for a long SiNW is constructed from ab initio
calculations. Results concerning both unpassivated as well as
hydrogen-passivated SiNW’s are presented in Sec. III. We
end up with a discussion of the applied methods and the
results in Sec. IV.

II. METHODS

A. Real-space Kubo method

In the real-space Kubo method, which is derived from the
Kubo-Greenwood formula, transport properties are deter-
mined by calculating the time propagation of wave packets
in real space. The central quantity is the time- and energy-
dependent diffusion coefficient D�E , t�, defined by

D�E,t� =
1

t

Tr��X�t� − X�0��2��E − H��
Tr���E − H��

, �1�

where X�t� is the position operator along the wire direction
written in the Heisenberg representation, H is the Hamil-
tonian matrix, and the trace Tr���E−H�� is the total elec-
tronic density of states �DOS�. Since the Hamiltonian in the
calculations is finite, the energy has a small imaginary part
i�, where �	5 meV is chosen to scale linearly with the
total band width and inversely with the system size. Follow-
ing Triozon et al.24,32 an efficient evaluation of the traces can
be carried out by using a relative modest number ��10� of
random phase states 
�r�. The coefficients of 
�r�, �r�j�, with
j=−N /2 , . . . ,N /2 where N is the total number of orbitals in
the wire, are initially nonzero only in the central part of the
nanowire—i.e.,

�r�j� = � 1
�Nr

e2i�	r�j�, for − Nr/2 
 j 
 Nr/2,

0 otherwise,

 �2�

where 	r�j� is an independent random number in the interval
�0,1� for every �r , j�. Initially, 
�r�t=0�� is located in the

central part of the wire, and as time evolves it spreads out to
the sides as illustrated in Fig. 1 �top�. In order to avoid scat-
tering at the boundaries at large propagation times, the initial
range of 
�r� must be much smaller than the total system.
Typically Nr	104 while the total number of orbitals is N
	105. The number of random phase states needed to accu-
rately estimate the traces is not known a priori, and the con-
vergence of the results must be checked.

The time evolution of the random phase states can be
efficiently computed by expanding the time evolution opera-
tor e−iHt/� in the orthogonal set of Chebyshev polynomials.
Each term in the traces in Eq. �1� is a local density of state
which is calculated using a continued fraction technique.33

This is the most time-consuming part of the calculations and
involves 	103 operations with the Hamiltonian for the con-
sidered systems to resolve the closely lying energy bands.
The convergence of the continued fraction scheme must be
separately verified.

The elastic MFP le�EF� for a given energy E=EF is found
from24

le�EF� =
max�D�EF,t�,t � 0�

v�EF�
, �3�

where v�E� is an energy-dependent effective velocity. For a
pristine system the electron motion is ballistic and the diffu-
sion coefficient increases linearly with time, D�E , t�=v2�E�t,
with the slope given by the square of the effective velocity.
In Sec. III A and the Appendix we discuss this effective ve-
locity in more detail. We note that in the ballistic regime le
→� and the “max” in Eq. �3� is not well defined.

The geometry used in the Kubo calculations is sketched in
Fig. 1 �middle�. Notice that there is no requirement that the
Hamiltonian be periodic. Nor are there any leads that con-
nect to the device region as in the GF method, Fig. 1 �bot-
tom�, to be discussed in the next section.

We stress that the time it takes to calculate the diffusion
coefficient at many energies is not much longer than for a
single energy. The reason for this is that the random phase
states contain all energy components and the time evolution
is energy independent. Moreover, the primary numerical task
in the continued fraction scheme is a mapping of the original
Hamiltonian to a smaller tridiagonal matrix. This mapping is

FIG. 1. Top: schematic time evolution of a random phase state

�r�t�� initially located in the central region of the wire. Middle: the
geometry in the Kubo method consists only of a large device re-
gion. Bottom: in the GF approach a device region is connected to
two semi-infinite leads.
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energy independent, and it is therefore relatively fast to com-
pute the MFP for the whole energy spectrum.

B. Recursive Green’s function method

The second numerical method we have applied is based
on the Landauer formalism described in detail in, e.g., Ref.
34. The general setup is illustrated in Fig. 2. A device region
�D� is connected to a left �L� and right �R� semi-infinite lead.
The device area consists of M subcells and is described by
the Hamiltonian HD:

HD =�
HD

�1� V1,2 0 . . .

V1,2
† HD

�2� V2,3

0 V2,3
†

� �

� � HD
�M�
� . �4�

The subcells are chosen so large that only nearest-neighbor
cells couple. Generally, the subcells do not need to have the
same size. The leads described by HL and HR, respectively,
are assumed to have a semi-infinite structure consisting of
equal unit cells with Hamiltonians H0. The coupling matrices
between the leads and the device area are denoted VL and
VR. The Hamiltonians are calculated with a nonorthogonal
basis set �see Sec. II C� such that for each Hamiltonian ma-
trix we also have a corresponding overlap matrix S.

To calculate the length dependent conductance of the
wire, we initially find the surface Green’s functions
GL,R

0 �E�= �ESL,R−HL,R�−1 of the isolated leads by a standard
decimation procedure.35 The device area is subsequently
grown by adding one subcell at a time and calculating the
Green’s function

Gi�E� = �ESD
�i� − HD

�i� − 
L
�i��E� − 
R�E��−1, �5�

where 
R�E� describes the coupling to the right lead and is
defined through GR

0�E�= �ES0−H0−
R�E��−1, and where we
assure that the coupling of cell i to lead R is the same as the
cell-to-cell coupling within the lead. 
L

�i��E� also takes the
coupling to the rest of the device area into account and is
calculated from the previous growth step as 
L

�i��E�
= �ESi−1,i

† −Vi−1,i
† �G̃i−1�E��ESi−1,i−Vi−1,i�, where G̃i−1�E�

= �ESD
�i−1�−HD

�i−1�−
L
�i−1��E��−1.

In each growth step we calculate the conductance of the
wire consisting of the first i subcells as

g�E,Li� =
2e2

h
Tr�Gi

†�E��R�E�Gi�E��L
�i��E�� , �6�

where Li is the length of the grown device region, �L
�i��E�=

−2 Im�
L
�i��E��, and likewise for �R�E�. The trace is per-

formed over the states in the device region.
Sample averaging is performed over 200 different con-

figurations, giving a mean conductance �g�. The correspond-
ing resistance is found as R=1/ �g�. For wire length L��,
with � being the localization length, the resistance increases
linearly as R�L�=R0+R0L / le, defining the MFP le.

36 In the
localization regime the resistance increases exponentially
and we calculate the localization length as37

� = − lim
L→�

2L

�ln g�
, �7�

where L has to be so large that � is converged.

C. Constructing the Hamiltonian from ab initio calculations

The atomic and electronic structure of the SiNW’s is
found from ab initio calculations using the density functional
theory �DFT� package SIESTA.38 Using first-principles calcu-
lations it is relatively straightforward to introduce various
defects such as vacancies, adatoms, or dopants. This is not
the case when using standard tight-binding parameters.

We have used a minimal single-� basis set,39 with four
orbitals �one 3s and three 3p� on the Si atoms and one on the
H atoms, to represent the one-electron wave function. The
minimal basis set is applied in order to speed up the subse-
quent transport calculations. We have used norm-conserving
pseudopotentials of the Troullier-Martins type40 and the gen-
eralized gradient approximation41 for the exchange-
correlation functional. The calculations are performed on su-
percells containing five wire unit cells �see Figs. 3 and 4�.
The reciprocal space has been sampled with a converged grid
of 1�1�2k points following the Monkhorst-Pack scheme.42

When modeling a defect this is placed in the middle of the
supercell to ensure that the effect of the defect is confined to
the central region and is not affected by the periodicity and
the intercell coupling terms Vi−1,i in Eq. �4� are independent
of the specific type of defect. The atomic postions of all the
atoms in the unit cell containing the defect and in the two
neighboring unit cells have been fully relaxed, until the

FIG. 2. The device region �D� is divided into M subcells. The
subcells are so large that they only couple to the nearest-neighbor
cells. Also, the left �L� and right �R� leads consisting of equal unit
cells, described by H0, couple only to the first and last cell of the
device region, respectively.

FIG. 3. �Color online� Top: schematic illustration of supercells
containing five unit cells from three different DFT calculations: one
pristine wire and two wires with different defects. In the latter the
defects are located in unit cell number 3. The cells number 1 and 5
are assumed to be the same in all three calculations. Bottom: a long
wire is constructed by joining pieces from the different DFT
calculations.
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maximum force was smaller than 0.04 eV/Å. This is an im-
portant point, because the local distortion induced by the
defect can have important consequences on its scattering
properties.

To model a long �L�100 nm� SiNW with a random dis-
tribution of defects �Sec. III B� we perform a full SIESTA
calculation for a pristine wire and for each type of defect.
The wire is grown by adding pieces from the different cal-
culations, ending up with a wire structure as in Fig. 2 and a
Hamiltonian as Eq. �4�. The subcells HD

�i� can either be pris-
tine parts or contain a defect. In the latter case the subcell
consists of three unit cells with the defect in the middle.
Figure 3 illustrates schematically how a wire is built up from
pristine parts and from parts containing two different defects.
The upper panel symbolizes the periodically repeated super-
cells from three different SIESTA calculations: one pristine
wire �left� and two wires containing two different defects
placed in the middlemost unit cell. The first and last unit
cells in each calculation are assumed to be the same for both
the pristine wire and the wires containing defects.

Usually when joining pieces from different calculations
the Fermi energies should be aligned to ensure charge con-
servation. However, for the SiNW’s with hydrogen vacan-
cies, a dangling bond �DB� state forms in the band gap and
pins the Fermi energy, causing a large shift compared to a
pristine wire. Alignment of the Fermi energies would there-
fore lead to an unphysical shift in energies also for sites far
away from the vacancy. We therefore align the Si 3s on-site
energy instead, taking as reference a fixed Si atom in unit
cell number 1.

The minimal basis set implies that we can not expect the
conduction bands to be accurately described, and we will
thus only focus on the valence bands. Furthermore, the
Hamiltonian is truncated by removing the smallest elements,
while keeping the band structure constant with a tolerance of
10−2 eV. This leads to a reduction of nonzero matrix ele-
ments of around 80%, and we thus effectively end up with a
tight-binding-like Hamiltonian.

SIESTA uses a nonorthogonal atomic basis set giving rise
to an overlap matrix S. The Kubo method, however, requires
an orthogonal basis set, and the SIESTA output cannot there-
fore be used directly for which reason a Löwdin transforma-
tion is performed. For each SIESTA calculation the Hamil-
tonian H, containing five unit cells described in the

nonorthogonal atomic basis, is mapped to a new one H̃, with
an orthogonal basis:

H → H̃ = S−1/2HS−1/2. �8�

In the same way as described above, a long wire is built by
extracting parts from both pristine and defected orthogonal-
ized Hamiltonians and joining the pieces. The Löwdin trans-
formation leads to a longer range of the basis orbitals and
thus more nonzero elements in the truncated Hamiltonian.
This in turn implies longer calculation times.

D. Fermi’s golden rule

We next compare the two numerical approaches with re-
sults obtained using Fermi’s golden rule �FGR�. We consider
scattering due to the scattering potential V between unper-
turbed Bloch states 
n ,k� of the pristine wire. The transport
relaxation rate 1 /�n from band n at energy E is found as

1

�n„En�k�…
=

2�

�
� dk�

2�
�
m


�k�,m
V
n,k�
2 � �1

− cos �kk���„Em�k�� − En�k�…

=
4�

�
�
m


�− k�,m
V
n,k�
2nm�E�

=
4�

�
�2�

m,j

�−k�,m�j�
2
�k,n�j�
2nm�E� ,

where the m summation is over bands and the j summation
runs over sites in one unit cell. �k,n�j�= �j 
k ,n� is the ampli-
tude of the Bloch state at site j, nm�E� is the DOS corre-
sponding to band m, and the energy of the final state fulfills
Em�−k��=En�k�=E. �kk� is the angle between the initial and
final wave vectors. Only scattering from a forward- to a
backward-propagating state contributes to the rate—i.e.,
�kk�=−�—yielding a factor of 2. The perturbing potential V
is for the Anderson on-site disorder �Sec. III A� simply a
diagonal matrix with the diagonal elements being random
numbers in a given interval with variance �2 �see below�,
and the overbar denotes an average over different configura-
tions of V. The MFP for electrons in band n is calculated as

ln�E� = vn�E��n�E� , �9�

where vn�E� is the group velocity at energy E in the nth
band. We calculate the total MFP as the mean value from the
individual contributions from the bands:

FIG. 4. �Color online� �a�:
Side view of the unpassivated
SiNW containing five unit cells,
separated by the red dashed lines.
�b�: End view of the unpassivated
SiNW. �c�: Band structure around
the Fermi energy �dashed line�.
Four bands are crossing the Fermi
energy, two being degenerate
�with E−EF=−0.05 eV at the �
point�.
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le�E� =
1

N�E��n

ln�E� , �10�

where N�E� is the number of bands at energy E.

III. RESULTS

A. Surface-reconstructed wires

The first structures we consider are unpassivated, surface
reconstructed SiNW’s as illustrated in Fig. 4 showing a side
view �a� and a cross-section view �b� of a wire containing 5
unit cells, separated by the red dashed lines in the upper
panel. This structure was recently studied by Rurali and
Lorente12 using DFT calculations. There are 57 atoms in one
unit cell, the diameter is 	1.5 nm, and the length of the unit
cell in the growth direction is 0.55 nm. Notice that the struc-
ture at the surface differs significantly from the bulk of the
wire. Reference 12 showed that this particular surface struc-
ture makes the wire metallic, which is evident in Fig. 4�c�,
showing the band structure around the Fermi energy �marked
by the dashed line�. Four bands are crossing the Fermi level
�two being degenerate�.

To further investigate the metallic surface states and to
compare the Kubo and GF methods we add random on-site
noise to either the surface atoms only or to the bulk atoms
only. The relevant diagonal elements in the Hamiltonian are
thus changed according to

Hii → Hii + �i, �11�

where �i takes values with equal probability in the interval
�−�� /2 ;�� /2� with �� being the disorder strength. The uni-
form disorder distribution has variance �2= ����2 /12. This
Anderson model for electronic disorder is simple and widely
applied; very recently, Zhong and Stocks43 used it to model
surface disorder in shell-doped nanowires. Whether this
simple model adequately describes physical defects merits a
separate discussion, given at the end of Sec. III B.

Figure 5 shows D�E , t� at E−EF=0.1 eV,44 revealing that
the bulk disorder �dashed black� has a very small effect on
the transport properties, yielding an almost linearly increas-

ing diffusion coefficient D�E , t�=v2�E�t, a characteristic fea-
ture of ballistic transport, as discussed in Sec. II A. The sur-
face disorder �solid red�, on the other hand, leads to diffusive
transport with D�E , t� almost constant for t�150 fs. The
pronounced differences of the surface- and bulk-disordered
systems show that the conduction around the Fermi energy
almost entirely takes place along the surface atoms, in quali-
tative agreement with the conclusions drawn in Ref. 12. The
two additional curves show �veff

�1��2t �dotted green� and �veff
�2��2t

�dash-dotted blue�, where veff
�1�=��mnmvm

2 /�mnm

=0.112 nm/fs and veff
�2�=�mnmvm /�mnm=0.101 nm/fs are

calculated from the band structure, Fig. 4�c�, according to the
discussion in the Appendix. The band velocities are v1,2
=0.157 nm/fs for the degenerate band and v3=0.059 nm/fs
for the highest-lying band. It is evident that the effective
velocity calculated in the Kubo method from the slope of the
linearly increasing diffusion curve is very close to veff

�1� and
not veff

�2�. As shown in the Appendix this would lead to an
overestimated conductance of a pristine wire when this is
calculated as described in the Appendix A and Ref. 23.

Using Eq. �3� the MFP for the surface-disordered system
is found to be le=6.4 nm. Using the velocity veff

�1� we find the
mean free time �= le /veff

�1�=57 fs which is approximately half
of the time where the diffusion curve levels off.

The total length of the SiNW’s in the Kubo calculations is
L=825 nm, corresponding to 1500 unit cells. Even though
the group velocity around the Fermi energy is 	0.1 nm/fs
and the wave packets thus only propagate 30 nm in the
300 fs shown in Fig. 5, there are higher velocities at other
energies. Moreover, at other energies where the MFP is
longer the propagation time must also be longer to reach the
flat plateau in the diffusion curve. In order to avoid the wave
packet being reflected at the ends of the wire at long propa-
gation times, which affects the calculated diffusion, we find
that very long wires are needed.

Figure 6�a� shows the MFP le�E� versus energy calculated
using both the Kubo method �solid blue� and the recursive
GF approach �black squares�. The dashed red line is an ana-
lytical estimate obtained using FGR. The disorder strength is
��=0.4 eV and only the surface atoms are perturbed. The
Kubo and FGR results are obtained with a fine energy reso-
lution whereas the GF results are calculated only for rela-
tively few, discrete energies, illustrating the advantages in
the Kubo method in calculating properties at many energies
in one calculation.

Generally all three methods agree qualitatively and in the
interval −0.1 eV�E�0.2 eV the results are even quantita-
tively consistent. In this energy range several bands exist
�see Fig. 4�c�� and thus there are more possible backscatter-
ing processes giving a larger scattering rate and thus a
shorter MFP. Notice that lowering the mean free path does
not necessarily mean reducing the conductance, because we
also have more charge-carrying states.

Around the band edges at E=−0.09 eV the MFP calcu-
lated with FGR drops sharply whereas the values obtained
with the GF and Kubo methods drop more slowly. This dif-
ference is caused by the relatively large disorder strength
��=0.4 eV, which broadens the DOS and smears out the
sharp features. For smaller disorder strengths the GF results

FIG. 5. �Color online� Time-dependent diffusion coefficient at
E−EF=0.1 eV. The bulk disorder has little effect and the transport
is ballistic. The edge-disordered system shows diffusive behavior
with a constant diffusion coefficient for t�150 fs.

ELECTRONIC TRANSPORT THROUGH Si NANOWIRES:… PHYSICAL REVIEW B 74, 245313 �2006�

245313-5



resemble the FGR values more, which is illustrated in the
lower panel in Fig. 6. The figure shows, on a logarithmic
scale, the MFP versus inverse disorder strength, 1 /��, at
three different energies. The points are obtained with the GF
method, while the lines are obtained using FGR. For weak
disorder, the GF results scales as le� �1/���2 in accordance
with FGR, whereas the GF results for strong disordered sys-
tems deviate from the �1/���2 dependence. In this regime
the first-order perturbation applied in FGR does not fully
suffices and reliable results must be obtained with more
elaborate approaches such as the GF method.

Around 0.24 eV, the Kubo method fails to find the pro-
nounced peak obtained with both the GF method and FGR.
This difference is probably caused by two effects. The first
reason is again a broadened DOS, since the GF results show
a similar deviation from the FGR values as seen around E
=−0.09 eV. The second and more important reason for the
differences is due to numerical inaccuracies in calculating
the density of states in the Kubo method. The inaccuracies
are especially important around van Hove singularities at the
subband edges. E=0.24 eV marks the band edge for the two
degenerate bands, and due to the finiteness of the system
considered in the Kubo calculation, the van Hove peaks in
the DOS will unavoidably have decaying tails at larger ener-
gies. This implies that the calculated density of states will be
too large causing D�E , t� and thus le to be correspondingly
smaller. The energy separation between the two subband
edges around E=0.24 eV is only 	0.05 eV, which is less
than 0.3% of the total bandwidth, W�20 eV. This makes it
numerically difficult to resolve the detailed features with the
continued fraction technique used by the Kubo method.

B. Passivated wires

The surface-reconstructed SiNW’s are both physically and
technologically exciting, but probably also very fragile ob-
jects, since small changes in the surface such as defects or
adatoms presumably will change the performance drastically.
Moreover, the wires produced are most often surface passi-
vated by either SiOx or hydrogen, and the focus in this sec-
tion will be on such wires. The passivated wires are semi-
conducting, often with a direct band gap that increases for
small diameters.9,19,45 The simplest way to model surface-
passivated wires is to add hydrogen atoms to the surface
such that all the Si dangling bonds are passivated. Such wires
resemble qualitatively those reported by Ma et al.9

Figure 7 shows the cross section of the wire �a�. The unit
cell contains 57 Si atoms and 36 H atoms labeled with a
number from 1 to 36 as indicated in Fig. 7�a�. The band gap
is found to be 2.84 eV.46

To investigate the influence of surface defects we intro-
duce hydrogen vacancies. The vacancies are labeled corre-
spondingly to the removed hydrogen atoms. Note that due to
symmetry, there are only five topologically different vacan-
cies. The conductances of wires with only a single vacancy,
corresponding to one of the H atoms 1–3 being removed, are
shown in Fig. 7�b� for energies close to the valence band
edge �E=0 eV�. Clearly, vacancies 1 and 2 scatter the most,
the reason probably being that the wave function �for the
pristine wire� has a pronounced larger weight on these H
atoms. Notice that, for energies −0.15 eV�E�−0.05 eV,

FIG. 6. �Color online�. �a�: mean free path le vs energy E−EF

for ��=0.4 eV. The solid line is obtained with the Kubo method,
and the GF results are marked by squares while the dashed line
shows the FGR results. GF results are average values for 200 dif-
ferent samples while the Kubo results are mean values of 10 differ-
ent samples. �b�: scaling of le vs 1/�� shown on a logarithmic
scale. Circles, squares, and triangles are calculated with GF while
the lines are obtained using FGR at the same energies.

FIG. 7. �Color online� �a�: cross section of the H-passivated
wire. �a�: energy-dependent conductance of a pristine wire and of
wires containing a single vacancy of number 1–3.
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one channel is almost completely closed by vacancy 1. Va-
cancies 3–5 give almost the same conductances.

We model a wire with randomly missing hydrogen atoms
by performing a SIESTA calculation for each possible vacancy
position �one of the 36 H atoms is removed� and adding
pieces from the different calculations. We measure the va-
cancy concentration by the average distance �dH� in the wire
direction between two vacancies. Each unit cell can only
contain one vacancy, thus setting a lower limit for �dH� at the
unit cell length, a=0.56 nm. The MFP for �dH�=5.6 nm cal-
culated with the GF method is shown in Fig. 8 �solid line�,
revealing a strong energy dependence. In the interval
−0.15 eV�E�−0.05 eV, we find le	50 nm, while for en-
ergies around −0.35 eV the MFP in on the order of 1 �m.
Comparing with estimated phonon scattering MFP’s of more
than 500 nm,16 the application of the elastic scattering model
applied in this work is justified for most of the energies.
Moreover, at several energies the vacancy scattering might
be the dominant even at room temperature. However, around
the peak at E=−0.4 eV where the calculated MFP’s exceeds
1 �m, other scattering sources are likely to dominate.

Assuming that all bands at a given energy have the same
reflection probability, Ri�E�= �T0�E�−Ti�E�� /T0�E�, where T0

is the total transmission of a pristine wire and Ti is the total
transmission through a wire containing a single vacancy with
number i �shown in Fig. 7�, the MFP in a wire with only
vacancies of type i can be estimated as le

�i��E�= �dH
�i�� /Ri�E�,

where �dH
�i�� is the average distance between vacancies of

type i. The total MFP can be estimated using Matthiessen’s

rule, such that l̃e
−1=�i�le

�i��−1, and the result is shown in Fig. 8
as the dash-dotted line. It is evident that the simple estimate,
which ignores interference effects between successive scat-
terers, accurately reproduces the GF results found by sample
averaging over vacancy configurations.

The Kubo method requires a Hamiltonian describing a
wire that is longer than the largest mean free path in order to
avoid boundary effects. As seen from Fig. 8 we therefore
need a wire of length L�1500 nm consisting of more than
3000 unit cells and thus N�8�105 orbitals. In our current
implementation this causes computer memory problems and
we have not been able to obtain reliable results with the
Kubo method for the vacancy scattering.

We next examine whether the vacancies effectively can be
modeled by adding Anderson disorder. The calculated MFP
for a surface disordered wire—i.e., with no vacancies but
rather on-site disorder at all orbitals at the surface Si
atoms—is shown in Fig. 8 �dashed red line�.

For a disorder strength ��=1.3 eV the Anderson model
fits the vacancy results at energies E�−0.35 eV, although
the peak around E=−0.05 eV is much less pronounced. The
small shift of the peaks around E=−0.23 eV and E=
−0.05 eV is due to a broadened DOS in the Anderson-
disordered wires. For energies below −0.35 eV, the Ander-
son model deviates significantly from the vacancy results.
The pronounced peak in the MFP is not found in the Ander-
son model which gives almost constant values up to a factor
of 3 lower than the vacancy results. Besides a broadened
DOS, the differences probably arise because the Anderson
model is a too simple model, not capturing all the physics.
Since the Anderson disorder only reproduces the vacancy
results at some energies, we conclude that the effects of va-
cancies cannot accurately be modeled by simple on-site dis-
order. Moreover, the value of the disorder strength, ��, has
no clear connection to an actual vacancy concentration.

Figure 9 shows the length-dependent resistance for three
different energies at vacancy concentration corresponding to
�dH�=2.8 nm. For length L�200 nm the resistance increases
linearly at all energies, with the slope determining the MFP.
For the curves in the figure a linear regression fit is per-
formed for the initial part of the curves with L�50 nm and
the MFP is extracted using the relation R�L�=R0+R0L / le.
For the curves in the figure we obtain a MFP of 199 nm,
27 nm, and 39 nm at the energies −0.3 eV, −0.15 eV, and
−0.03 eV, respectively. For other vacancy concentrations and
other energies the linear fit should be performed over another
length range to ensure that it is confined to the linear part of
the R vs L curve. Note that at E=−0.03 eV there is only one

FIG. 8. �Color online� Mean free path vs energy for a concen-
tration of vacancies corresponding to �dH�=5.6 nm. The solid black
line corresponds to wires containing all possible vacancies. The
dash-dotted blue line is obtained using Matthiessen’s rule for
single-scattering events and the dashed red curve corresponds to a
wire with Anderson disorder ���=1.3 eV�.

FIG. 9. �Color online� Length-dependent resistance at the ener-
gies E=−0.3 eV �dashed blue line�, E=−0.15 eV �dash-dotted
green line�, and E=−0.03 eV �solid red line�. The average distance
between vacancies is �dH�=2.8 nm. The inset shows the scaling of
le vs average distance �dH� between vacancies at the same three
energies as above.
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conducting channel �cf. Fig. 7�b�� and the contact resistance
is thus R0=h /2e2. The inset shows the scaling of le vs �dH� at
the same three energies as in the main figure. The points are
calculated with the GF method and the lines are linear fits,
clearly revealing a linear relationship between the MFP and
the average intervacancy distance. For length L�200 nm the
resistance corresponding to E=−0.15 eV �dash-dotted green
line� starts to increase exponentially, thus entering the local-
ization regime. The localization length at this energy is �
=110 nm—i.e., approximately 4 times longer than the MFP.
Although there are only three channels at E=−0.15 eV, the
results are roughly in agreement with the general rule �
	Nle, where N is the number of conducting channels. Within
the energy interval −0.225eV�E�−0.06 eV where N=3 we
find that the ratio � / le varies between 3 at high energies and
5.6 at lower energies. The localization length can thus within
a factor of 2 also be estimated from Matthiessen’s rule.

IV. DISCUSSION

In this paper we have studied electronic transport in
SiNW’s and calculated the influence of disorder on the mean
free path. Our model is subject to a number of limitations
and approximations. We apply a single-electron model and
consider the linear response regime. Moreover, the minimal
basis set may limit the accuracy. Also the spin-orbit coupling
is not included which is necessary to describe the details
around the valence band edge in bulk Si. Compared to the
experimentally realized SiNW’s, the wires considered here
are quite thin although comparable to the wires reported in
Ref. 9. The SiNW structures used in this paper have rounded,
rather than perfectly square angles. It has been proposed in
the literature47–49 that smooth angles would be favored dur-
ing the growth process with respect to the sharp angles that
naturally arise from the square symmetry of the �100� cleav-
age plane. The topic has been discussed at some details
elsewhere49 for surface-reconstructed wires, concluding that
at nanometric diameters no clear difference emerges. At the
same time the electronic structure seems to be only margin-
ally affected. Since all calculations in this work are per-
formed on relaxed structures fully based on ab initio calcu-
lations without any use of fitting parameters, we expect, in
spite of all the limitations, to capture the correct trends in the
transport characteristics.

A. Methods

Two numerical methods were applied and compared to
each other: a real-space Kubo method and a recursive
Green’s-function method. The two approaches each have
their advantages: In calculating the MFP at many energies,
the Kubo method is advantageous, since the diffusion is
readily found at many energies in a single calculation,
whereas the GF method requires a full calculation at each
energy. If the focus is on a few energies but many different
disorders, the GF method is the preferred choice. For metal-
lic systems, where one mainly is interested in the properties
around the Fermi level, the GF method thus seems to be the
method of choice—the parallel computation of many ener-

gies in the Kubo method is not needed. The Kubo method
seems more applicable to semiconducting systems, since it is
physically possible to move the Fermi level with a gate volt-
age, thereby scanning several energies.

The Kubo method requires a Hamiltonian describing a
wire that is longer than the largest MFP in the considered
energy range. For the weakly disordered wires with long
MFP’s we need wires of length L�1 �m containing more
than 105 atoms, resulting in very large matrices. In our cur-
rent implementation this causes memory problems and the
Kubo method failed to converge for the H-passivated
SiNW’s. The GF method, on the other hand, involves only
calculations with the small subcell Hamiltonians and it suf-
fices to consider wires grown to a length L�50 nm to get an
accurate estimate of the initially linear resistance versus
length curve �cf. Fig. 9�. Moreover, it proved to be numeri-
cally difficult to resolve the detailed features in the energy
spectrum with the Kubo method, which led to erroneous re-
sults near band edges. The difficulties arise because the Kubo
method does not take any semi-infinite periodic leads into
account as in the GF method. There, the DOS is readily
calculated to arbitrary accuracy from the surface Green’s
function GL

0 by using the periodic structure of the leads.
However, the absence of periodic leads in the Kubo method
can also be a great advantage since it allows one to study
nonperiodic systems such as incommensurable multiwalled
carbon nanotubes.24

The growth procedure in the GF method involves inver-
sions of the relatively small matrices describing the subcells.
For thin wires as those considered in this work, with N
	250 orbitals in each unit cell, the inversion step is not a
critical issue. However, for thicker wires the number of or-
bitals increases quadratically, and due to as O�N3� scaling of
the inversion step, the whole procedure scales as O�d6�, with
d being the wire diameter. On contrary, the Kubo method
scales linearly with the number of orbitals and, thus, as
O�d2�.

For systems with a periodic structure, as the SiNW’s con-
sidered here, we generally find the GF method to be the
preferred choice, given that a rough energy resolution is suf-
ficient. Thicker wires with relatively short MFP’s favor the
use of the Kubo approach.

B. Results

In unpassivated, surface-reconstructed wires, Anderson
disorder was added to the surface atoms, affecting the trans-
port properties significantly. Disorder in the bulk had, on the
other hand, no significant influence.

In hydrogen-passivated wires surface disorder was intro-
duced by randomly removed hydrogen atoms. We find that it
suffices to consider single-scattering events and adding the
individually calculated MFP’s to an effective MFP by apply-
ing Matthiessen’s rule. Using the rule �	Nle, where N is the
number of conducting channels, the localization length can
be estimated within a factor of 2. However, an accurate de-
termination of � seems to require full calculations on long
wires with many randomly placed H vacancies as opposed to
only considering single-scattering events. It was further

MARKUSSEN et al. PHYSICAL REVIEW B 74, 245313 �2006�

245313-8



shown that an attempt to model the vacancies with an effec-
tive Anderson disorder gave satisfactory values for energies
close to the valence band edge but failed to reproduce the
vacancy results at lower energies.

The MFP was shown to be strongly energy dependent,
and for relatively long wires the resistance can be changed
by orders of magnitude within a 0.1-eV shift of the Fermi
energy, thus causing a transition from the diffusive �Ohmic�
regime to the localization regime. The strong energy depen-
dence might be utilized in sensor applications where the
presence of a single virus acts as a local gate shifting the
Fermi energy.8 This could possibly cause a transition from
the Ohmic to the localization regime, thus changing the re-
sistance of the wire dramatically. However, more careful
work has to be done before firm conclusions can be stated.

For relatively strong disordered wires, the MFP is well
below 500 nm for a large energy range. Compared to esti-
mated phonon scattering MFP’s of more than 500 nm,16 the
elastic scattering model applied in this work is justified.
Comparing the results obtained in this work with the esti-
mated long phonon MFP we suggest that impurity and defect
scattering could be the dominant scattering source even at
room temperature.
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APPENDIX: SIMPLE DOUBLE-CHAIN MODEL

In this appendix we illustrate the difficulties in calculating
the group velocity in the Kubo method. The problem is most

pronounced near band edges when more bands are present.
We consider a model consisting of two infinite parallel

chains as shown in Fig. 10 �a�. Only nearest-neighbor inter-
actions are taken into account. The tight-binding parameters
are �1 and �2 for hopping between and along the chains,
respectively. The distance between two atoms in the same
chain is called a. In the Fourier domain the Hamiltonian is

H�k� = ��0 + 2�1 cos�ka� �2

�2 �0 + 2�1 cos�ka�
� , �A1�

where �0 is the on-site energy. The eigenvalues are

E±�k� = �0 + 2�1 cos�ka� ± �2, �A2�

and the band structure is shown in Fig. 10 �b� with �0=0 and
�1=�2. The density of states and the group velocities for the
two bands are found as n±=1/ �2��
�E±�k� /�k
−1 and v±

=1/ ����E±�k� /�k.
The problems in the Kubo method are clearest illustrated

by calculating the conductance. Following Ref. 23 we start
out from an Einstein-like conductivity ��E , t�
=e2n�E�D�E , t�, where n�E� is the total electronic density of

FIG. 10. �Color online� �a�: model system. We consider only
nearest-neighbor interaction with the tight-binding parameters �1

and �2 corresponding to hopping in the chain direction and in per-
pendicular direction, respectively. The on-site energy is �0. �b�:
band structure for the two bands separately. Notice the definition of
the energies E1−E4.

FIG. 11. �Color online�. �a�: the numerically calculated conduc-
tance �dash-dotted black line� is plotted together with the two ana-
lytical results g�1��E�, Eq. �A6� �dashed blue line� and g�2��E�, Eq.
�A7� �solid red line�. �b�: zoom-in around E=E3, showing that
g�1��E� closely resembles the numerical result.
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states. The conductance of a sample of length L is found as
g�E�=��E ,�� /L, where � is the time is takes a wave packet
to spread out by an amount equal to L—i.e., implicitly given
by the relation L=�X2�E ,��, where X2�E , t�= tD�E , t�. At
present we consider only a pristine system where the electron
propagation is ballistic with X2�E , t�=v2�E�t2, and the con-
ductance thus becomes

g�E� = e2n�E�v�E� . �A3�

We calculate the diffusion coefficient as given by Eq. �1�.
In the energy interval E� �E2 ;E3� there are two bands and
the ��E−H� projects the states in the trace into a linear com-
bination of the eigenstates from the two bands. We can there-
fore rewrite Eq. �1� as

D�E,t� =
1

t

n+�E�X+
2�E� + n−�E�X−

2�E�
n+�E� + n−�E�

, �A4�

where X±
2�E�= �v±�E�t�2 is the spread of wave packets be-

longing to each band. Defining an effective velocity as �for
clarity we omit the explicit energy dependence�

veff
�1� =�n+v+

2 + n−v−
2

n+ + n−
, �A5�

the diffusion coefficient becomes D�E , t�= �veff
�1��2 / t. Using

Eq. �A3� the conductance becomes

g�1��E� = e2�n+ + n−��n+v+
2 + n−v−

2

n+ + n−
, �A6�

in disagreement with the correct result. The conductance
should rather be

g�2��E� = e2�n+v+ + n−v−� , �A7�

which is obtained if we instead of the effective velocity, veff
�1�

in Eq. �A5� use the average velocity

veff
�2� =

n+v+ + n−v−

n+ + n−
. �A8�

Figure 11 �a� shows the two analytical expressions for the
conductances g�1��E� �solid red line� and g�2��E� �dashed blue
line� together with the numerical result �dash-dotted black
line� obtained using the Kubo method and time propagation;
the lower panel shows an expanded view around E=E3.

It is evident that g�1��E�, Eq. �A6�, resembles the numeri-
cal result very much. Especially we find the same peaks in
the conductance around the band edges. The tail in the Kubo
conductance is due to the finiteness of the system and reflects
the imaginary energy i� used in the continued fraction tech-
nique. Rewriting the effective velocity �A5� as

veff
�1� =

��n+v+ + n−v−�2 + n+n−�v+ − v−�2

n+ + n−
, �A9�

we see that the reason why we observe peaks in the conduc-
tance is a mixing of the two densities of states given by
the second term in the numerator. This mixing is an inherent
failure in the numerical calculation of the diffusion
coefficient.

1 Y. Cui and C. M. Lieber, Science 291, 851 �2001�.
2 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M.

Lieber, Nature �London� 415, 617 �2002�.
3 L. Samuelson, Mater. Today 6, 22 �2003�.
4 Y. Cui, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3,

149 �2003�.
5 L. Samuelson et al., Physica E �Amsterdam� 25, 313 �2004�.
6 Y. Wu, C. Yang, W. Lu, and C. M. Lieber, Nature �London� 430,

61 �2004�.
7 Y. Wu, Y. Cui, L. Huynh, C. Barrelet, D. Bell, and C. Lieber,

Nano Lett. 4, 433 �2004�.
8 F. Patolsky and C. M. Lieber, Mater. Today 8, 20 �2005�.
9 D. D. D. Ma, C. S. Lee, F. K. Au, S. T. Tong, and S. T. Lee,

Science 299, 1874 �2003�.
10 J. D. Holmes, K. Johnston, R. C. Doty, and B. A. Korgel, Science

287, 1471 �2000�.
11 Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber,

Appl. Phys. Lett. 78, 2214 �2001�.
12 R. Rurali and N. Lorente, Phys. Rev. Lett. 94, 026805 �2005�.
13 A. K. Singh, V. Kumar, R. Note, and Y. Kawazoe, Nano Lett. 5,

2302 �2005�.
14 M. V. Fernandez-Serra, C. Adessi, and X. Blase, Phys. Rev. Lett.

96, 166805 �2006�.
15 T. Vo, A. J. Williamson, and G. Galli, Phys. Rev. B 74, 045116

�2006�.
16 W. Lu, J. Xiang, B. P. Timko, Y. Wu, and C. M. Lieber, Proc.

Natl. Acad. Sci. U.S.A. 102, 10046 �2005�.
17 K. K. Das and A. Mizel, J. Phys.: Condens. Matter 17, 6675

�2005�.
18 V. S. Sundaram and A. Mizel, J. Phys.: Condens. Matter 16, 4697

�2004�.
19 Y. Zheng, C. Riva, R. Lake, K. Alam, T. B. Boykin, and G.

Klimeck, IEEE Trans. Electron Devices 52, 1097 �2005�.
20 S. Roche, Phys. Rev. B 59, 2284 �1999�.
21 S. Roche and D. Mayou, Phys. Rev. Lett. 79, 2518 �1997�.
22 D. Mayou, Phys. Rev. Lett. 85, 1290 �2000�.
23 S. Roche and R. Saito, Phys. Rev. Lett. 87, 246803 �2001�.
24 F. Triozon, S. Roche, A. Rubio, and D. Mayou, Phys. Rev. B 69,

121410�R� �2004�.
25 S. Latil, S. Roche, D. Mayou, and J.-C. Charlier, Phys. Rev. Lett.

92, 256805 �2004�.
26 S. Roche, J. Jiang, F. Triozon, and R. Saito, Phys. Rev. B 72,

113410 �2005�.
27 S. Roche, J. Jiang, F. Triozon, and R. Saito, Phys. Rev. Lett. 95,

MARKUSSEN et al. PHYSICAL REVIEW B 74, 245313 �2006�

245313-10



076803 �2005�.
28 S. Latil, S. Roche, and J.-C. Charlier, Nano Lett. 5, 2216 �2005�.
29 R. Kubo, J. Phys. Soc. Jpn. 12, 570 �1957�.
30 D. Greenwood, Proc. Phys. Soc. London 71, 585 �1958�.
31 C. T. White and T. N. Todorov, Nature �London� 393, 240

�1998�.
32 F. Triozon, J. Vidal, R. Mosseri, and D. Mayou, Phys. Rev. B 65,

220202�R� �2002�.
33 R. Haydock, V. Heine, and M. Kelly, J. Phys. C 5, 2845 �1972�.
34 T. N. Todorov, Phys. Rev. B 54, 5801 �1996�.
35 M. Lopez-Sancho, J. Lopez-Sancho, and J. Rubio, J. Phys. F:

Met. Phys. 14, 1205 �1984�.
36 S. Datta, Electronic Transport in Mesoscopic Systems �Cambridge

University Press, Cambridge, England, 1995�.
37 B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 �1993�.
38 J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P.

Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14,
2745 �2002�.

39 E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J. M.
Soler, Phys. Status Solidi B 215, 809 �1999�.

40 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.

41 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996�.

42 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 8, 5747 �1973�.
43 J. Zhong and G. M. Stocks, Nano Lett. 6, 128 �2006�.
44D�E , t� is calculated slightly above the Fermi energy in order to

avoid the numerical difficulties at E=EF, where a band edge
occur.

45 X. Zhao, C. M. Wei, L. Yang, and M. Y. Chou, Phys. Rev. Lett.
92, 236805 �2004�.

46 The calculated band gap is larger than found in Ref. 50 for a
similar structure using a plane-wave DFT method. The band gap
reduces to 	1.66 eV when using a double-� polarized basis set,
in qualitiative agreement with the plane-wave results of Ref. 50
�the residual difference must be attributed to the slight differ-
ences in the wire structures�.

47 S. Ismail-Beigi and T. Arias, Phys. Rev. B 57, 11923 �1998�.
48 Y. Zhao and B. I. Yakobson, Phys. Rev. Lett. 91, 035501 �2003�.
49 R. Rurali and N. Lorente, Nanotechnology 16, S250 �2005�.
50 A. K. Singh, V. Kumar, R. Note, and Y. Kawazoe, Nano Lett. 6,

920 �2006�.

ELECTRONIC TRANSPORT THROUGH Si NANOWIRES:… PHYSICAL REVIEW B 74, 245313 �2006�

245313-11


