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The bilayer quantum Hall system �BLQH� differs from its single layer counterparts �SLQH� by its symmetry
breaking ground state and associated neutral gapless mode in the pseudospin sector. Due to the gapless mode,
qualitatively good ground-state and low energy excited-state wave functions at any finite distance are still
unknown. We investigate this important open problem by the composite boson �CB� theory developed by one
of the authors to study BLQH systematically. We derive the ground state, quasihole, and a pair of quasihole
wave functions from the CB theory and its dual action. We find that the ground-state wave function is the
product of two parts, one in the charge sector which is the well known Halperin �111� wave function and the
other in the spin sector which is nontrivial at any finite d due to the gapless mode. So the total ground-state
wave function differs from the well known �111� wave function at any finite d. In addition to commonly known
multiplicative factors, the quasihole and a pair of quasihole wave functions also contain nontrivial normaliza-
tion factors multiplying the correct ground state wave function. We expect that the quasihole and pair wave
function not only has logarithmically divergent energy and well localized charge distribution, but also correct
interlayer correlations. All the distance dependencies in all the wave functions are encoded in the spin part of
the ground-state wave function. The instability encoded in the spin part of the ground-state wave function leads
to the pseudo-spin-density wave proposed by one of the authors previously. Some subtleties related to the
Lowest Landau Level �LLL� projection and shortcomings of the CB theory are also noted.
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I. INTRODUCTION

The wave function approach has been very successfully
applied to study single layer quantum Hall �SLQH� systems
at Laughlin series �= 1

2k+1
1 and Jain series at �= p

2sp±1 .2 One
of main reasons for the success of the wave function ap-
proach in SLQH is that there is a gap in the bulk, suitable
wave functions1,2 can describe both the ground-state and low
energy excitations quite accurately. Its accuracy can be
checked easily by exact diagonalization in a finite size sys-
tem whose size need only go beyond a few magnetic lengths.
Spherical geometry can be used to get rid of edge state ef-
fects quite efficiently. In general, trial wave function ap-
proach is very robust to study SLQH and multi component
systems as long as there is a gap in the bulk. The gap protects
the many properties of the system such as charge density
distributions and energies from being sensitive to some
subtle details of wave functions.

However, the situation could be completely different in
the spin-polarized bilayer quantum Hall system �BLQH� at
total filling factor �T=1. This system has been under enor-
mous experimental and theoretical investigations over the
last decade.3 When the interlayer separation d is sufficiently
large, the bilayer system decouples into two separate com-
pressible �=1/2 layers.4 However, when d is smaller than a
critical distance dc1, even in the absence of interlayer tunnel-
ing, the system undergoes a quantum phase transition into a
novel spontaneous interlayer coherent incompressible phase
which is an excitonic superfluid state �ESF� in the pseu-
dospin channel.5–7 In Ref. 10, Halperin proposed the �111�
wave function to describe the ground state of the ESF state.

Starting from the �111� wave function, using various meth-
ods, several authors11 discovered a neutral gapless mode
�NGM� with linear dispersion relation ��vk and that there
is a finite temperature Kosterlitz-Thouless �KT� phase tran-
sition associated with this NGM. By treating the two layer
indices as two pseudo-spin indices, Girvin, Macdonald, and
collaborators mapped the bilayer system into an easy plane
quantum ferromagnet �EPQFM�3,12 �which is equivalent to
the ESF� and explored many rich and interesting physical
phenomena in this system.

As pointed out in Ref. 12, the �111� wave function may
not be qualitatively good at finite d, because �111� is a bro-
ken symmetry state in a direction in XY plane of isotropic
ferromagnet at d=0 instead of a easy-plane ferromagnet at
finite d. The NGM is a hallmark of the interlayer coherent
quantum Hall state. Its existence is expected to dramatically
alter the properties of the wave functions of the ground state,
quasihole and quasiparticle. In Ref. 13, Jeon and one of the
authors studied properties of essentially all the known trial
wave functions of ground state and excitations in bilayer
quantum Hall systems at the total filling factor �T=1. The
results indicated that qualitatively good trial wave functions
for the ground state and the excitations of the interlayer co-
herent bilayer quantum Hall system at finite d are still not
available and searching for them remains an important open
problem. Specifically, they investigated the properties of the
quasihole wave function, meron wave function and a pair of
meron wave function built on the �111� state which have
superscripts “prime” in this paper:

�qh� = ��
i

N1

zi��111,
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�meron� = ��
i

N1 zi

�zi�
��111,

�pair� = �
i

N1

�zi − z0��
i

N2

�wi − w0��111, �1�

where �111 is the Halperin’s �111� wave function:

�111�z,w� = �
i�j

N1

�zi − zj��
i�j

N2

�wi − wj��
i=1

N1

�
j=1

N2

�zi − wj�

�exp�−
1

4l0
2�

i

�zi�2 + �wi�2� , �2�

where N1=N2=N in the balanced case and z and w are the
coordinates in layer 1 and layer 2, respectively. In the fol-
lowing, we suppress the exponential factor.

These quasihole and meron wave functions differ only by
“normalization factors.” As shown in Ref. 13, the normaliza-
tion factor �zi� is accurate only at long distance limit
�zi � →� limit. Near the origin, the “meron” and the “quasi-
hole” have similar behaviors. Normalization factors have
been shown not to be important in single layer quantum Hall
systems. However, as shown in Ref. 13, they make a dra-
matic difference in the BLQH. Although the smallest meron
has a localized charge 1/2 and logarithmically divergent en-
ergy, the charge of the quasihole excitation extends over the
whole system and its energy also diverges linearly as the area
of the system size. This indicates that the quasihole wave
function is not a good trial wave function for any low energy
excitations. The meron wave function is not a good trial
wave function either, because it ignores the strong interlayer
correlations.13 It was found the energy of the possible wave
function of a pair of merons in Eq. �1� increases quadrati-
cally ��z0−w0�2 instead of logarithmically as the separation
of the pair increases. All the results achieved in Ref. 13 in-
dicate that qualitatively good trial wave functions in the in-
terlayer coherent bilayer quantum Hall system at finite d,
both for ground state and excitations, are still unknown and
searching for them remains an important open problem.
Therefore the wave function approach to BLQH is much
more difficult and far less powerful in BLQH than in SLQH.
Fortunately, effective theory approaches such as the EPQFM
approach12,3 and composite boson theory approach11,12,14–16

circumvent this difficulty associated with the unknown wave
function at any finite d and are very effective to bring out
most of the interesting phenomena in the pseudospin sector
in this system. In fact, all these effective theories start from
the insights gained from Halperin’s �111� wave function
which is exact at d=0.

In a series of papers,14–16 one of the authors developed a
systematic composite boson approach to study balanced and
imbalanced bilayer quantum Hall systems in rather details.
The theory puts spin and charge degree freedoms in the same
footing, explicitly bring out the spin-charge connection and
classify all the possible excitations in a systematic way. Then
He pushed the theory further to understand novel phases and
quantum phase transitions as the distance between the two

layers is changed. He found that starting from the well stud-
ied excitonic superfluid �ESF� state, as distance increases,
the instability driven by magnetoroton minimum collapsing
at a finite wavevector in the pseudospin channel leads to the
formation of a pseudo-spin-density wave �PSDW� at some
intermediate distances. He constructed a quantum Ginsburg-
Landau theory to study the transition from the excitonic su-
perfluid �ESF� to the PSDW and analyze in detail the prop-
erties of the PSDW. He showed that a square lattice is the
favorite lattice and the correlated hopping of vacancies in the
active and passive layers in the PSDW state leads to very
large temperature-dependent drag observed in the experi-
ment. In the presence of disorders, the properties of the
PSDW are consistent with all the experimental
observations6,8 in the intermediate distances. Further experi-
mental implications of the PSDW are given. Then he ex-
tended the composite boson theory to study slightly imbal-
anced BLQH. In the global U�1� symmetry breaking
excitonic superfluid side, as the imbalance increases, the sys-
tem supports continuously changing fractional charges. In
the translational symmetry breaking excitonic solid side,
there are two quantum phase transitions from the commen-
surate excitonic solid to an incommensurate excitonic solid
and then to the excitonic superfluid state. These results ex-
plained the experimental observations in Ref. 9 very nicely.
The author found that the theory can be easily extended to
study some additional interesting phenomena in trilayer
quantum Hall systems.17 It was concluded in Ref. 16 that
field theory approaches are much more powerful in BLQH
than in SLQH.

Obviously, the CB theory circumvent this difficulty asso-
ciated with the unknown wave function at any finite d and is
used to achieve all these interesting and important results at
two different distance regimes without knowing the precise
wave functions for the ground state and excitations. It would
be interesting to use the CB theory to address the important
and outstanding problem avoided in Ref. 13 and in all the
other pervious work that finding the good ground state and
low energy excited wave function for BLQH at any finite d.
In SLQH, the CB theory developed in Ref. 18 was used to
rederive the already well known Laughlin wave functions for
ground state and quasihole at �= 1

2k+1 . As said previously, the
gap in the bulk protects the properties of the system such as
charge density distributions and energies from being sensi-
tive to some subtle details of wave functions. Here we are
facing a more difficult and interesting task: to derive these
unknown wave functions at finite d.

The rest of the paper is organized as follows. In Sec. II, in
order to be self-contained, we review briefly the CB ap-
proach and its dual action developed in Ref. 16 which are
needed to derive the wave functions in the following sec-
tions. In Sec. III, using the formalism presented in Sec. II, we
derive the ground state wave function which is different from
the �111� wave function at any finite d. In Sec. IV, using the
dual action presented in Sec. II, we derive the quasihole
wave function and compare it with the quasihole and meron
wave functions built on the �111� wave function listed in Eq.
�1�. In Sec. V, we derive a pair of meron wave functions with
charge 1 and compare it with the pair meron wave function
built on �111� listed in Eq. �1�. In Sec. VI, we look at the
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instability in the ground state wave function as distance ap-
proaches dc1. Finally, we reach conclusions in Sec. VII.
Some caveats related to the lowest Landau level �LLL� pro-
jection of the wave functions are also pointed out. We note
that there is also an alternative approach in Ref. 19.

II. COMPOSITE BOSON APPROACH AND ITS DUAL
ACTION IN BLQH

In this section, we briefly review the formalism developed
in Ref. 16 which is needed to derive the wave functions in
the following sections. Consider a bi layer system with N1
�N2� electrons in left �right� layer and with interlayer dis-

tance d in the presence of magnetic field B� =��A� �Fig. 1�:

H = H0 + Hint,

H0 =	 d2xc�
†�x��


− i 	 �� +
e

c
A� �x���2

2m
c��x�� ,

Hint =
1

2
	 d2xd2x�
���x��V���x� − x���
���x��� , �3�

where electrons have bare mass m and carry charge −e,
c� ,�=1,2 are electron operators in top and bottom layers,

���x��=c�

†�x��c��x��−n� ,�=1,2 are normal ordered electron
densities on each layer. The intralayer interactions are V11
=V22=e2 /r, while the interlayer interaction is V12=V21
=e2 /�r2+d2, where  is the dielectric constant.

Performing a singular gauge transformation14,16

�a�x�� = eid2x���x�−x�����x���ca�x�� , �4�

where ��x� −x���=arg�x� −x��� is the angle between the vector
x� −x�� and the horizontal axis. ��x��=c1

†�x��c1�x��+c2
†�x��c2�x�� is

the total density of the bilayer system. Note that this trans-
formation treats both c1 and c2 on the same footing. This is
reasonable only when the distance between the two layers is
sufficiently small. It can be shown that �a�x�� satisfies all the
boson commutation relations. We can transform the Hamil-
tonian �3� into the Lagrangian in Coulomb gauge:

L = �a
†��� − ia0��a

+ �a
†�x��


− i 	 �� +
e

c
A� �x�� − 	 a��x���2

2m
�a�x��

+
1

2
	 d2x�
��x��V+�x� − x���
��x��� +

1

2
	 d2x�
�−�x��

�V−�x� − x���
�−�x��� −
i

2�
a0�� � a�� , �5�

where V±=
V11±V12

2 and V11=V22= 2�e2

q ,V12= 2�e2

q e−qd. The
Chern-Simon gauge field is a� =d2r�����x� −x�����x���

=d2r��
ẑ��x�−x���

�x�−x���2
��x���.

In the Coulomb gauge, integrating out a0 leads to the
constraint ��a� =2��a

†�a. Note that if setting V−=0, then

the above equation is identical to a single layer with spin in
the absence of Zeeman term, so the Lagrangian has a SU�2�
pseudospin symmetry. The V− term breaks the SU�2� sym-
metry into U�1� symmetry. In the BLQH at finite d, V−�0,
so the system is in the easy-plane limit.

We can write the two bosons in terms of magnitude and
phase

�a = ��̄a + 
�aei�a. �6�

The boson commutation relations imply that
�
�a�x�� ,�b�x���= i	
ab
�x� −x���. After absorbing the external

gauge potential A� into a� , we get the Lagrangian in the Cou-
lomb gauge

L = i
�+�1

2
���

+ − a0� +
�̄

2m

1

2
� �+ +

1

2
��1 − �2� � �− − a��2

+
1

2

�+V+�q��
�+ −

i

2�
a0�� � a�� +

i

2

�−���

−

+
�̄f

2m
�1

2
� �−�2

+
1

2

�−V−�q��
�− − hz
�−, �7�

where f =4�1�2 which is equal to 1 at the balanced case and
hz=V−�̄−=V−��̄1− �̄2� plays a similar role as the Zeeman
field.

Performing the duality transformation on Eq. �7� leads to
the dual action in terms of the vortex degree of freedoms
J�

v±= 1
2���������±=J�

v1±J�
v2 and the corresponding dual

gauge fields b�
±:

Ld = − i�b�
+�����b�

+ − iAs�
+ �����b�

+ + i�b�
+J�

v+

+
m

2�̄f
���b0

+ − �0b�
+�2 +

1

2
�� � b�+�V+�q���� � b�+�

− iAs�
− �����b�

− + i�b�
−J�

v− − hz�� � b�−� +
m

2�̄f
���b0

−

− �0b�
−�2 +

1

2
�� � b�−�V−�q���� � b�−� −

m

�̄f
��1 − �2����b0

−

− �0b�
−����b0

+ − �0b�
+� , �8�

where As�
± =As�

1 ±As�
2 are the two source fields. It is useful to

stress that the dual CS term only appears in the charge sector.
For simplicity, we only consider the balanced case. Put-

ting �1=�2=1/2 and hz=0 into Eq. �7�, we get the Lagrang-
ian in the balanced case where the symmetry is enlarged to
U�1�L�U�1�G�Z2.

III. GROUND STATE WAVE FUNCTION

In this section, we derive the ground state wave function
from the formalism reviewed in the last section. From Eq.
�7�, we can find the corresponding Hamiltonian in the charge
sector
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Hc =
1

2�
q

4�+�− q���V+�q� +

4�2�̄

m

1

q2��+�q��

+
�̄q2

4m
�+�− q���+�q��� , �9�

where �+�q��=
�+ /2 and ��+�q�� ,�+�q����= i	
�q� +q���.
Representing �+�q�� by −i �

��+�−q�� , in the long wavelength

limit, neglecting the Coulomb interaction V+�q��1/q which
is less singular than 1/q2, we find the ground-state wave
function in the charge sector:

�c0
b ��+�q��� = exp
−

1

2�
q

2�

q2 
�+�− q��
�+�q��� . �10�

In the following, we use x� to stand for the complex coor-
dinate x+ iy. Using 
�+�x�=�
�x−zi�+�
�x−wi�− �̄ and
transforming to the position space, it is simply the modulus
of the �111� wave function in the balanced case �c0

b

= ��111�. This is the wave function in the bosonic picture. In
order to get the wave function in the original fermionic pic-
ture, we need to perform the inverse of the SGT in Eq. �4� on
the bosonic wave function. In the first quantization form, the
inverse is

U0 = �
i�j

N1 �zi − zj�
�zi − zj�

�
i�j

N2 �wi − wj�
�wi − wj�

�
i=1

N1

�
j=1

N2 �zi − wj�
�zi − wj�

. �11�

Performing the inverse transformation on the modulus leads
to the �111� wave function in the fermionic coordinates

�c0 = U0�c0
b = �111�z,w� . �12�

In contrast to the SLQH, there is also an additional pseu-
dospin sector in the BLQH which contains the most interest-
ing physics. From Eq. �7�, we can find the corresponding
Hamiltonian in the spin sector is

Hs =
1

2�
q

4V−�−�− q���−�q�� +

�Eq2

4
�−�− q���−�q��� ,

�13�

where �−�q��=
�− /2 and ��−�q�� ,�−�q����= i	
�q� +q���; �E

= �̄ /m is the spin stiffness.21 At small q, V−�q�=a−bq+cq2,21

where a�d2 ,b�d2 and c remains a constant at small
distances.12,16 It is important to stress that this form of V−�q�
has the shape displayed in Fig. 1, it not only has a phonon
part near q=0, also has a roton part near q=q0�1/ lB, where
lB is the magnetic length.

Representing �−�q�� by −i �
��−�−q�� , we find the ground-state

wave function in the spin sector

�s0��−�q��� = exp
−
1

2�
q

�V−�q�/�E

q

�−�− q��
�−�q��� .

�14�

It is easy to see that the above equation make senses only
when V−�q� is positive for all q.

At d=0, a=b=0, V−�q�=cq2, then Eq. �14� becomes

�s0��−�q��;d = 0� = exp
−
1

2�
q

�c/�E
�−�− q��
�−�q���
= const. �15�

At any finite distance, as long as d�dc1� lB in Fig. 1, so
the roton has a large gap, we can neglect the contributions
from the roton part in Fig. 1 and only focus on the phonon
contributions. In the long wavelength limit q�q0�1/ lB,
V−�q�→a�d2. Using 
�−�x�=�
�x−zi�−�
�x−wi� and
transforming to the coordinate space, it is

�s0�z,w� = exp
− 2�1/�E��
i�j

d

�zi − zj�
− �

i,j

d

�zi − wj�

+ �
i�j

d

�wi − wj�
�� . �16�

Obviously, the above equation only holds at small distance
d�dc1 and in the long distance limit �zi−wj � � lB.22 The total
wave function is

�0�z,w� = �111�z,w��s0�z,w� . �17�

It is easy to see that the total wave function coincides with
the �111� wave function only in d→0 limit. At any finite d,
it has an extra factor from the gapless spin sector �s0�z ,w�.
Note that this extra spin factor Eq. �16� is not in the LLL,
this should not be too worrisome, because similar to the
meron wave function listed in Eq. �1�, modulus of the coor-
dinates could appear in the long distance limit where Eq.
�16� hold.

IV. QUASIHOLE WAVE FUNCTIONS

By inserting one static vortex at the origin in layer 1 by
setting J0

+v=J0
−v=
�x� or layer 2 by setting J0

+v=−J0
−v=
�x�,

from the dual action Eq. �8�, we will first try to derive the
quasihole wave function and compare it with the known
quasihole wave function and meron wave function written
down in Ref. 13

In order to derive the quasihole wave function, we have to
resort to the dual action Eq. �8� in the balanced case where
the last term vanishes. Setting the two sources As�

± =0, in the
Coulomb gauge �b�

± =0, Eq. �8� becomes

Ld = − i2�b0
+����b�

+ + i�b0
+J0

v+ + i�b�
+J�

v+ +
m

2�̄
���b0

+�2

+
m

2�̄
��0b�

+�2 +
1

2
�� � b�+�V+�q���� � b�+�

+ i�b0
−J0

v− + i�b�
−J�

v− +
m

2�̄
���b0

−�2 +
m

2�̄
��0b�

−�2

+
1

2
�� � b�−�V−�q���� � b�−� . �18�

Note the absence of CS term in the spin sector.
We only consider static vortices, so J�

v+=J�
v−=0. Integrat-

ing out b0
+ and b0

− and transforming into the coordinate space
lead to
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Ld = −
1

4�

�̄

2m
��J0

v+ − 2��,���b�
+�ln�x − y���J0

v+

− 2��,���b�
+� +

m

2�̄
��0b�

+�2 +
1

2
�� � b�+�V+�q���� � b�+�

+
m

2�̄
��0b�

−�2 −
1

4�

�̄

m
��J0

v−�ln�x − y���J0
v−�

+
1

2
�� � b�−�V−�q���� � b�−� �19�

The corresponding Hamiltonian is

H =
1

2

�̄

m
q2�+�− q���+�q�� +

1

2

�̄

m
��J0

v+�− q��

− 4��+�− q���
1

q2 ��J0
v+�q�� − 4��+�q��� + 2�+�− q��

V+�q���+�q�� +
1

2

�̄

m
q2�−�− q���−�q�� +

1

2

�̄

m
��J0

v−�− q���

�
1

q2 ��J0
v−�q��� +

1

2
�−�− q��V−�q���−�q�� , �20�

where ��±�q�� ,�±�q����= i	
�q� +q���.
From the above Hamiltonian in the bosonic representa-

tion, we can see the charge sector and spin sector remain
decoupled.20 Due to the absence of the CS term in the spin
sector, the inserted vortex only shifts the total density vari-
able in the charge sector, but does not couple to the relative
density in the spin sector, so the Hamiltonian in the spin
sector remains the same as the ground state one Eq.�13�, the
corresponding wave function remains the same as the ground
state one in the spin sector Eq. �14�. All the effects of the
inserted vortex are encoded in the charge sector. Again, ne-
glecting the Coulomb interaction V+�q� in the long wave-
length limit, we find that the wave function in the charge
sector is

�cqh
b = exp
1

2�
q
�1

2
J0

v+�− q�� − 
�+�− q����−
2�

q2 �
��1

2
J0

v+�q�� − 
�+�q���� . �21�

Transforming to the coordinate space and setting J0
v+�x�

=J0
v−�x�=−
�x�20 lead to

�cqh
b = exp� 1

2
	 dxdy
1

2

�x�� + ��

i


�x� − zi�

+ 
�x� − wi� − �̄��ln�x − y�
1

2

�y�� + ��

i


�y� − zi�

+ 
�y� − wi� − �̄���

= �
i

N1

�zi�
1
2�

i

N2

�wi�
1
2�

i=1

N1

�
j=1

N2

�zi − wj��
i�j

N1

�zi − zj��
i�j

N2

�wi − wj� .

�22�

The SGT for the quasihole could be different from that for
the ground state. If one inserts a vortex at the origin at the
layer 1 in the boson Lagrangian �5�, in order to recover the
original electronic Hamiltonian �3�, U0 in Eq. �11� is needed
to remove the CS term, an additional SGT Uv1 is needed to
remove the effects of the inserted vortex. In the first quanti-
zation, it is easy to show that23

Uv1 = ei�i
arg�zi/�zi�� = e�i

ln�zi/�zi�� = �
i

zi

�zi�
. �23�

The total SGT for the quasihole at the layer 1 is Uqh
=U0Uv1.

Performing the SGT on Eq. �22�, we get the quasihole
wave function

�qh�z,w� = ��
i

N1

zi��
i
�wi

zi
�1/2

�0�z,w� , �24�

where �0�z ,w� is the ground-state wave function �17� and
N1=N2=N in the balanced case. Note that there is no singu-
larity at the origin.

Note that even in the d→0 limit, Eq. �24� differs from
both the quasihole and the meron wave function listed in Eq.
�1�. This should not cause any problem. It is known that
�111� wave function is the exact wave function in the d→0
limit. But both the quasihole and the meron wave function
listed in Eq. �1� make sense only at finite distances. It is
known that the lowest energy excitation at d=0 is a skymion
carrying charge 1, while the quasihole and the meron carry
total charge 1/2, so they are not valid excitations anymore at
d=0. We conclude the quasihole Eq. �24� make sense only at
finite d. It is not interesting to take d→0 limit to this
equation.24

Compared to the quasihole and the meron wave function
listed in Eq. �1�, we can see that there are two modifications
in the Eq. �24�: �1� The ground-state wave function is the
correct one Eq. �17� instead of the �111� wave function. �2�
The prefactor is different from both the quasihole and the
meron. We expect this prefactor takes care of the strong in-
terlayer correlations. All the wave functions in Eq. �1� are
built upon the �111� wave function. As suggested in Ref. 13
and explicitly shown in this paper, the �111� wave function is
not even qualitatively correct at any finite d. As shown in
Ref. 13, although prefactors are not important in SLQH due
to the gap in the bulk, they maybe crucial in BLQH due to
the gapless mode in the interlayer correlations. The two fac-
tors maybe responsible for the quasihole’s charge distribu-
tion spreading over the whole system and its energy diverges
linearly with the area of the system. Although, the meron
wave function’s energy is only logarithmically divergent, it
ignores the strong interlayer correlations, so it is not a good
trial wave function either. We propose that the quasihole
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wave function Eq. �24� not only has logarithmically diver-
gent energy, well localized charge distribution, but also cor-
rect interlayer correlations.

V. A PAIR OF QUASIHOLE EXCITATIONS WITH
CHARGE 1

Now we put two vortices into the BLQH system. One is
on the top layer at z0 and the other is on the bottom layer at
w0. The only change from the quasi-hole calculation in the
last section is J0

v±=
�x� −z0�±
�x� −w0�.20 Again, due to the
lack of the CS term in the spin sector, the Hamiltonian in the
spin sector remains the same as the ground state Eq. �13�, so
the wave function is not affected at all by the insertion of the
two vortices and remains the same as the ground state one in
the spin sector Eq. �14�. All the effects of the inserted two
vortices are encoded in the charge sector. The wave function
in the charge sector in the bosonic picture is

�c1
b = exp�1

2
	 dxdy
1

2
�
�x� − z0� + 
�x� − w0�� + ��

i


�x�

− zi� + 
�x� − wi� − �̄��ln�x − y���
1

2
�
�y� − z0� + 
�y�

− w0�� + ��
i


�y� − zi� + 
�y� − wi� − �̄��� = �
i

N1

�zi

− z0�1/2�
i

N1

�zi − w0�1/2�
i

N2

�wi − z0�1/2�
i

N2

�wi − w0�1/2. �25�

It is easy to see that in the bosonic picture, the above
wave function in the charge sector is symmetric under
zi↔wi or z0↔w0 separately. This is under expectation, be-
cause the two layers are completely symmetric in the charge
sector.

Just as Uv1 is derived for the quasihole, we can get Uv2
for a pair of vortices inserted at z0 in top layer and w0 at the
bottom layer:

Uv2 = �
i
� zi − z0

�zi − z0��� wi − w0

�wi − w0�� . �26�

The total SGT for the meron pair is Upair=U0Uv2.
Performing the SGT on Eq. �25�, we get the wave func-

tion for a pair of quasihole

�pair�z,w;z0,w0� = ��
i

�zi − z0��wi − w0�

��
i
� �zi − w0��wi − z0�

�zi − z0��wi − z0�
�1/2

�0�z,w�� ,

�27�

where �0�z ,w� is the ground state wave function �17� and
N1=N2=N in the balanced case. Note that the pair wave
function is not symmetric under zi↔wi or z0↔w0 separately
anymore. This is because the SGT Uv2 Eq. �26� is not. Of
course, it is still symmetric under zi↔wi ,z0↔w0 simulta-
neously.

If we insert the two vortices at the same point, namely,
putting z0=w0=0 in the above equation, as expected, we get

�pair�z,w,0� = ��
i

ziwi��0�z,w� . �28�

This corresponds to insert a single vortex through the two
layers. In contrast to the quasihole excitation Eq. �24�, Eq.
�28� carries charge 1 and remains a valid wave function even
at d=0. Indeed, in the d→0 limit, it recovers the meron pair
wave function listed in Eq. �1�. If one splits the whole vor-
tex, it will evolve into the pair wave function Eq. �27�.

The pair meron wave function built on �111� is listed in
Ref. 1 �essentially Eq. �110� in Ref. 10��. It was shown that
its energy Epair��z0−w0�2 instead of logarithmically as na-
ively expected, because the charges are extended between z0
and w0. Similar to the quasihole wave function Eq. �24�,
there are two modifications in the Eq. �27�. �1� The ground
state wave function is the correct one �Eq. �17��. �2� The
prefactor is different. We expect this prefactor takes care of
the strong interlayer correlations between the two vortices,
the pair wave function not only has logarithmically divergent
energy, well localized charge distribution, but also correct
interlayer correlations.

VI. INSTABILITY IN THE WAVE FUNCTION AS THE
DISTANCE INCREASES

When the distance is sufficiently small, the BLQH is in
the ESF phase, we expect the ground state, quasihole, and
pair wave functions Eqs. �17�, �24�, �27� only hold in the
ESF phase. When the distance becomes sufficiently large, the
two layers become two weakly coupled Fermi liquid �FL�
layers. All these wave functions completely break down. A
new set of wave functions are needed. Although the ESF
phase and FL phase at the two extreme distances are well
established, the picture of how the ESF phase evolves into
the two weakly coupled FL states was not clear, namely, the
nature of the intermediate phase at dc1�d�dc2 was still
under debate. Recently, starting from the well studied exci-
tonic superfluid �ESF� state, as distance increases, one of the
authors found14 that the instability driven by magnetoroton
minimum collapsing at a finite wavevector in the pseudospin
channel leads to the formation of a excitonic normal solid
�PSDW� at some intermediate distances. He constructed a
quantum Ginsburg-Landau theory to study the transition
from the ESF to the PSDW and analyze in detail the proper-
ties of the PSDW. He showed that a square lattice is the
favorite lattice.

As shown in Ref. 14, it is the original instability in
V−�q�=a−bq+cq2 which leads to the magneto-roton mini-
mum in Fig. 1�a�. By looking at the two conditions

V−�q���q=q0
=0 and

dV−�q��

dq �q=q0
=0, it is easy to see that V−�q�

indeed has the shape shown in Fig. 1�b�. When b�d2�bc

=2�ac�d, the minimum of V−�q� at q=q0=�a /c�d has a
gap, the system is in the ESF state, this is always the case
when the distance d is sufficiently small. However, when b
=bc, the minimum collapses and S�q� diverges at q=q0,
which signifies the instability of the ESF to an exciton nor-
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mal solid �PSDW� formation. When b�d2�bc=2�ac�d,
the minimum drops to negative, the system gets to the
PSDW state, this is always the case when the distance d is
sufficiently large.

We can easily see the instability from the ground-state
wave function �17�. The only distance dependence in the
charge sector is encoded in the V+�q� in the bosonic Hamil-
tonian in the charge sector Eq. �9�, but this dependence is
ignored in the �111� wave function in the charge sector. The
d dependence in V+ is smooth anyway. Essentially all the
distance dependence is encoded in the ground-state wave
function in the spin sector Eq. �14�. As can be seen from Fig.
1, the instability happens at q=q0, where V− becomes nega-
tive, but the spin stiffness �E remains noncritical through the
ESF to PSDW transition. As d→dc1

− , the sum over q in Eq.
�14� becomes dominated by the regime q�q0. When dc1
�d�dc2, Eq. �14� breaks down. A new wave function to
describe the translational symmetry breaking PSDW state is
needed. Some trial wave functions are proposed in Ref. 25. It
would be interesting to derive the new wave function of the
PSDW state from the CB theory.

VII. CONCLUSIONS

BLQH differs from the SLQH by its symmetry breaking
ground state and associated neutral gapless mode in the pseu-
dospin sector. Due to the gapless mode in the bulk, the
groundstate wave functions could be considerably different
from the well known �111� wave function.12,13 The low en-
ergy excited states could also be sensitive to details such as
normalization factors. One important problem is to find good
trial wave functions for the ground state and low energy
excited states. We investigated this important open problem
from the CB theory developed previously in Refs. 14 and 16
to study BLQH systematically. We derived the ground state,

quasihole and a pair of quasihole wave functions from CB
theory and its dual action by the following procedures: We
first performed the singular gauge transformation Eq. �4� to
transform a fermionic problem into a bosonic problem, then
found that all the wave functions in the bosonic picture are
always the product of two parts, one part in the charge sector
and the other in the spin sector. All the distance dependence
are encoded in the spin part, while all the excitations only
happen in the charge sector. After transforming back to the
original electron picture by proper inverse SGT’s, we get the
final wave functions in the electron coordinates. We found
that the inverse SGT’s are different in the ground state,
meron, and a pair of merons. By considering the differences
carefully, we derived all these wave functions in the original
electronic picture a systematical way.

At any finite d, the ground state wave function in the
charge sector is the same as the �111� wave function, while
that in the spin sector is highly nontrivial due to the gapless
mode. So the total groundstate wave function differs from
the well known �111� wave function at any finite d. In the
bosonic picture, when inserting vortices in the ground state,
the spin part remains the same due to the lack of CS term in
this sector, while the charge part changes accordingly. How-
ever, due to the insertion of vortices, in order to recover the
original electronic problem, the inverse SGT differs from
that in the ground state. After transforming back to the origi-
nal electron problem by the inverse SGT’s, we showed that
the quasihole and a pair of quasihole wave functions contain
nontrivial normalization factors as shown in Refs. 24 and 25.
We expect that the quasihole and pair wave function not only
has logarithmically divergent energy, well localized charge
distribution, but also correct interlayer correlations. It is im-
portant to test these trial wave functions by QMC simula-
tions performed in Ref. 13 for the states listed in Eq. �1�. We
also investigated the instability encoded in the spin sector
which leads to the PSDW solid formation proposed in Refs.
14 and 16. Because the CB field theory has been used to
describe the trilayer quantum Hall systems very successfully,
the analysis in this paper can be easily extended to derive the
wave functions in the TLQH.17

It is well known that CB approach is not a Lowest Landau
Level �LLL� approach,12,16 it is very difficult to incorporate
the LLL projection into the CB approach. This may be par-
tially responsible for the spin part of the ground state wave
function �16� not in the LLL level. But as explained below
Eq. �17�, this should not be too worrisome, because Eq. �16�
works only in long distance anyway. As shown in Ref. 13
and listed in Eq. �1�, in the long wavelength limit, the meron
wave function’s normalization factor contains modulus
which is not in the LLL either. How to get precise short
distance behaviors of these wave functions from the CB
theory remains an open problem.
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FIG. 1. The zero temperature phase diagram in the balanced
case as the distance between the two layers increases. ESF where
����0, �nG� �=0 stands for excitonic superfluid PSDW, where ���
=0, �nG� ��0 stands for excitonic normal solid phase, and FL stands
for Fermi Liquid. �a� Energy dispersion relation ��q� in these
phases. �b� V−�q� in these phases. The cross in the PSDW means the
negative minimum value of V−�q� is replaced by the PSDW. The
two order parameters were defined in Ref. 16. In reality, the insta-
bility happens before the minimum collapses.
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