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A quantum theory of single-electron tunneling through a quantum dot �QD�, doped with a Mn2+ ion and
weakly coupled to ferromagnetic �FM� leads in the Coulomb blockade regime, is developed using the sequen-
tial tunneling approach and assuming that spin flips do not occur. It predicts a spin-injection-induced magne-
tization and a spin-dependent current. The spin polarization of the current and the tunneling magnetoresistance
�TMR� can be well controlled by a bias voltage and strongly enhanced by the electron-Mn exchange interaction
and the spin selectivity of the leads. An appropriate choice of these parameters yields a highly polarized current
even when the FM source is not 100% polarized. Analytical expressions for the magnetization, spin-dependent
current, spin polarization, and the TMR are derived for zero magnetic field. When the QD is subjected to a
strong magnetic field, the numerical calculations predict an oscillatory behavior of the TMR as a function of
the bias voltage.
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I. INTRODUCTION

Studying single electron tunneling through a quantum dot
�QD� reveals a series of fascinating phenomena, such as,
charging effects,1 Coulomb blockade �CB�,2–4 spin blockade
�SB�,5 voltage-controlled spin polarization,6 tunneling
magnetoresistance �TMR�,7 quantum tunneling of mag-
netization,8 and Kondo effects.9 With the development of
magnetic nanostructures, such as diluted magnetic semicon-
ductor quantum dots �DMSQD�, the control of spin-related
phenomena on a nanoscale becomes possible.10–31An ability
to incorporate a few magnetic Mn2+ ions into a controlled
electronic environment, such as a self-assembled QD with
tunable number of carriers, would make an important break-
through in spintronics devices because it allows one to
manipulate and detect individual spins, which plays a
crucial role in spintronics and quantum information
processing.6,17–19

Recently QDs with a single magnetic ion have been
realized.12–15 Optical emission spectra from single Mn2+

ion-doped II-VI QD �SMNQD� reveal the zero-field spin
splitting of the exciton-Mn hybridized states due to the
sp-d exchange interaction.12–15 Moreover, the transport mea-
surement through a DMSQD exhibits the splitting of the cur-
rent even in the absence of an external magnetic field.21

These electron-Mn exchange interaction induced energy
splittings allow one selectively to bring the spin-up or spin-
down state into resonance in transport measurement, result-
ing in a suppression of undesired spin channel and a dra-
matic enhancement of the transmission probability of the
desired spin species.6,21 Hence, DMSQDs can be operated as
voltage-controlled spin filters to selectively inject carriers of
desired spin into semiconductors from a ferromagnetic
lead.6,21 Moreover, this spin-dependent transport can be fur-
ther tuned by the magnetization of the leads7,28–31 and an
external magnetic field.4,29–32 Then a desired spin polariza-
tion of the current can be achieved by an appropriate choice
of bias voltage, quantum confinement �0, Mn2+ ion posi-
tions, magnetization of the leads, and external magnetic field.

The facts and considerations mentioned above motivated
us to develop a comprehensive theory of spin-dependent
transport through a SMNQD weekly coupled to the leads, in
the presence or absence of an external magnetic field, using
the sequential tunneling approach and assuming that spin
flips do not occur. The paper is organized as follows. In Sec.
II we present the model of the Mn2+ ion-doped QD, in Sec.
III various results, and in Sec. IV concluding remarks.

II. THEORETICAL MODEL

We study the transport properties of a Mn2+ ion-doped
two-dimensional quantum dot weakly coupled to two reser-
voirs by tunneling barriers, as shown in Fig. 1, in the stan-
dard tunneling Hamiltonian approach. The Hamiltonian of
the system is given by a sum of a reservoir and dot Hamil-
tonians and a tunneling term. The latter describes the transfer
of electrons from the reservoir, where the Coulomb interac-
tion between the electrons is effectively screened �metallic
regime�, to the quantum dot, where the Coulomb interactions
between electrons and the electron-Mn2+-ion exchange inter-

FIG. 1. �Color online� Geometry of a single-electron transistor
�SET� composed of a left ferromagnetic lead, a Mn2+ ion-doped
QD, and a right ferromagnetic or normal-metal lead. The orienta-
tions of the magnetization in the leads, indicated by the inclined
�yellow� arrows, can be controlled independently. The spin of the
Mn2+ ion is indicated by the white arrow, that of the electrons by
the blue arrows, and the electron tunneling by the curved arrows.
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action are most important. To enhance the spin-dependent
transport, we use a small QD doped by a paramagnetic ion.
Our results are based on features of the few-particle eigen-
states of the dot Hamiltonian operator, which describes inter-
acting electrons and exchange interaction between electrons
and a magnetic ion in a parabolic confinement potential sub-
jected to a perpendicular magnetic field B. Transport through
such a QD occurs when the Fermi energy of the leads is
aligned with one of the discrete energy levels of the confined
region. The full Hamiltonian reads29,30

Ĥ = �
k,�

�k,�âk,�
+ âk,� + �

p,�
�p,�b̂p,�

+ b̂p,� + ĤD + ĤT. �1�

The first and second terms in Ĥ describe the free �L� and
right �R� electrodes, where âk,�

+ �âk,�� creates �destroys� an
electron with momentum k in channel � in the left lead, and

b̂p,�
+ �b̂p,�� operators for electrons in the right lead. The third

term denotes the Hamiltonian of a quantum dot. Following
Ref. 18 we write the many-electron single-Mn Hamiltonian
in second quantization form. Denoting annihilation �creation�
operators for electrons in the single-particle state i by
ci,��ci,�

+ � and spin-raising �-lowering� operators in the Mn2+

ion by M+ ,M−, ĤD can be written as

ĤD = �
i,�

Ei,�ci,�
+ ci,� + �1/2� �

i,j,k,l

���

�i, j�Vee�k,l�ci,�
+ cj,��

+ ck,��cl,�

− �1/2��
i,j

Ji,j�R���ci,↑
+ cj,↑ − ci,↓

+ cj,↓�Mz + ci,↓
+ cj,↑M+

+ ci,↑
+ cj,↓M−� − �BB�

i

�geSz
�i� + gMnMz� . �2�

The first line in Eq. �2� describes the spin-independent
part of the electron Hamiltonian, with Ei,� the kinetic energy
of an electron on the single-particle orbital �i� with spin �
and �i , j �Vee �k , l� two-body Coulomb matrix elements. The
second line describes the interaction of Mn2+ ions with
electrons. The electron-Mn sp-d exchange interaction is

modeled here by a contact ferromagnetic interaction Ĥe-Mn

=−JC
2DM� ·S���r�−R� �, where S� �M� � is electron �Mn� spin, r� �R� �

is electron �Mn� position, and Jc
2D=2Jc /d with Jc the bulk

exchange interaction strength and d thickness of the quantum
dot. In second quantization form, it consists of three terms.
The first term measures difference in spin-up and spin-down
populations and acts as the electron Zeeman energy in the
field of the magnetic ion as well as a source of electron
spin-conserving scattering. The second and third term in-
volve scattering accompanied by flipping of electron spin
compensated by the flipping of Mn spin. The electron-Mn
interaction strength is proportional to the electron-Mn ex-
change matrix elements Jij�R�=JC

2D�i
*�R�� j�R� determined

by the wave function of the two states “i” and “j” at the
position R of the Mn2+ ion. For a small dot, it increases as
V−1, where V is the volume of the QD. Then it can be ma-
nipulated by changing the Mn ion position, modulating the
QD size, and by varying the number of electrons in the QD.
Hence the effect of Mn is to introduce a spin-related disor-

der. The last line in ĤD is the Zeeman energy of the electron
and Mn ion. Here gMn�ge� is the Mn �electron� g factor, �B is
the Bohr magneton, and B the magnetic field along the z
axis.

We consider a quasi-two-dimensional QD with parabolic
confinement, a model suitable for self-assembled QDs.17 The
single-particle states and energies of an electron in such a
QD are those of two coupled harmonic oscillators with quan-
tum numbers n+ and n−, i.e., Ee�n+ ,n−�= �n++1/2��++ �n−

+1/2��− forming twofold electronic shells with �±= ��0
2

+�c
2 /4�1/2±�c /2, n+�n−�=0,1 ,2 , . . .; �0 characterizes the

confining potential and �c is the cyclotron frequency. The
corresponding eigenstates are �n+,n−

�x ,y�=�n+
�x��n−

�y�.9

The lowest three 1D harmonic oscillator states are �0�x��
=e−x�2/4 / �2	l0

2�1/4, �1�x��=x�e−x�2/4 / �2	l0
2�1/4, and �2�x��= �x�2

−1�e−x�2/4 / �8	l0
2�1/4, with x�=x / l0 and l0= ��0�−1/2. Here

length and energy are measured in effective Bohr radius aB
and effective Rydberg �Ry�. The ground state energy is de-
termined by Ee�0,0�= ��++�−� /2. In what follows we adopt
Jc=15 eV Å3, d=2 nm, 
=10.6, m*=0.106, Bohr radius aB
=5.29 nm, Ry=12.8 meV, ge=−1.67, gMn=2.02, applicable
to II-VI �Cd,Mn�Te semiconductor QDs.18,19 The spin-

dependent hybridization ĤT of the QD to the electrodes is
given by

ĤT = �
k,i,�

Tk,i,�
L �âk,�

+ ĉi,� + ĉi,�
+ âk,�� + �

p,i,�
Tp,i,�

R �b̂p,�
+ ĉi,�

+ ĉi,�
+ b̂p,�� , �3�

where Tk,i,�
L/R are the transmission probability amplitudes. We

assume that the electron spin is conserved in the tunneling
process and the QD is weakly coupled to electrodes which
are in thermal equilibrium with the left �L�, right �R� reser-
voirs described by the Fermi-Dirac distributions fL/R�E�= 	1
+exp���E−�L/R��
−1, where E is the difference between the
energy of Ne-particle state i and �Ne−1�-particle state i�. The
Fermi-Dirac distribution function fL/R�E� characterizes the
occupation of electron levels in the left �electrochemical po-
tential �L� and right ��R� reservoir. The transmittance t�

L/R

=2	 �Tk,j,�
L/R �2��

L/R
 /�, is proportional to the square of the
transmission probability amplitude of the barriers, can be
different in the two leads; ��

L/R denotes the electron density of
states with spin � in the L�R� lead and 
 is the volume of the
unit cell. For simplicity, they are assumed to be independent
of energy.

To understand the underlying physics of spin-dependent
tunneling, we introduce t�

L = t0�1+��L� /2 and t�
R=�t0�1

+��R� /2 where �= ±1, the factor �L ��R� describes the spin
selectivity of the contacts between the left �right� lead and
the QD, t0 is a parameter independent of the bias voltage
VSD, and � refers to the asymmetry between the right and left
leads. Further, we assume that the SET is in the strong Cou-
lomb blockade and sequential tunneling regime. Because
of the large Coulomb blockade energy, the population
number Ne of electrons can take on only the values 0 and 1.

For Ne=1, the spin-dependent part of ĤD is given by Ĥspin

=−JssS� ·M� − �geSz+gMnMz��BB, where Jss is the exchange in-
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teraction strength in the electronic s shell. Since �Jz , Ĥspin�
=0, the eigenvalue m of Jz is a good quantum number, with

J� =S� +M� the total spin of the hybrid system. Hence, the

eigenstates of the Hamiltonian Hspin
ˆ , characterized by m, take

the form

�m��±� = am↓
�±��↓��m + 1/2� + bm↑

�±��↑��m − 1/2�; �4�

here �m � �2, am↓
�±�= 	��M +1/2�2−m2� / �2�m��m�m���
1/2,

bm↑
�±�= � �1/�2��1�m� /�m�1/2, and �↑ ���↓ �� is the state of an

electron with spin up �spin down�. The corresponding ener-
gies, in units of Jss, are

E˜�m,�� = �1/2 − 2mgMnB̃ + ��m�/2, �5�

with �= ±1,�m= ��M +1/2�2+m�2−m2�1/2, m�=m+ �ge

−gMn�B̃, and B̃=�BB /Jss. For m= ±3, the energy are given

by E˜�±3�=−�M ± �ge+gMn�B̃� /2 and the corresponding ei-
genvector by �±3�= �±1� �m�1/2�.

The transition rates between the zero-electron �0,Mz� and
one electron �1,m ,�� states of the dot have been calculated

to the lowest order in ĤT. Simultaneous transitions of two or

more electrons are of higher order in ĤT and are neglected.
An electron that enters �leaves� the dot through the left
�right� tunnel barrier induces transitions between the �i� and
�j� states and provides the energy difference �E�m ,��=Ej

−Ei. The matrix elements describing these transitions are

�j�ĉ�
+�i� = am,↓

�±�*��,↓�Mz,m+1/2 + bm,↑
�±�*��,↑�Mz,m−1/2 �6�

For an electron entering the QD, Ei is the Zeeman energy
of magnetic ion, while Ej is the energy of the hybrid system.
The transition matrix accounts for the combination of the
spin of the incoming or leaving electron with the spin of the
initial dot state to the spin of the final dot state and intro-
duces spin selection rules. The magnetic quantum number m
can be changed only by ±1/2 when one electron enters or
leaves the dot. One finds the transition rates � j,i

L/R�� ,��, from
state i to state j in the presence of the coupled magnetic
leads, in the form

� j,i
L/R��,�� = t�

L/R��am,↓
�±�*�2��,↓�Mz,m+1/ + �bm,↑

�±�*�2��,↑�Mz,m−1/2�

� „fL/R��E�m,�� − �L/R��nj,ni+1 + 1

− fL/R��E�m,�� − �L/R��nj,ni−1… . �7�

Hence the selection rules for the allowed transitions are �m
= ±1/2 and �Mz=0, as shown in Fig. 2. Since Eq. �7� is an
analytical expression, the calculation of the transition rates is
straightforward using the expressions for am↓

�±� , bm↑
�±�, and

�E�m ,��=Ej −Ei, given between Eqs. �4� and �7�. Details
about t�

L/R are given in Sec. III. As for �L/R, one takes, e.g.,
�R=0 and equates �L to the bias voltage.

The matrix elements of the total transition rates, for elec-
trons with spin �, between the states of the isolated dot are
given by

� j,i��� = �
�

�� j,i
L ��,�� + � j,i

R ��,��� . �8�

The probability Pi of finding the QD in the state i will
deviate from its equilibrium value for a given drain-source
voltage VSD= ��L−�R� /e. Its dependence on the tunneling
rate � j,i is well described by kinetic equations. The stationary
nonequilibrium populations Pi obey the Master equation

�
j�j�i�

��i,j���Pj − � j,i���Pi� = 0. �9�

This is a set of linear equations whose number is equal to the
number of states �NS� in the dot. For computational purposes
we rewrite it in the form

�
j=1

Ns

�i,j���Pj = 0 �10�

with the matrix �i,j given by

�i,j = �i,j − �i,j�
l=1

Ns

�l,j��� . �11�

To satisfy the normalization condition �� j=1
NS Pj =1�, one sets

�1,j =1 and uses � j=1
NS �i,j���Pj =�1,i to calculate the station-

ary occupation probability.
Knowing the stationary probability Pj from the Master

equation, the spin-polarized current I� is calculated by

I� = e/2 �
i,j�j�i�

��i,j
L ��� − � j,i

R �����Nj − Ni�Pj . �12�

It equals the number of electrons with spin � that pass
through the left or right barrier per unit time. To measure the
dependence of I� on VSD, we define the spin polarization
ratio �= �I↑− I↓� / �I↑+ I↓� and its � component ����= �I↑

���

− I↓
���� / �I↑

���+ I↓
���� for all allowed transitions, where I�

��� is the
spin-polarized current through the � channel. The tunnel cur-
rent is the sum of the currents carried by spin-up and spin-
down electrons: I���= I↑���+ I↓���.

FIG. 2. �Color online� Scheme of the energy levels of a Mn2+

ion-doped QD in an external magnetic field versus magnetic quan-
tum number m. All allowed transitions, involving the states with
Ne=0 and Ne=1 electrons, and the corresponding electron spins are
shown. The red and violet sublevels are associated with the �=−1
and �= +1 channel, respectively.
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The differential conductance is defined by G�dI /dV and
the TMR by TMR= �GFM−GAF� /GAF, where GAF and GFM

denote the total conductances in the antiparallel �AF� and
parallel �FM� alignment of the magnetization in the left and
right leads �Gk=Gk

↑+Gk
↓ ,k=FM,AF�. Further, we assume

t±
R=�t0�1±�R� /2, for the ferromagnetic �FM� alignment, and

t±
R=�t0�1��R� /2 for the antiferromagnetic one �AF�. For

comparison, we also derive the corresponding expressions
for an undoped quantum dot �= �I+

�e�− I−
�e�� / �I+

�e�+ I−
�e�� and

TMR=−1+ �� j=−1
+1 Aj

+� / �� j=−1
+1 Aj

−�, with I�
�e�= t�

Lt�
R / �t�

L + t�
R� and

Aj
±= �1+ j�L��1± j�R� / ��1+ j�L�+��1± j�R��. We notice that

both � and the TMR depend only on the tunneling param-
eters of the leads. For instance, �=� and TMR=�2 / �1
−�2�, for two symmetric leads with �L=�R=� and �=1.
For a SET composed of two symmetric leads, e.g., one spin-
polarized left lead and a normal-metal right lead, we have
�=�L / �2−�L

2� and TMR=0 assuming that �=1.

III. RESULTS AND DISCUSSION

A. Spin-dependent transport through a QD in an external
magnetic field

The TMR of a SMNQD depends strongly on VSD, the
transmittances of the barriers, the relative orientation of the
magnetization between the electrodes, the strength of the
electron-Mn exchange interaction Jss, and the tunneling
strength t0. Typical values of Jss and t0 are of the order of a
few hundreds and a few tens of �eV, respectively.33 Figure 3
shows the voltage dependence of the TMR of a SMNQD at
T=4 K and B=10−4 T for asymmetric leads, with �=0.6,
�L=0.9 �a� and for symmetric leads with �=1 and �L=�R
=� �b� for several values of �R. For comparison, the corre-
sponding TMRs of an undoped QD are also shown by the
�black� dashed curves. The TMR increases to their right and
decreases to their left. We find that the TMR increases with
increasing either applied bias voltage or spin selectivity �R.

FIG. 3. �Color online� Voltage dependence of
the TMR at T=4 K and B=10−4 T for asymmet-
ric leads with �=0.6, �L=0.9 �a� and for sym-
metric leads with �=1 and �L=�R=� �b� for
several values of �R. The dashed black curves
show the TMR of the corresponding undoped QD
and separate the regions of enhanced �to their
right� and suppressed �to their left� TMR. As the
white arrow indicates, �R decreases downwards
�in steps of ��R=0.1�. The inset in �a� shows a
scheme of the energy levels for the Ne�0 and
Ne�1 multiplets without external magnetic field.
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Moreover, it is strongly enhanced by the electron-Mn ex-
change interaction, as shown in the region located to the
right of the lines corresponding to the undoped QD. The
underlying physics is the following. At low bias voltage the
current is thermally suppressed by CB. With increasing bias
voltage, the transitions between the Ne=0 multiplets and the
states of the �=−1 channel become energetically allowed as
long as electrons in the left lead have enough energy to over-
come the energy barrier between the Ne=0 and Ne=1 states.
According to the selection rule for sequential tunneling, both
spin-up and spin-down electrons can hop into the QD from
the left lead but with different rates due to the different den-
sities of states at the Fermi level for majority and minority
spin states in the incoming lead. For two leads ferromagneti-
cally aligned, outgoing spin-up electrons leave the QD much
faster than the spin-down ones, except when electron spin-
flip processes occur and the local spin is simultaneously
changed by unity. However, the number of possible spin flips
is very limited. Then, one can neglect spin relaxation.6

Hence the current is spin polarized and increases with ap-
plied bias voltage beyond a threshold voltage. In contrast,
when the two leads are anti-ferromagnetically aligned, the
majority spin electrons in the right lead are with spin down.
Then spin-up electrons leave the QD much slower than the
spin-down ones. On the other hand, the large spin selectivity
�R enlarges the difference in the density of states between
spin-up and spin-down electrons. Hence, a positive TMR is
expected and it is enhanced with increasing �R.

The effect of the electron-Mn exchange interaction on
TMR can be understood in the following way. An injected
electron from the left lead polarizes the spin of the Mn2+ ion.
In turn, the magnetic field induced by the polarized Mn2+ ion
orientates the spin of the electron. Finally, the exchange in-
teraction between electron and Mn2+ ion in the QD results in
a parallel alignment of spins of the electron and Mn2+ ion in
the ground state of the hybrid system. It facilitates the tun-
neling of the electrons with spin-up, but impairs the tunnel-
ing of spin-down electrons, resulting in an enhanced TMR.
In addition, the TMR is also strongly affected by the sym-
metry between the right and left leads. Figure 4 shows the
dependence of TMR on the bias voltage for asymmetric
leads with �L=�R=0.5 at several values of �. When � is
increased from 0.6 to 2.0, the TMR decreases dramatically.

The strength of the exchange interaction between an elec-
tron and a Mn2+ ion is proportional to the square of the
electron wave function at the paramagnetic ion. Thus for a
fixed position of Mn2+ ion, e.g., located at the center of the
QD, the electron-Mn exchange interaction increases with in-
creasing quantum confinement �0, resulting in a larger sepa-
ration between electronic sublevels. Consequently, the larger
�0, the more pronounced the Coulomb blockade, as shown in
Fig. 5. The inset in Fig. 5 shows the differential conductance
for the current with spin up and spin down, as indicated by
the direction of the arrows. Note that the conductance for
current with spin up is one order of magnitude larger than
that for current with spin down and that the two conductance
peaks are separated.

An external magnetic field tilts the energy levels of an
electron and a single Mn hybrid system with respect to the
magnetic quantum number m due to the additional Zeeman

energy. It removes the degeneracy of the spin multiplets, as

shown in Fig. 2. In the small magnetic filed regime �B̃�1�,
the sublevel with total spin J=3 and magnetic quantum num-
ber m=3 possesses the lowest energy. With increasing mag-
netic field, the Zeeman energy increases considerably, but the
electron-Mn exchange interaction is only slightly affected.

For B̃�1 the Zeeman energy exceeds the electron-Mn ex-
change interaction energy and dominates the energy spec-

trum. In the strong magnetic field limit, B̃�1, m�=m+ �ge

−gMn�B̃, �m=−m�. The exchange interaction between an
electron and the Mn2+ ion can be safely neglected. Then the
electronic states of the hybrid system are well described by

��� �Mz�. The energy levels are given by Ẽ��m�=−��ge+ �m
−��gMn�B̃, where m=� /2+Mz. According to the value of �,
they are classified by two groups. One is composed of the
states �+1� �Mz� and the other of the states �−1� �Mz�. The

FIG. 4. �Color online� Voltage dependence of the TMR at T
=4 K and B=10−4 T for asymmetric leads with �L=�R=0.5 and
several values of � increasing downwards from 0.6 to 2.0 in steps
of ��=0.2.

FIG. 5. �Color online� Dependence of the spin polarization on
the bias voltage for several values of �0. The parameters assumed
are �=1.0, �L=0.9, �R=0.0, T=30 K, and B=10−4 T. The inset
shows the differential conductance G as a function of the bias volt-
age for �0=4.0 Ry; the direction of the spin is indicated by an
arrow.
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state with �=−1 and m=2 becomes the ground state. Figure
6 shows a surface plot of the TMR as a function of the
magnetic field and bias voltage at T=4 K, �=1, and �L
=�R=0.5. In the small magnetic field regime and for low
temperatures, the current is suppressed due to the CB for
small bias voltages. With increasing bias voltage, the energy
levels drop into the window of the bias voltage successively.
Hence, beyond the CB regime, the current as well as the
TMR increase with increasing bias voltage. On the other
hand, the Zeeman splitting increases with increasing mag-

netic field. For strong magnetic fields �B̃�1�, the interplay
between the magnetic field and the bias voltage gives rise to
an oscillatory TMR. The underlying physics is as follows.
With increasing bias voltage, the transitions involving an
electron with spin down take place as long as the energy
difference between the ground state of the Ne�0 multiplet
with m=M and the lowest-energy state of the Ne=1 multiplet
with m=M −1/2 becomes energetically allowed; these is a
minority-spin involved transition. With a further increasing
bias voltage, the majority-spin involved transitions between
the state �0,M� and the state of the Ne=1 multiplet with m
=M +1/2 occur. After that, the other spin-up and spin-down
tunneling channels are successively activated. The result is
an oscillatory spin polarization as well as an oscillatory
TMR. This oscillatory behavior changes when the relative
orientation of the magnetization changes and points to appli-
cations in magnetic sensors.

To clarify the essential physics of spin-dependent trans-
port through a Mn2+ ion doped QD, we derive an analytical
expression for spin-polarized current in a one-band model,
assuming that, in a certain magnetic-field range, only a tran-
sition between the state �0,−5/2� and �1,−2,−1� is energeti-
cally allowed. For brevity, one denotes the former �later�
state by 1 �2�. The occupation probability satisfies the de-
tailed balance equation �1,2P2=�2,1P1, where �1,2

L/R= t↑
L/R�1

− fL/R�, �2,1
L/R= t↑

L/RfL/R and �i,j =�i,j
L +�i,j

R . Then the spin-
polarized current is I↑ / I0

↑= fR− fL, where I0
↑= �e /2���t0�1

+�L��1+�R�� / �2�1+�L�+��1+�R�� only depends on the
lead properties. Hence the spin-polarized current is deter-
mined by the applied voltage and lead properties. Let us first
study the effects of the magnetization of the leads, reflected

by �L and �R, on the current. For a SET comprised of one
ferromagnetic left lead and a normal-metal right lead, we
have I0

↑= �e /2�t0 / ��−1+ �1+�L�−1�. Hence an increase of ei-
ther � or �L gives rise to an increased spin-polarized current.
A similar behavior is noted for a SET composed of two
parallel-aligned ferromagnetic leads. However, an opposite
�L dependence is found in a SET with two antiparallel-
aligned ferromagnetic leads, e.g., I0

↑= �e /4��1−�L
2�t0 for �L

=�R and �=1. It is interesting to note that for �L=1, the
current of electrons is completely suppressed. Let us now
turn to the influence of the applied bias voltage on the cur-
rent. Using the relation df /d
=−cosh2�
 /2kBT� /4kBT, one
derives I↑ / I0

↑=���L−�E�−���R−�E�, for kBT�VSD, and
I↑ / I0

↑= �VSD /4kBT�cosh−2���E−�L /2kBT�� for kBT�VSD.
Hence the system works as an almost perfect spin valve even
though the ferromagnetic leads are not half metallic.

B. Voltage-controlled spin filters

One challenge in spintronics is the source of spin injec-
tion. To illustrate the mechanism of voltage-controlled spin
filtering, let us focus on the electronic transport through the
Mn2+ ion doped QD in the absence of magnetic filed. In this

case, m�=m, �m=M +1/2, and the Hamiltonian Ĥspin turns

out to be Ĥspin=−JssS� ·M� . The exchange coupling between
an electron and a Mn2+ ion splits the energy of hybrid

system into two sublevels Ẽ��=1�= �M +1� /2 for J=2 and

Ẽ��=−1�=−M /2 for J=3, as shown in the inset of Fig. 3.
The correspondent states are am,↓

��� = �1/�2��1+m� / �M
+1/2��1/2, bm,↑

��� =−�1/�2��1−m� / �M +1/2��1/2. �↑ � �5/2� and
�↓ � �−5/2� are the wave functions related to m=3
and m=−3, respectively. Hence the states with energy

Ẽ��=1��Ẽ��=−1�� are degenerated states with fivefold �sev-
enfold� degeneracy. Their separation is Eex=3Jss. For lower
bias voltage, all transitions from the states of Ne=0 to the
states of Ne=1 are thermally suppressed due to CB, while for

a bias voltage is larger than Ẽ��=−1� and less than Ẽ��
=1�, only a single energy difference is relevant and all the
relevant transitions become fully active.

FIG. 6. �Color online� Tunnel-
ing magnetoresistance as a func-
tion of the magnetic field and of
the bias voltage for T=4 K, �=1,
and �L=�R=0.5.

FANYAO QU AND P. VASILOPOULOS PHYSICAL REVIEW B 74, 245308 �2006�

245308-6



Using ��� ,Mz �1,m ,���2= �1−m�� / �M +1/2�� /2 we ob-
tain the transition rate associated with the � sublevel

� j,i
L/R��,�� =

t�
L/R

2

�1 +

m�

M + 1/2
���,↓�Mz,m+1/2

+ �1 −
m�

M + 1/2
���,↓�Mz,m−1/2�	f�JssM�/4

− �L/R��nj,ni+1 + �1 − f�JssM�/4 − �L/R���nj,ni−1
 ,

�13�

where M�=1+�+2M. Substituting the expressions of the
transition-rate matrix elements � ji

L/R�� ,�=1� and � ji
L/R�� ,�

=−1� in the Master equation, one notices that the occupation
probability satisfies the detailed balance equation PMz

��

= Pm��, which ensures equal formation rates of the populated
m states from the unpopulated Mz state plus a � electron,
where m=�+Mz, ��=�k=L,Rt�

k f��E�m ,��−�k� and ��

=�k=L,Rt�
k 	1− f��E�m ,��−�k�
 with Mz= ±5/2,±3/2, ±1/2.

The analytical results for the occupation probability can be
found from the solution of the detailed-balance equation.
They are Pm= P0�1/2

m and PMz
= P0�� /���1/2

2�m, where ��

=���−� /�−���. It is interesting to note that PmP−m= P0
2

and �−�=1/��. Then the spin-polarized current can be cal-
culated by I����= �e /2��i,j�i�j���t�

L fL− t�
RfR��Pi+ Pj�− �t�

L

− t�
R�Pj� � �� ,MZ �1,m ,���2. After some algebra we find

I����=eP̄�fL− fR��t�
Lt�

R /2����1−��MJ / �M +1/2��, where P̄
=�mPm, and MJ is the magnetization of the populated states
in terms of the Brillouin function BJ�x�, given by MJ

=BJ�ln �1/2�. I� ��� shows that the effect of the paramagnetic
ion on the spin-polarized current through the dot is com-
pletely described in terms of the magnetization of the dot in
the populated state. It also allows one to find the dependence
of the � component of the spin polarization ratio ��� ,MJ�
=�0�1−��0

−1MJ / �M +1/2�� / �1−��0MJ / �M +1/2��, where
�0= ���L+��R� / ��+��, and�= �1−�L

2�fL / �1−�R
2�fR. The

parameter �0 depends only on the lead properties and applied
bias voltage, describing the spin selectivity of the dot for
small currents and MJ�J.

To study the spin-injection from a ferromagnetic lead to
semiconductor materials, utilizing a SET comprised of a left
FM lead and a right normal-metal lead or a semiconductor
��R=0�, one gets �0=��L / ��+ �1−�L

2�fL / fR�. For small
bias voltages, fL→ fR, �1/2=1, and the magnetization MJ
→0. If MJ /J→0, the polarization ratio equals �0, for both
values of �, and �0��L. Therefore, an unpolarized ion sup-
presses spin injection. The ratio �0 /�L depends on the ratio
of the transmittance of the contacts and, when the difference
in the transmittance between the left and the right leads is
much larger than 1, the suppression is strong. However, MJ
grows quickly with increasing voltage while �0 decreases
slowly. When MJ becomes larger than �0�M +1/2�, the spin
injection blockade breaks down and the polarization ratio
acquires its normal magnitude ������L. The stronger the
suppression of �0, the narrower is the range of voltages in
which the “spin injection blockade” occurs. In this range

of parameters, the dot behaves as a highly nonlinear spin
emitter.

The dependence of the magnetization on the bias voltage
at different values of �L for �=1 �upper panel� and �=−1
�lower panel�, calculated through MJ=BJ ln��1/2� and by as-
suming �=1.0, �R=0.0, T=4 K, and B=0.0 T, is shown in
Fig. 7. The magnetization increases with increasing voltage.
When the voltage is zero, the magnetization vanishes for
both values of �. This implies that the magnetization is in-
duced by a spin-polarized current. In addition, the magneti-
zation can be enhanced by a large J and a high spin selec-
tivity. Figure 8 shows the spin polarization ratio of the �
component calculated through the analytical expression of
��� ,MJ� for J=2 �dashed lines� and J=3 �solid lines� �a�
and the spin polarization ratio obtained by numerical calcu-
lations �b� vs bias voltage at T=4 K and B=0 T for a single
Mn2+-ion doped QD with different values of �L. The param-
eters assumed are �=1.0, �R=0.0. The two components
���= +1� and ���=−1� of the spin polarization present
opposite behaviors with increasing bias voltage, e.g.,
���=−1� increases with voltage while ���= +1� decreases
and can even change sign. For comparison, the spin polar-
ization of the current in an undoped QD. i.e., without the
Mn2+ ion, is presented by the dashed black curve. We notice
that the electron-Mn exchange interaction can strongly en-
hance the spin polarization of the current, as shown in the
region to the right of the dashed black curve. This behavior
can be observed in both Figs. 8�a� and 8�b�.

IV. CONCLUDING REMARKS

A quantum theory of single electron tunneling through
single Mn2+ ion doped II-VI quantum dot weakly coupled to
one ferromagnetic and one nonmagnetic/ferromagnetic leads
in the Coulomb blockade regime has been developed.1,2 Ana-
lytical expressions for the magnetization, spin-dependent
current, and spin polarization have been derived for zero

FIG. 7. �Color online� Dependence of the magnetization on bias
voltage for different values of �L with J=2 �upper panel� and J
=3 �lower panel�, calculated through MJ=BJ ln��1/2�. The param-
eters assumed are �=1.0, �R=0.0, T=4 K and B=0.0 T.
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magnetic field. They predict a spin-injection-induced magne-
tization and a spin-polarized current. The numerical results
show that the spin polarization and tunneling magntoresis-
tance �TMR� strongly depend on the bias voltage VSD, the
spin selectivity of the leads, and the quantum confinement
expressed by �0. Depending on VSD, they can be strongly
enhanced or weakened by the electron-Mn exchange interac-
tion. An appropriate choice of VSD, �0, and of the magneti-
zation of the leads can yield a highly spin-polarized current
even when the FM source is not 100% polarized.

In addition, an external magnetic field also impacts on the
spin-dependent transport properties. For low magnetic fields,

the spin polarization and the TMR increase monotonically
with VSD beyond the Coulomb blockade regime. When sub-
jected to a strong magnetic field, an oscillatory behavior of
the TMR with VSD is predicted. Important applications of the
theory are expected in voltage-controlled spin filters and
magnetic sensors.
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