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We calculate the density of states of a two-dimensional electron gas located at the interface of a strongly
disordered GaAlAs/GaAs heterojunction. The disorder potential is created by two delta doped layers. The first
layer includes the parent donors which provides the well with electrons and creates a smooth disorder potential.
The second layer is doped with either acceptor or donor impurities, and is located inside the well, thus creating
a strongly disordered potential. We calculate the density of states in the presence of a magnetic field of
arbitrary strength by taking into account all perturbative terms in the fifth Klauder’s approximation. We find an
anharmonic spectrum, strongly asymmetric, for the Landau level density of states. At low field, the attractive
potential creates the well-known band tails or impurity bands. At higher field, we show that impurity bands are
also created by repulsive potentials. We discuss the consequences of the anharmonicity and asymmetry on
physical properties in the quantum Hall effect regime.

DOI: 10.1103/PhysRevB.74.245303 PACS number�s�: 73.43.�f, 73.20.�r

I. INTRODUCTION

The physical properties of an electron moving in two di-
mensions under a perpendicular magnetic field have been
widely studied both theoretically and experimentally in the
last three decades �for a review see Ref. 1�. The density of
states �DOS� is one of the central quantities in the study of
the quantum Hall effect �QHE�. The DOS depends on the
disorder potential and characterizes each heterostructure. In
the last decade, new types of GaAlAs-GaAs heterojunctions
have been grown by several groups2–11 and studied in the
QHE regime. These structures incorporate one delta doped
layer behind the spacer to provide a two-dimensional �2D�
channel with electrons, and another delta doped layer inside
the confining well of conducting electrons. This second layer
is doped with Si donors or Be acceptors. Extraordinary mag-
netotransport properties have been found in such heterostru-
tures: Haug et al.2 observed a shift of the quantum Hall pla-
teaus, depending on the nature of the impurity �donors or
acceptors�. Unusual optical properties have also been re-
vealed by Buth et al.3 and Bonifacie et al.,4 who performed
far infrared absorption experiments. Under high magnetic
field conditions and far infrared irradiation, a second cyclo-
tron line appears, the so-called disorder mode,3 which is ob-
served only for the acceptor-doped structures. Another re-
markable phenomenon is the appearance of a set of
additional peaks in the cyclotron resonance spectrum, which
has been attributed to localized acceptor states.4

The DOS of a noninteracting two-dimensional electron
gas �2DEG� in the presence of a perpendicular magnetic field
is a series of delta peaks centered on the Landau energies.
However, in real systems, Landau levels �LL� are broadened
by random impurity scattering. Semielliptic12,13 or
Gaussian14 functions have been proposed to described the LL
shape. The first calculation �analytical� of the DOS was car-
ried out by Ando et al.12,13 using the self-consistent Born
approximation �SCBA� and treating the perturbative poten-
tial as delta functions �short range potential� without taking
into account the LL mixing. This resulted in a symmetric

semielliptic DOS, whose constant level broadening � is de-
termined by the zero field electronic mobility. Until 1988,
most microscopic theories15 and calculations of the
DOS12,14,16,17 either considered only one LL, neglecting
inter-LL mixing, or took into account only two or three
LLs.18 The LL mixing and the screening was introduced in
the work of Xie, Li, and Das Sarma19 using the SCBA. The
resulting DOS showed a smoother and more realistic shape
than that obtained by short range impurities. In the 1990s,
calculations of the DOS included acoustic phonon
scattering20–22 and electron electron scattering.23 Finally, a
finite background density between LL peaks was predicted in
the case of long range scatterers,24–26 which could explain
experimental results.27–30

Although the DOS has been widely studied, calculations
were performed by taking into account only a few terms in
the perturbative series �SCBA approximations�, and always
yielded a symmetric and harmonic DOS. However, a more
precise shape of the DOS is needed to interpret experimental
results obtained by Haug et al.,2 Buth et al.,3 and Bonifacie
et al.4 Furthermore, the DOS has always been calculated for
either a short range or a long range potential and has never
been calculated in the case of the types of sample described
above, containing both long range and short range scatterers.
In the present work we calculate the DOS of a 2DEG in the
presence of a strong disorder which is created by two delta
doped layers: the first one behind the spacer, and the second
one—doped with Si or Be atoms—located inside the confin-
ing well of conducting electrons. We show that the anharmo-
nicity and asymmetry explain the shift of the Hall plateaus
observed by Haug et al. Our calculations consider all terms
of the perturbative series in the fifth Klauder
approximation,31 a method already employed by Serre and
Ghazali32 and by Gold et al.33 in the case of zero magnetic
field. We extend the work of Kubisa and Zawadski34 who
solved the one impurity problem and demonstrated that re-
pulsive potentials create localized states in the presence of a
magnetic field, by the combined effect of the Lorentz force
and the electrostatic confinement. These states unlike donors
states, disappear at zero magnetic field.
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We use the Green function formalism and a numerical
method proposed earlier by Klauder:31 the so-called fifth
Klauder’s approximation �KVA�.31 The KVA was used once
by Ando12 in the case of high magnetic fields to obtain the
DOS of the impurity band. More recently it was employed as
well by Serre and Ghazali32 and Gold et al.33 at zero mag-
netic field, in three- and two-dimensional systems. The most
severe limitation of the KVA is that the multiple occupancy
corrections are not taken into account. Consequently the
width of the impurity band is overestimated, resulting in a
Mott density which is too small.33,35 We do not incorporate
in our model the self-energy part due to the electron-electron
interaction. Several approximations for this interaction have
been discussed in the literature,13 but following Ref. 33, the

self-energy part �̂ee only produces a rigid energy shift of the
DOS. These approximations do not hold at high magnetic
field, when the filling factor is close to one and electron-
electron interaction strongly increases the Lande g-factor. A
complete treatment of the screening effects developed by
Das Sarma et al. would have led here to intractable numeri-
cal calculations but would not have changed the features of
our results, i.e., the asymmetry and the anharmonicity of the
DOS. Lastly, we take into account the LL mixing and calcu-
late the DOS in all the range of magnetic field accessible in
experiments: from low magnetic field �B�0.1 T� up to very
high field �B�10 T�.

This paper is organized as follows. In the next section, we
present our theoretical procedure. We report the results of the
calculations in Sec. III and IV. In Sec. III we discuss the case
of the reference sample, which has only one impurity layer,
while Sec. IV is devoted to the anharmonic and asymmetrical
DOS of strongly disordered samples. In Sec. V, we apply this
formalism to the transport properties in the QHE regime and
demonstrate that the shift of the Hall plateaus is a natural
consequence of the asymmetry of the DOS.

II. FORMULATION OF THE PROBLEM

In this work, we neglect spin degeneracy, assuming elec-
trons to be spinless fermions. The 2D channel is considered
as a homogeneous medium with a dielectric constant � and
the charge carriers are noninteracting electrons with an effec-
tive mass m* and a charge e. The electrons are free in a
bidimensional quantum well created by the potential U�z� of
the heterojunction �see Fig. 1�. An external magnetic field is
applied in the z direction. One or two delta layers of impu-
rities are introduced at a given distance from the
GaAlAs/GaAs interface. The first doping layer �behind the
spacer� has a concentration comparable to the electron con-
centration. The second layer of impurities, inside the well,
creates sharp potential fluctuations either negative �for do-
nors� or positive �for acceptors�. Its concentration is one or-
der of magnitude lower than for the first layer.

A. The single impurity problem

The single impurity problem solved in Ref. 34 is the start-
ing point of our many impurities problem. However, here we
diagonalize their Hamiltonian because this procedure leads

to more tractable self-consistent calculations of the Green
function than the variational method used by Kubisa and
Zawadzki.

The impurity located at point �R ,z0� creates a potential
v0�r ,z�=e2 / �4����z−z0�2+ �R−r�2�. The three-dimensional
Hamiltonian of this system is given by

Ĥ =
1

2m* �p̂ + eÂ�2 + Û + v̂0, �1�

where Â is the vector potential operator and p̂= �p�̂ , pz
ˆ � the

momentum operator. To solve this equation the three-
dimensional problem is first reduced to a bidimensional
problem.36 The wave functions can be approximated by

��x,y,z� = 	�x,y�f0�z� , �2�

where f0�z� is the wave function of the first subband of the
quantum well with an energy E0:

� 1

2m* p̂z
2 + Û� f0 = E0f0. �3�

The eigenenergy E0 is obtained by a variational calculation
and f0 is approximated by the modified Fang-Howard trial
wave function. Details of this method can be found in Ref.
37. One obtains an effective Schrödinger equation for the 	
wave function of eigenenergy E�:

�Ĥ� + v̂bare�	 = E�	 , �4�

where

Ĥ� =
1

2m* �p̂� + eÂ�2 �5�

and

FIG. 1. Schematic view of the heterostructure and the f0�z�
wave function. A delta doped layer is represented here, located at
the abscissa z0. A magnetic field is applied along the growth
direction.
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v̂bare�q� =
1

�q
�q��−�

�

f0�z�2e−q	z−z0	dz . �6�

The screening of the bare potential by free carriers has been
taken into account in Refs. 38 and 34 by introducing the
dielectric function 
�q�=1+ e2

2�X0�q�h�q�, where X0 is the
Linhard function in two dimensions39 and h�q� is a form
factor which is due to the electron-electron interaction in the
2DEG. However, in the presence of a magnetic field, the
expression of the dielectric function is quite different from
that deduced from the familiar Lindhard function in 2D. This
is because the presence of a magnetic field modifies both the
energy levels and the wave functions. Nevertheless, we do
not focus here on the screening of the bare potential by elec-
trons, instead we keep the dielectric function used by Kubisa
and Zawadzki.34 A complete treatment of the oscillatory
screening performed by Xi et al. and Das Sarma et al.19

would have lead to intractable calculations. The qualitative
effect of the oscillatory screening on the density of states will
be discussed in Sec. III.

Now, we apply the diagonalization method to the single
impurity problem. We use the basis 	N ,m
, N� �0,1 , . . . ,��,
m� �−N , . . . ,�� defined by

r	N,m
 =� N!

2�l2�N + 	m	�!
e�−im�−r2/4l2�

� r2

4l2�	m	/2

LN
	m	/2� r2

2l2� , �7�

where l=�� /eB is the magnetic length and B is the magnetic
field. Because of the radial symmetry of the problem, calcu-

lation can be performed for each value of m separately. In
Fig. 2 we plot the calculated binding energies of magnetodo-
nor and magnetoacceptor states related to the first LL. The
impurities are located at the interface �z0=0�. The parameters
are the same as those used by Kubisa and Zawadzki:34 for a
typical GaAs/AlGaAs heterojunction, the barrier height is
0.257 eV, the effective mass for the AlGaAs barrier and the
GaAs well are, respectively, 0.073m0 and 0.066m0. We took
a relative dielectric constant �r=12.9 throughout the entire
heterostructure. The electron density and the depletion den-
sity have been taken as Ns=31011 cm−2 and Na=6
1010 cm−2, respectively. The diagonalization has been per-
formed in a basis containing a finite number of LLs. We have
included all LLs whose energy is smaller than or comparable
to the binding energy Eb. At B=10 T, 10 LLs were consid-
ered to obtain a precision better than 0.1%. At B=0.1 T, 150
LLs were considered to obtain a precision of 5%. Figure 2
shows that there is no quantitative difference between the
binding energies obtained by our method and those obtained
by the minimization procedure of Kubisa and Zawadzki.
However, the good convergence of the diagonalization guar-
antees a reasonable calculation time for the self-consistent
procedure, as will be described later.

The second step of the calculation was to fit the true im-
purity potential by a Gaussian potential defined by

v�r� =
V0

�d2 exp�−
r2

d2� . �8�

This potential allowed us to calculate the binding energies
more efficiently and therefore to optimize the algorithm used
in the second part of this work. V0 is the strength of the
potential and d is its spatial extent. In the case z0=0, we
obtain a good fit of the binding energies by taking d
=10.4 nm and V0 /�d2=22 meV. Thus we are in the regime
of short-range scattering impurities �i.e., following Ref. 13:
d� l /�2N+1 where N is the LL index� for a wide range of
magnetic fields: 0�B�6 T. If z0=500 Å, the optimized pa-
rameters are d=50 nm and V0 /�d2=0.17 meV. When impu-
rities are close to the electrons, the Gaussian potential is
short range, only becoming long range when the impurity
layer is far from the electron gas.

B. The Green function formalism

Now we consider the case of randomly distributed impu-
rities which are all located at a distance z0 of the heteroint-
erface. The Hamiltonian is

Ĥ = Ĥ� + V̂ , �9�

with

V̂ = �
i

v̂i �10�

and

v̂i = v̂�r − Ri,z0� . �11�

FIG. 2. Binding energies of magnetodonors and magnetoaccep-
tors of the first Landau level. Parameters are given in the text. The
angular momentum m is labeled 0,1, 2, and 3. Black down triangles:
diagonalization. White up triangles: variational calculation in accor-
dance with Kubisa and Zawadzki. At zero magnetic field, the bind-
ing energy vanishes for acceptor states but not for donors: the ac-
ceptor states exist only in the presence of a high enough magnetic
field.
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Here Ri is the in-plane position of the ith impurity.
The single particle Green’s function of the averaged

Hamiltonian is given by the Dyson equation40

Ĝ

 =
1

E − Ĥ� − �̂
, �12�

where �̂ is the proper self-energy part that we calculate by
means of the KVA and ¯

 denotes the spatial average.
This approximation has been widely used12,32 although it is
known to overestimate the width of the impurity bands.41

This approximation is performed in two steps. First, one iso-
lates scattering processes t̂i occurring on a single impurity:

t̂i = v̂i + v̂iP̂v̂i + ¯ , �13�

where P̂=1/ �E− Ĥ�� is the free electron propagator. Then,
one sums over all the impurities:

t̂ = �
i

t̂i = �
i

v̂i�1̂ − P̂v̂i�−1. �14�

Afterwards, P̂ is replaced by the dressed propagator Ĝ:

t̂ = �
i

v̂i�1̂ − Ĝv̂i�−1 �15�

and the average value of Eq. �12� ¯

 is taken over all
possible positions of impurities:

�̂ = t̂

 = �
i

v̂i�1̂ − Ĝv̂i�−1

 . �16�

Figure 3�a� represents Eq. �16� diagrammatically. Figure 3�b�
represents Eq. �12�. Other diagrams are represented in Figs.
3�c� and 3�d�.

To calculate the average, we follow Ando12 who used two
different bases. The first basis 	N ,X
 is used for averaging
over the impurities positions. The vectors of the basis are

r	N,X
 =
1
�L

exp�i
xy

2l2 − i
Xy

l2 ��i�x − X� , �17�

where L is the length of the system, and l=�� /eH the radius
of the cyclotron orbit. The functions �N�x� are

�N�x� =� 1

2NN!��l
exp�−

x2

2l2�Hn�x/l� , �18�

where Hn�x� is the nth Hermite polynomial.
The second basis 	N ,m
Ri

is centered on the ith impurity.
This is the most convenient basis for summing the different
scattering processes over a given impurity because the impu-
rity potential has the cylindrical symmetry. The vectors of
the basis are defined by

r	N,m
Ri
= Ri − r	N,m
exp�i

	r ∧ Ri	
2l2 � , �19�

where the kets 	N ,m
 are defined by Eq. �7�. The wave func-
tions of the different bases are linked to each other by the
relation

	N,X
 = �
m=−N

�

	N,m
R
�2�l2�− 1�mR	N + m,X
 . �20�

Finally we assume that

�
i

	Ri
Ri	

 � Ni. �21�

Then, using Eqs. �16�, �20�, and �21� the self-energy part can
be rewritten as

N,X	�̂	N�,X�
 = 2�l2Ni�
m

N,m	v̂�1̂ − Ĝv̂�−1	N,m
�NN��XX�.

�22�

The two main physical parameters appear in Eq. �22�. The
first one is the dimensionless concentration of impurities, c
=2�l2Ni which represents the averaged number of impurities
seen by one electron. The second parameter is the potential
v̂. The off-diagonal elements of v̂ are responsible for the
inter-Landau-Levels mixing �ILLM�. We have already men-
tioned that the potential v̂ can be smooth or sharp depending
on the location of the doping layer. In the above summation,
either the potential is sharp and few values of m are neces-
sary to obtain a good convergence, or the potential is smooth
and many values of m are needed. This reflects the spatial
extent of the eigenfunctions which need less or more basis
elements for their construction.

C. The density of states

The DOS is directly related to the averaged Green’s func-
tion by the formula

FIG. 3. Electron-impurity diagrams involved in the KVA. �a�
Summation of the diagrams of the self-energy; �b� Dyson equation;
�c� examples of diagrams that are taken into consideration in the
KVA; and �d� examples of diagrams that are neglected. Dashed
lines: electron-impurity interaction. Thin full oriented lines: bare
propagators. Thick full oriented lines: dressed propagator. Crosses
represent impurities.
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��E� = −
1

�
Im�trĜ

� , �23�

where Ĝ

 is calculated from the self-consistent set of Eqs.
�12� and �22�. The calculation of the DOS consists of sum-
ming the matrix �whose rank is the number of LL� indexed
by the angular momentum m over all values of the angular
momentum m, in a self-consistent procedure. In the previous
section, the calculation of the binding energies was made by
summing over each LL, for each particular value of the an-
gular momentum m.

The DOS is represented throughout the paper by its nor-
malized value �NDOS� defined by the relation NDOS�E�
=��E� / �eB /h�. NDOS�E� verifies

� NDOS�E�dE = 1. �24�

It is represented as a function of the energy �E in mev and
NDOS in mev−1� or as a function of the dimensionless en-
ergy

E−��c

��c
. We use also the dimensionless NDOS, defined by

DNDOS=NDOS��c.

III. DENSITY OF STATES IN THE PRESENCE OF A
SMOOTH POTENTIAL: REFERENCE SAMPLE

We consider here the reference sample, which has only
one �-doped layer of Si donors in the GaAlAs barrier, at a
distance z0=−500 Å from the interface. The disorder poten-
tial is smooth. The case of enhanced potential fluctuations by
a second layer of impurities �acceptors Be or donors Si� is
discussed in the next section.

In this part, we have restricted our attention to the low
coupling regime between LLs, when the cyclotron energy
��c is larger than the Landau level broadening �. In this
case, each Landau level can be treated separately. Therefore
the matrix reduces to a single real number, for each value of
the angular momentum m. Nevertheless, a large number of m
values is necessary to obtain the convergence of the self-
consistent calculation. The total number of m necessary to
reach the convergence criterium is known when adding a
new term changes neither the shape nor the shift of the DOS.
Physically this signifies that, to correctly represent the
smooth potential, a large number of states 	N ,m
 are re-
quired.

Figure 4 represents the general shape of the ground state
Landau level whose width is overestimated by our method.
There are two main differences between this shape compared
with the elliptic shape obtained by Ando12,13,18 or the Gauss-
ian shape obtained by Brezin et al.14 First, the asymmetry of
the DOS is enlarged on its low energy side because of the
donor character of impurities. Second, there is a global shift
of the DOS towards the low energy side. This shift is due to
the first term in the calculation of the self-energy. This first
term, which represents the mean potential seen by one elec-
tron, is generally not taken into account. The shift is a de-
creasing function of the LL index, as illustrated in Fig. 5 and
results in an anharmonicity of the Landau ladder. We stress
that this effect should be experimentally confirmed by mag-
netophotoluminescence experiments in the low magnetic
field range.42 Taking into account the screening would induce
a 1/B oscillatory behavior of the Landau levels width, and of
the LL anharmonicity. For an even filling factor, when the
Fermi level lies between 2 LLs, the screening would be neg-
ligible and the anharmonicity would be maximum, whereas
for an odd filling factor �when the Fermi level lies in the
middle of a LL�, the screening would be maximum and the
anharmonicity minimum.19

Finally, we present in Fig. 6 the DOS of the first two LLs
for different magnetic field values on a dimensionless scale.
We observe the suppression of the shift when the magnetic
field is increased. The energies of the perturbed LLs are
clearly approaching the unperturbed energies at high mag-
netic field: the ladder is now harmonic.

FIG. 4. Density of states at B=10 T �ground state� for a
GaAlAs/GaAs heterojunction with a Si–�-doped layer located at
500 Å from the interface. Different curves correspond to different
impurity concentration ND= �3,4 ,5 ,6�1011 cm−2. The surface
density is NS=31011 cm−2. More than one-hundred “m” have
been taken into account.

FIG. 5. When the first term of the self-energy is neglected, the
Landau ladder is harmonic. When this term is included, the Landau
ladder is anharmonic.
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IV. DENSITY OF STATES IN THE PRESENCE OF BOTH
SMOOTH AND SHARP POTENTIALS

A. High magnetic field

In the presence of high magnetic field, ILLM can be ne-
glected because the dimensionless impurity concentration is
small �c=410−2 for Ni=1.1010 cm−2 at B=10 T�. The lo-
calized states shrinks with increasing B, thus the overlap in-
tegral between two different impurities becomes negligible.
Each impurity can be considered as isolated from each other
and the calculations tend to the case of one impurity treated
in Ref. 34.

The density of states in the high field limit is represented
in Figs. 7�a� and 7�b�, respectively, for donors and acceptors.
We observe the formation of impurity bands �IBs� on the low
energy side in the case of donors, and on the upper energy
side for acceptors. The energy ranges of IBs are certainly
overestimated due to the method used to treat the disorder.
However, we can observe that each isolated band appearing
at low density, which corresponds to levels of different an-
gular momentum �m=0,1 ,2 ,3 , . . . �, is exactly centered on
the binding energy calculated by Kubisa and Zawadzki.34

Counting the total number of states of an impurity band
which is entirely separated from the LL, one obtains the
impurity density Ni. If EB1 �EB2� represents the lower
�higher� band edge of the IB, then, neglecting the spin de-
generacy:

�
EB1

EB2

��E�dE = 2Ni.

We observe the formation of an impurity band for densities
Ni�2.1010 cm−2. When the impurity concentration increases,
the bandwidth increases as well until overlapping at a critical
density Nic=2.1010 cm−2 at B=10 T in our case. More pre-
cisely, this critical density depends on several parameters:

the position of the doping layer, the 2D electron density NS,
and the magnetic field B.

In Fig. 8, we show the normalized density of states for
several values of the magnetic field. The two sets of curves
correspond to the acceptor and donor case. We notice that the
global shift represented in Fig. 6 is not strongly modified by
the additional low-density impurity layers �Fig. 8�. Increas-
ing the magnetic field strength then leads to the formation of
a separated impurity band for the N=0 LL. At low field, this
impurity band collapses to form a band tail. For the first
excited LL, no separated impurity band is created because
the binding energies are too small.

B. Intermediate magnetic field

The DOS is calculated for B=0.5 T and different impuri-
ties concentrations. We represent the case of donors in Fig. 9
and the case of acceptors in Fig. 10. The condition c=1 is
obtained for Ni=1.21010 cm−2. In both cases the DOS is
enlarged in the low energy side by the long range potential
fluctuations of attractive Si parents donors at 500 Å from the
interface. The additional short range potential fluctuations at
the interface modify the DOS: attractive Si impurities en-
large the DOS on the same side as the parent donors,

FIG. 6. Density of states for GaAlAs/GaAs heterojunctions
with only one Si-doped delta layer located at 500 Å from the inter-
face, for different magnetic fields. The abscissa axis is shifted by
��c

2 and normalized by ��c. The vertical axis is normalized by
eB
h /��c, and curves are shifted for clarity.

FIG. 7. Influence of the doping density on the normalized den-
sity of states at B=10 T for the first LL, in the case of a
GaAlAs/GaAs heterojunction having two delta-doped layers. First
delta-doped layer: concentration ND=4.1011 cm−2 of Si-atoms at
z0=500 Å. Second doping layer: Si atoms �curve a� or Be atoms
�curve b� at z0=0. Different curves correspond to different density
of the second layer: Ni=0;0.1;0.5;1 ;2 ;3 ;4 ;51010 cm−2.
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whereas Be impurities enlarge the DOS on the other side.
Up to the critical value c=1, the degeneracy of the first

LL is large enough to contain all impurities states. When the
density of the impurity layer increases �c�1�, the LLs over-
lap as shown in Fig. 9. The first LL remains separated from
the higher LLs for a wider range of concentration values
because the shift is more important for low LL index N, as
previously mentioned.

Figure 10 is dedicated to the acceptor case. Now, the first
LL remains separated from the Landau ladder even at the
higher density of Ni=8.10−10 cm−2 and the merging of LLs
begins by the high values of N. This difference between ac-
ceptors and donors is related to the difference which is ob-
served at B=0 T: i.e., only donors states exist at very low B.

C. Low magnetic field

Figure 11 shows the DOS in the case of donors impurities
at B=0.1 T. Different values of the donor concentration Ni
have been considered, and the energy shift between different
curves has been removed. The energy reference is fixed at
the center of the first unperturbed Landau level. The high
energy side of some curves has been cut off for clarity. In the
acceptor case, which is not represented here, no IB below the
conduction band appear.

At low field, ILLM becomes dominant: LLs overlap and
tend to the flat conduction band �CB� of a 2DEG at B=0 T.
At such a low B, the degeneracy of one LL is smaller than
2Ni and several LLs contribute to the formation of the IB
�ILLM�. Figure 11 represents the donor case. In agreement
with Fig. 2, only one IB exists, corresponding to m=0.

The critical density �c=1� is represented by trace 7 in Fig.
11. Above c=1, the IB and the CB merge and form a band
tail. At vanishing concentration c, the position of the IB is
again in perfect agreement with the binding energies calcu-
lated in Sec. II �see Fig. 2�.

These results are in good agreement with the theoretical
results of Gold, Serre, and Ghazali33 who calculated the DOS
of a 2DEG in the case B=0 T within the same Klauder’s
approximation.

We do not observe the formation of a second IB that could
originate from states of higher momenta. It should be noted
that our potential does not allow the formation of excited
impurity bands at vanishing magnetic field because all the
binding energies vanish at B=0 T, except for m=0. The dis-
appearance of the IB occurs at a concentration Ni

c=0.5
1010 cm−2. Gold et al. pointed out that the enhanced
Thomas-Fermi screening they used implied large impurity
bandwidth. However, the critical metal-insulator densities we
found are so small that they are more probably related to the
errors induced by the Klauder V approximation itself.35

FIG. 8. Density of states for different magnetic field values, in
the case of a GaAlAs/GaAs heterojunction having two delta-doped
layers. First delta layer: Si atoms at z0=500 Å. Second doping
layer: �a� Si atoms at z0=0 and �b� Be atoms at z0=0. The abscissa

axis is shifted by
��c

2 and normalized by ��c. The vertical axis is
normalized by eB

h /��c, and curves are shifted for clarity.

FIG. 9. Density of states in the presence of donors, for
GaAlAs/GaAs heterojunctions having a delta layer of Si at 500 Å
from the interface, and another delta layer �density Ni� of Si located
at the interface. The magnetic field is B=0.5 T. The critical density
is Ni=1.21010cm−2.
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V. QUANTUM HALL EFFECT

It has been established in GaAs/GaAlAs heterostructures
that a 2DEG perturbed by acceptor or donor impurities ex-
hibits shifts of the quantum Hall plateaus relative to the line
for the classical Hall resistance.2 If acceptors �donors� are
added, then the plateaus shift to lower �higher� filling factor
�. These shifts are successfully explained by the asymmetry
of the DOS in each LL. Because our theoretical approach
takes into account ILLM, the Hall resistivity RH at both high
and low magnetic fields can be calculated and therefore a
direct comparison between the classical Hall effect and the
shifts of the plateaus is possible.

For simplicity we assume that only one state per LL is
delocalized whose energy En is given by the maximum of the
nth LL.43 Furthermore, we assume that this state exists even
in the presence of strong disorder and ILLM, and its contri-
bution to the conductivity is e /h. Within these approxima-
tions, the adiabatic conductivity is given by

RH
−1 =

e2

h
�

n

f�EF − En� , �25�

where f is the Fermi distribution and EF is the Fermi energy.
Figure 12 shows the calculated Hall resistance as a function
of the magnetic field B. For all of the three cases of Fig. 12
a �-doped layer located at 500 Å from the interface, with a
concentration ND=4.1011 cm−2, contains the parent donors.
A second � layer of donors �acceptors� is added at z0=0, and
shifts the curve towards low �high� magnetic fields, com-
pared to the reference case. The figure reproduces well the
shift of the Hall plateaus, and must be compared to Figs. 1
and Fig. 2 of Ref. 2. Experimentally, the shift of the plateaus
is always much less pronounced for donors than for accep-
tors, and this effect is reproduced here. The reason for this
lies in the fact that the remote layer is always doped with
donors. At low field the three curves of Fig. 12 merge into
the same classical line.

VI. CONCLUSION

We have used the multiple scattering approach proposed
by Klauder and the averaging procedure proposed by Ando
to calculate the density of states of a strongly disordered
two-dimensional electron gas under a magnetic field of arbi-
trary strength. We have considered all terms in the perturba-
tive series. One observes, even in presence of a smooth dis-
order, a strong anharmonicity of the Landau ladder due to the
first term in the calculation of the self-energy.

FIG. 10. Density of states in presence of acceptors, for a
GaAlAs/GaAs heterojunctions having a delta layer of Si at 500 Å
from the interface, and another delta layer �density Ni� of Be located
at the interface. The magnetic field is B=0.5 T.

FIG. 11. The density of states at B=0.1 T in the case of mag-
netodonors, and for different impurity concentrations. The curves
labeled from 1 to 11 correspond to concentrations 0.01, 0.025, 0.05,
0.1, 0.15, 0.2, 0.25, 0.5, 1, 2.5, and 5.01010 cm−2, respectively.
Curve 7 corresponds to the concentration Ni=0.251010 cm−2 for
which c=1. Inset: enlargement of the IB at low donor concentra-
tions. The flat conduction band degeneracy is equal to m

��2 .

FIG. 12. Three curves corresponding to three different
“samples.” Reference is represented by a full line. The Hall resis-
tance of the acceptor-doped sample is shifted towards low filling
factors �higher B�, whereas it is shifted towards high filling factors
�lower B� in the case of donors.
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When we analyze the situation of a strong disorder poten-
tial, we must consider two cases: At low field, for strong
attractive disorder potential �donor impurities�, the density of
states exhibits either an impurity band or a band tail, depend-
ing on the impurity concentration. In the case of a strong
repulsive disorder potential �acceptor impurities�, there is
neither impurity band nor band tail. At higher field, one ob-
serves for both cases that impurity bands split from the free
Landau level states: the situation for attractive and repulsive
disorder potential becomes symmetric at high fields when the
mixing between the Landau levels can be neglected.

Our results are in good qualitative agreement with an ex-
perimental study of the metal-nonmetal transition in GaAs-
GaAlAs heterostructures,44 with recent magnetophotolumi-
nescence experiments45 and transport experiments2 in the
Quantum Hall regime.
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