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Quasiparticle energy of semicore d electrons in ZnS: Combined LDA +U and GW approach
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We present a first-principles study of quasiparticle energies in ZnS, with particular emphasis on the semicore
d electrons that are located too shallow by ~2.8 eV compared to experiment in the local density approximation
(LDA). Although the many-body correction in the GW approximation pulls down the d band, the correction
(=0.7 eV) is too small to reproduce measured values. The LDA+U method also shifts the d band down
compared to LDA. With a reasonable choice of U, d-state energy in agreement with experiment may be
achieved. Subsequent quasiparticle calculation within the GW approximation performed to the LDA+ U mean-
field solution, however, pushes the d band back close to the GW result. These results show that the standard
GW method is insensitive to the reference mean-field Hamiltonian for this class of materials and suggest that

going beyond GW may be needed for an accurate description of the d electron level in this system.
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The 112-VI compound semiconductors exhibit a variety of
interesting and technologically important properties that are
not observed in other semiconductors. Many group II chal-
cogenides are well-known for their potential in optoelectron-
ics applications since they have wider band gaps and offer
greater tunability than GaAs. Recently, zinc oxide and chal-
cogenide based dilute magnetic semiconductors (DMS) have
also attracted considerable research interest.! Therefore de-
tailed knowledge of the electronic properties of these mate-
rials is becoming increasingly important. Surprisingly, theo-
retical understanding of the electronic structure of these
supposedly simple sp semiconductors turns out to be rather
challenging. In particular, the quasiparticle energies of the
semicore d states in these materials have been a subject of
much research interest and debate.2"'3 For example, the cal-
culated quasiparticle energy of the semicore d-states in ZnS
within the GW approximation is about 2 eV higher than
measured values.'*!3 Similar discrepancy for these semicore
d-states between theory and experiment is found for most
I12-VI compounds. Although improvement is found by going
beyond the traditional G Wscheme,? the difference is still siz-
able (~1.5 eV for ZnS) and this problem remains a subject
of intensive discussion.

In traditional quasiparticle calculations within the GW ap-
proximation (GWA),'® the self-energy is given by

SW(r,r';E) = - J dE' exp(iE' 5)
21

XG(r,x ;E+E)W(r,x';E'), (1)

where ¢ is a positive infinitesimal number, and G and W are
the electron Green function and dynamically screened Cou-
lomb interaction, respectively. The quasiparticle equation
(the Dyson equation)
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can then be solved to obtain the quasiparticle energies E7’
and wave functions W;. In the above expression, 7 is the
kinetic energy operator, and V,,, and Vy are the external
potential and the Hartree potential, respectively. In practice,
both the G and W operators are constructed within the qua-
siparticle approximation by using the noninteracting particle
wave functions ; and energies €; obtained from density
functional theory (DFT) based calculations:

() (x')

G(r,r';E) = li U
(r,r'";E) ;f;; E—[e+idsgn(Es—¢€)] ¥
W(r,r’;E)=fdr”e"(l',l'";E)U(r”’r/)’ )

where E; is the Fermi energy and v is the bare Coulomb
interaction. The static dielectric function &(r,r’) is calcu-
lated within the random phase approximation (RPA), which
is then extended to finite frequencies using the generalized
plasmon-pole (GPP)'® model. A recent work by Fleszar and
Hanke!! has shown that the plasmon-pole approximation
works quite well for the group IIB-VI semiconductors. Com-
pared to the full integration in frequency domain, energy
difference is 0.1 to 0.2 eV for the d-state energy and even
better for the band gap. The exchange-correlation potential in
the DFT calculations is usually treated within the local den-
sity approximation (LDA) or the generalized gradient ap-
proximation (GGA). This scheme is sometimes referred to as
the GW? approach and has now become the standard of
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quasiparticle calculations. Subsequent updating of the quasi-
particle energies and wave functions in the construction of
the G and W operators (denoted as the G'W! scheme) is
possible but often found not necessary. In the standard ap-
proach, the basic concept is to view the many-electron
Hamiltonian H in a form of H=Hy+(H-H,), where H, is
some chosen mean-field Hamiltonian, and to perform the
GW approximation to the term (H—H,;) in evaluating the
electron self-energy operator. A most common form of H,
would be the DFT Kohn-Sham Hamiltonian within the LDA.
In such calculations, the quasiparticle energy is given in
terms of a self-energy correction to the Kohn-Sham eigen-
values: 8%(E)=3(E)-V,.. The quasiparticle energy to first
order (i.e., neglecting the off-diagonal element effects), can
then be evaluated:

EP? = EFPA + (] S2(EP) ). (5)

The calculated quasiparticle energies are usually within a
couple of tenths of an eV compared to experimental values.
However, standard applications of the GWA (by setting H,
equal to the LDA or GGA Kohn-Sham Hamiltonian) to 118
-VI semiconductors encounter unexpected difficulties. The
significant underestimate of the binding energy of the d
states in the LDA or GGA calculations introduces spurious
pd hybridization. This may have significant effects on the
properties of the d states and the valence (p) bands. Although
self-consistent GW calculations including off-diagonal ele-
ment effects should in principle remove the spurious hybrid-
ization effects, such calculations are formidably expensive.
Alternatively, one may seek for a better starting mean-field
solution and then perform the GW calculation. It is generally
believed that the underestimate of the binding energies of
semicore d states comes largely from the incomplete cancel-
lation of the self-interaction of d electrons in the LDA or
GGA. Therefore computational schemes [e.g., LDA+U'7 or
self-interaction corrected (SIC)'®] in which the self-
interaction is effectively removed may give a better mean-
field description of the ground state properties. Subsequent
quasiparticle calculations within the GWA may then be ap-
plied. In this paper, we report combined LDA+U and GW
calculations for the prototypical I15-VI semiconductor ZnS,
with particular emphasis on the position of the semicore d
levels.

In the LDA+U method!” the density functional to the
total energy consists of three contributions:

EPAYp7(r). {0} = EPApe(0)] + EVH{n ] - E“T{n 7},
(6)

where EMPA is the LDA functional for spin densities p?, EV is
a Hubbard or Hartree-Fock type of interaction arising from
localized electrons (Zn d electrons in this case) with orbital
occupation density matrices n”, and E% is a “double-
counting” term that accounts for the averaged electron-
electron interaction already included in the LDA functional.
Applying the variational principle to the above defined
LDA+U functionals, we have, in addition to the usual one-
electron LDA Hamiltonian, an orbital-dependent correction
term
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FIG. 1. LDA band gap as a function of energy cutoff.

5V: E |ml>5vml,m2<m2|7 (7)
my,my

where |m) denotes localized orbitals. The matrix elements
5Vm1,m2 are constructed with two input parameters, the
screened on-site Coulomb interaction U (8 €V), and the ex-
change J (1 eV). These parameters are calculated using the
screened Coulomb interaction W(r,r') defined in Eq. (4) and
the maximally localized Wannier functions!® of the d states:

1

U= mm%3 (my,my|W(r,x")|my,ms) (8)
and
JeU-— 3 [(my,ms|W(x,x")|m,,ms3)
20020+ 1),5,
= (my,ms|W(r,x")|mz,m,)]. ©)

We first calculate the electronic structures of ZnS in the
LDA and the LDA+U method implemented® within the
pseudopotential plane-wave formalism. All three semicore
sub-shells of Zn, namely, 3s, 3p, and 3d, are treated as va-
lence electrons. Since these orbitals are strongly localized, a
very high energy cutoff (E,,) in the plane-wave expansion of
the wave functions is needed. Figure 1 shows the calculated
energy gap E, as a function of E. The calculated band gap
is underestimated significantly if the cutoff energy is set be-
low 300 Ry. Therefore an E_, of 350 Ry is used in all cal-
culations.

Figure 2 shows the calculated energy position of d-states
at I" as a function of the screened Coulomb interaction U
within the LDA+U method. The d-state energy decreases
linearly with increasingly U as expected. The LDA+U
+GW results, however, are fairly insensitive to the value of
U as will be discussed in more detail later. Figure 3 com-
pares the band structures of ZnS calculated within the LDA
and the LDA+ U method using the calculated Coulomb and
exchange parameters (U=8 eV and J=1 eV). The effective
removal of the self-interaction in the LDA+U calculation
separates the semicore d from the valence p states. This
separation has several interesting consequences. First, the av-
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FIG. 2. The position of d-states (at I') as a function of the U
parameter. The LDA+U results (open circles) and the LDA+U
+GW results (closed circles). The dashed line is a guide for the eye.

eraged energy position (E,) of the d states (—-8.78 eV at the I
point) relative to the top of the valence band now compares
favorably with the measured values —8.97—-9.03 eV.!413
This is in contrast to the LDA result (—=6.22 eV at I'), as
shown in Table I. In addition, the bandwidths of both the
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FIG. 3. Band structure obtained by (left) LDA and (right)
LDA+U.
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TABLE I. Comparison of the calculated electronic properties of
ZnS within LDA and LDA+U.

Band gap
(eV) E, D) €
LDA 1.88 -6.22 6.01
LDA+U 2.16 -8.78 5.82
Expt. 3.80 -8.97%, —9.03" 5.1

4Reference 14.
PReference 15.

valence p states and the d states are reduced noticeably due
to the reduced pd hybridization in the LDA+ U calculations.
This reduction of the valence bandwidth is also reflected by
an increase in the calculated band gaps: 2.16 eV within the
LDA+U vs 1.88 eV within the LDA. The calculated static
dielectric constant (Table I) is also slightly improved within
the LDA + U method when compared to the experiment.
Therefore it appears that the LDA+U calculations im-
prove the agreement between theory and experiment, espe-
cially for the energy of the d states. However, the LDA+U
method is within the DFT framework. There is no a priori
justification which warrants a direct comparison between the
calculated band structure and the measured quasiparticle en-
ergies. On the other hand, since the self-interaction of the
Zn 3d electrons is effectively removed in the LDA+U
method, one expects the calculated single particle wave func-
tions and energies may serve as a better mean-field solution
for subsequent perturbative treatment within the GWA. We
hereby denote the scheme in which GW calculations are
done on top of the LDA+U single particle solution as
LDA+U+GW whereas the traditional GW calculation is de-
noted as LDA+GW. In the LDA+ U+ GW calculation, the
quasiparticle equation is slightly modified to reflect the ad-
ditional exchange-correlation potential 6V introduced in Eq.

(7):
[T+ Veu(r) + Viy(r) + V,o(r) + V]V (r)

+fdr’AE(r,r’;E?”)‘If(r’),-=E?”\I’,-(r), (10)

where A is the many-body correction to LDA+U. It is
defined using the GW self-energy 3, the LDA exchange-
correlation potential V..., and the orbital dependent correction
term oV as

62 =%-V,.—-6V. (11)

The calculated quasiparticle energies at the I" point within
various schemes are shown in Figs. 2 and 4. The LDA
+GW calculation in the G°W" approximation increases the
band gap to 3.54 eV from 1.88 eV within the LDA. This
compares well with the experimental value of 3.8 eV. The d
state energy, however, deviates significantly from the widely
quoted experimental value.'*!> The calculated d-state energy
at the I' point within the G°W? scheme is about —6.95 eV
(averaged and measured from the valence band maximum),
which is about 2 eV higher than experiment but agrees well
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FIG. 4. (Color online) Energy levels at I'. The upper (lower) d
levels are doubly (triply) degenerate. The dotted lines indicate mea-
sured values for the band gap and d-state energy, respectively. The
energy is measured from the top of the valence band (also indicated
by a dotted line.)

with previous calculations.® We then apply the LDA+U
+GW scheme described above to this problem. Interestingly,
although the LDA+ U calculation gives the d level position
(—8.78 eV) that agrees very well with experiment, the self-
energy correction within the G°W? (more precisely, diagonal
G°WY) approximation pushes the d level back up to
—7.10 eV. Therefore the improvement over the conventional
LDA+GW calculations is not significant. This is not an un-
expected result since the final quasiparticle energy should be
independent of H,, provided that AH=H-H, is small
enough for perturbation theory. We have also partly ad-
dressed the self-consistent issue in the quasiparticle calcula-
tions by updating the quasiparticle energies in the construc-
tion of the G and W operators, denoted as the G'W' scheme.
This scheme gives minor improvement in the calculated d
state energy as shown in Fig. 4. This once again suggests that
the fundamental physics involved in this problem has yet to
be understood.

There are several related issues that have been discussed
intensively in the literature. Unfortunately, no consensus is
reached so far. It was shown!® that treating the exchange
energy within the exact-exchange scheme greatly improves
the description of the d states, probably owing to the near
elimination of self-interaction within the exact-exchange
method. For example, the calculated E; for ZnS is about
—7.05 eV measured from the valence band maximum, which
is similar to our LDA+GW result. However, subsequent GW
calculations show negligible improvement, with E,; changing
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from —7.05 eV to —7.08 eV.!3 This result further confirms
our conclusion that the GW results ought to be insensitive to
the starting mean-field solution if it is appropriately applied.
This conclusion apparently contradicts Ref. 13 claiming that
LDA gives a poor starting mean-field solution. The discrep-
ancy is ascribed to the difference in the LDA+GW results. In
Ref. 13, the GW correction pushes the d band up compared
to the LDA value, which is contrary to the results of all other
groups*®>!! including ours. In a very recent paper'? it was
shown that an all-electron exact exchange treatment gives
almost perfect agreement between theory and experiment as
far as E; is concerned. However, the same calculations give
a band gap that is more than 1.2 eV larger than experiment
for ZnS and about 2.2 eV too small for BN. It was also
argued'? that removing the core-valence exchange energy
gives a much better agreement between the calculated and
measured band gaps of several semiconductors. However,
the same argument does not apply to many insulators. More-
over, as discussed above, there is no rigorous justification for
using the Kohn-Sham eigenvalues as quasiparticle energies
even if one knows the exact exchange-correlation energy
functional.

In summary, we have investigated the d-state energy of
ZnS within the GW approximation. We found that the start-
ing Hamiltonian plays a minor role in the final GW quasipar-
ticle energies. While LDA+U (U=8 eV and J=1 eV) calcu-
lations give a much deeper d level compared to LDA by
2.6 eV which agrees well with the experiment, the LDA
+U+GW value is only 0.15 eV lower than that calculated
within the LDA+GW scheme. The discrepancy between the
calculated d-state energy and measured values is still as large
as 2 eV. The G'W' correction to G'W? is not significant
(0.3 eV). Thus further investigation is necessary to settle
this issue.
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