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We compute from first principles the infrared dispersion of the nonlinear susceptibility ��2� in zinc-blende
semiconductors. At terahertz frequencies the nonlinear susceptibility depends not only on the purely electronic
response ��

�2�, but also on three other parameters C1, C2, and C3 describing the contributions from ionic motion.
They relate to the TO Raman polarizability, the second-order displacement-induced dielectric polarization, and
the third-order lattice potential. Contrary to previous theory, we find that mechanical anharmonicity �C3�
dominates over electrical anharmonicity �C2�, which is consistent with recent experiments on GaAs. We predict
that the sharp minimum in the intensity of second-harmonic generation recently observed for GaAs between
�TO/2 and �TO does not occur for several other III-V compounds.
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I. INTRODUCTION

The nonlinear optical properties of materials in the visible
and near-infrared �near-IR� have been extensively studied
since the development of the laser. Except for a few pioneer-
ing efforts,1,2 the far-IR region of the spectrum has remained
largely unexplored. This state of affairs, a consequence of the
lack of tunable and intense laser sources and sensitive detec-
tors in the terahertz range, is starting to change, thanks to
advances in instrumentation.3,4 More accurate measurements
of the nonlinear susceptibilities at terahertz frequencies are
beginning to appear,5 calling for quantitative theoretical
modeling.

The first nonlinear susceptibility ��2���3=�1+�2 ;�1 ,�2�
displays strong dispersion when the frequencies involved are
near a zone-center transverse optical phonon frequency �TO.
This behavior was first observed by Faust and Henry1 �see
also Refs. 6 and 7� in GaP for the case of mixing between
visible and far-IR radiation ��1 ,�1+�2��TO��2�; they
showed that the dispersion of this process depends on the
linear electro-optic susceptibility �eo

�2�. Another early set of
experiments8,9 investigated frequency mixing in the micro-
wave range below the lattice resonances ��1 ,�2 ,�1+�2

��TO�. For the two zinc-blende compounds studied, GaAs
and GaP, it was found9 that the sign of the microwave coef-
ficient �mw

�2� �the static nonlinear susceptibility� was opposite
to that of the “high-frequency” coefficient ��

�2� describing
second-harmonic generation �SHG� and frequency mixing in
the transparency region of the crystal ��TO��1 ,�2 ,�1+�2

�Eg /��. Mayer and Keilmann2 later studied the dispersion
of the SHG coefficient �SHG

�2� ���=��2��2� ;� ,�� of GaAs and
LiTaO3 over a limited frequency range �0.6–1.7 THz�.

The present work was motivated by the recent experi-
ments of Dekorsy et al. on SHG in GaAs.5 Using a tunable
free-electron laser they measured the dispersion of �SHG

�2�

from 4 to 6 THz, observing a strong resonant enhancement
at 4.5 THz, close to �TO/2=4.1 THz as expected, followed
by a sharp dip in the power output. Although they were un-
able to determine unambiguously the frequency �0 at which

�SHG
�2� vanishes, a lower bound of 5.3 THz was established.

By fitting the location of the minimum in SHG power to an
expression derived by Flytzanis,10 they obtained new param-
eters for GaAs.

Flytzanis’s expression is given below �Eq. �1��. Using an
effective-bond model, he obtained numerical estimates for its
parameters. These have been used as a guide for interpreting
subsequent experiments,2,5 in spite of their questionable reli-
ability. For instance, the model predicts the wrong sign for
the Born effective charge and the Raman polarizability, two
of the material parameters at play. In this work we reexamine
this problem using first-principles density-functional tech-
niques.

The paper is organized as follows. In Sec. II we discuss
the formalism describing the IR dispersion of ��2�. The com-
putational approach is explained in Sec. III. In Sec. IV we
present and discuss results for several III-V semiconductors,
GaAs, GaP, AlP, AlAs, and AlSb. Finally, in Sec. V we sum-
marize our findings. Additional discussion of the computa-
tional methods is given in two appendixes.

II. FORMALISM

In this work we limit ourselves to the zinc-blende struc-
ture adopted by III-V semiconductors, the simplest crystal
structure where a nonvanishing ��2� is allowed by symmetry.
In the zinc-blende structure there is a single TO mode and
third-rank tensors such as ��2� have only one independent
component �xyz

�2� . The dispersion of ��2� below the electronic
resonances and above the elastic resonances of the medium
is given by the following expression, obtained by
Flytzanis:10

��2���1 + �2;�1,�2� = ��
�2����1,�2� , �1�

where
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���1,�2� = 1 + C1� 1

D��1�
+

1

D��2�
+

1

D��1 + �2��
+ C2� 1

D��1�D��2�
+

1

D��2�D��1 + �2�

+
1

D��1 + �2�D��1��
+ C3� 1

D��1�D��2�D��1 + �2�� �2�

and D���=1−�2 /�TO
2 − i	� /�TO

2 is the resonance denomi-
nator with phonon damping. This expression can be derived
under rather general conditions11 and is independent of the
details of the microscopic forces, the only assumption being
that the mode is weakly damped �	
�TO�.

The dispersion depends on three dimensionless coeffi-
cients

C1 =
�TO

2v��
�2�� Z*

M�TO
2 � �3�

�known as the Faust-Henry coefficient�,

C2 =
��2�

2v��
�2�� Z*

M�TO
2 �2

�4�

and

C3 = −

�3�

2v��
�2�� Z*

M�TO
2 �3

. �5�

Here v is the volume of the primitive cell, M is the reduced
mass, and the remaining quantities are discussed below. Un-
like the second-rank tensor properties, the signs of the Ci’s
remain unchanged if we reverse the definition of the positive
�111� direction. We adopt the convention that it points from
the cation to the closest anion.12,13

Having obtained the above model-independent expression
for the IR dispersion of ��2�, Flytzanis then proceeded to
estimate the values of the coefficients C1, C2, and C3 for
several III-V compounds, using an effective-bond model.10

We will now describe how to compute them from first prin-
ciples. Except for the damping parameter 	 �which we do not
calculate�, the quantities entering Eqs. �1�–�5� are conve-
niently evaluated as derivatives of forces or macroscopic po-
larization with respect to macroscopic electric fields or dis-
placements �forces under finite fields are readily available via
the Hellmann-Feynman theorem�.14 In what follows F repre-
sents the force on the cation, P is the macroscopic polariza-
tion, E is a macroscopic electric field, and u=uIII−uV is the
relative displacement between the cation �group-III� and an-
ion �group-V� sublattices away from their equilibrium posi-
tions. Two of the quantities in Eqs. �1�–�5� are first deriva-
tives: the cation Born effective charge

Z* = v� �Px

�ux
�

E=0
= � �Fx

�Ex
�

u=0

�6�

and the zone-center TO phonon frequency

�TO
2 = −

1

M
� �Fx

�ux
�

E=0
. �7�

The remaining four are second derivatives: the nonresonant
electronic �“high-frequency”� quadratic susceptibility

��
�2� = � 1

2

�2Px

�Ez�Ey
�

u=0

, �8�

the nonresonant TO Raman polarizability per primitive
cell,42

�TO = �v
����

�1��xy

�uz
�

E=0
= � �2Fz

�Ex�Ey
�

u=0

, �9�

the second-order dipole moment or “electrical anharmonic-
ity”

���2� = v
�2Px

�uz�uy
�

E=0
, �10�

and the third-order lattice potential or “mechanical anharmo-
nicity”


�3� = � −
�2Fx

�uz�uy
�

E=0
. �11�

Note that in Eq. �9� the Raman tensor was recast as a second-
order field-induced force.15,16

It will be useful to consider Eq. �1� in the three limiting
cases discussed in the Introduction. In the high-frequency
limit it reduces to the purely electronic coefficient ��

�2�; for
�1 ,�1+�2��TO��2, it becomes the unclamped-ion,
strain-free electro-optic susceptibility

�eo
�2� = ��

�2��1 + C1� , �12�

and finally for �1 ,�2 ,�1+�2��TO it describes the strain-
free static �microwave� nonlinear susceptibility, which in-
volves all three coefficients,

�mw
�2� = ��

�2��1 + 3C1 + 3C2 + C3� . �13�

III. COMPUTATIONAL APPROACH

The calculations are done using ABINIT,17 a plane-wave
pseudopotential density-functional code, using both the
local-density approximation �LDA� and a generalized gradi-
ent approximation18 �GGA�. In order to better assess the sen-
sitivity of the nonlinear optical properties to the approximate
density functional used, all calculations are performed at the
same �experimental� lattice constants. Norm-conserving
Troullier-Martins pseudopotentials19 are used for all materi-
als, and for Ga the d electrons are included in the valence.
We used a cutoff energy of 30 Ha for the aluminum com-
pounds and 45 Ha for the gallium compounds.

For finite systems such as molecules, ab initio calcula-
tions of ��2� below the electronic resonances �including con-
tributions from ionic motion�20 are performed routinely.
Similar calculations for bulk solids have become feasible
only recently, thanks to a series of developments, starting
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with the Berry-phase theory of polarization,21 which pro-
vides a means of evaluating the electronic contribution to the
macroscopic polarization P as a bulk quantity �for a review,
see Ref. 22�. In Ref. 23 a density-functional perturbation
method was developed for computing nonlinear �electronic,
electro-optic, and nonresonant Raman� susceptibilities using
the Berry-phase formalism to treat the electric field perturba-
tion. Here we use a closely related approach where the de-
rivatives are evaluated by finite differences rather than ana-
lytically, using the method of Ref. 14 to handle finite electric
fields. The appeal of this method lies in its simplicity: once
implemented, no extra coding is required to compute a dif-
ferent higher-order or mixed derivative or to switch from,
e.g., the LDA to GGA.

In our calculations we apply the finite perturbation �u or
E� along �111� and monitor the response �P or F� along the
same direction. That is, we let u=�a�x̂+ ŷ+ ẑ�, where a is the
lattice constant and the cation and anion sublattices are
brought closer together when ��0; E=�E0�x̂+ ŷ+ ẑ�, where
E0=e / �4��0a0

2�; F= f�x̂+ ŷ+ ẑ�; and �P= p�x̂+ ŷ+ ẑ�. Equa-
tions �6�–�11� then become

Z* =
a2

4

�p

��
=

�f

��
, �14�

�TO
2 = −

1

aM

�f

��
, �15�

��
�2� =

1

4

�2p

��2 , �16�

�TO =
1

2

�2f

��2 , �17�

��2� =
a

8

�2p

��2 , �18�

and


�3� = −
1

2a2

�2f

��2 . �19�

The parameters are calculated from these expressions and
then inserted into Eqs. �3�–�5� to obtain the coefficients C1,
C2, and C3. In Appendix A we describe a different approach
whereby �eo

�2� and �mw
�2� are evaluated directly by finite differ-

ences in addition to ��
�2� and Eqs. �12� and �13� are then used

to obtain C1 and 3C2+C3.
We have taken as the smallest increments �=1�10−3 and

�=1�10−4 for AlAs, AlP, GaP, and AlSb. In the case of
GaAs a smaller field step of �=3�10−5 was used. This was
needed in order to stay below the k-mesh-dependent critical
field above which the electric enthalpy functional loses its
minima.14 Because of its smaller band gap, the critical field
is lower for GaAs than for the other compounds.

For the derivatives we use Richardson’s extrapolation to
estimate the limit h→0 from calculations with two different
step sizes:

f �n��x� =
4

3
D�n��x,h� −

1

3
D�n��x,2h� + O�h4� , �20�

where D�1� is given by the centered finite difference expres-
sion

D�1��x,h� �
f�x + h� − f�x − h�

2h
= f��x� + O�h2� �21�

and D�2� is given by

D�2��x,h� �
f�x + h� + f�x − h� − 2f�x�

h2 = f��h� + O�h2� .

�22�

In order to speed up the convergence of polarization-
dependent quantities with respect to the k-point sampling, we
use a similar extrapolation for the discretized Berry-phase
formula, as described in Appendix B. All the values quoted
in the tables were calculated on a 16�16�16 k-point mesh,
except in the case of GaAs which, for reasons discussed in
that appendix, demanded a denser mesh.

IV. RESULTS FOR III-V SEMICONDUCTORS

A. Microscopic parameters

We have systematically computed the values of all six
parameters �6�–�11�, using the methods summarized above,
for five III-V compounds. The results are collected in Table I,
and we will begin by discussing the comparison with the
model theory of Flytzanis and then pass to the discussion of
the experimental values.

Table I shows striking differences between the first-
principles results and Flytzanis’s model calculations: �i�
While both levels of theory produce the same sign for ��

�2�,
they disagree on the signs of Z*, �TO, ��2�, and 
�3�. �ii� We
find that the magnitude of ��2� �
�3�� is significantly smaller
�larger� than Flytzanis predicts.

Born charges and phonon frequencies are routinely com-
puted from first principles, and they tend to compare favor-
ably with experiment,29 as evidenced in Table I. Dielectric
susceptibilities and Raman polarizabilities are more prob-
lematic. For example, it is well known that density-
functional theory tends to overestimate the dielectric con-
stant. This also seems to be generally the case for the
nonlinear susceptibility ��

�2�.30,31 The problem here is com-
pounded by the fact that the experimental determination of
this quantity is also problematic, with the values reported in
the literature displaying a very large dispersion.27 We have
opted for quoting the recommended values from
Landolt-Börnstein.26 Inspection of Table I suggests that our
first-principles values are too large by roughly a factor of 2,
which, however, is comparable with the uncertainty in the
experimental determination. Measurements of the absolute
Raman polarizability are also difficult, and few values are
reported in the literature. Our result that �TO�0 means that
the bond polarizability along �111� increases with increasing
bond length around the equilibrium length of the bond. This
is in agreement with the measured sign in GaAs,13 but in

AB INITIO STUDY OF THE NONLINEAR OPTICS OF… PHYSICAL REVIEW B 74, 245204 �2006�

245204-3



disagreement with the model calculations of Flytzanis.10,32

B. Lattice-induced contributions to �„2…

From the calculated parameters in Table I we obtained,
using Eqs. �3�–�5�, the various lattice-induced contributions
to ��2�, collected in Table II. We find that the Faust-Henry
coefficients C1 are roughly a factor of 2 smaller than the
experimental values, consistent with the overstimation of ��

�2�

in Eq. �3� discussed above. The mechanical anharmonicity
coefficient C3 is, in all cases, significantly larger in magni-
tude than C2 �electrical anharmonicity�. This is the opposite
conclusion from Refs. 10 and 33. We remark that although
the correct signs for C1 and C3 were obtained therein, this
resulted from a cancellation of errors in the signs of Z*, �TO,
and 
�3� in Eqs. �3� and �5�. No such cancellation occurs in
C2, and indeed for the three compounds studied both in the
present work and in Ref. 10 �AlSb, GaP, and GaAs�, there is
a disagreement in the predicted sign for this quantity.

While the coeffficient C1 can be measured in various
ways �electro-optic effect, frequency mixing,1 and relative
Raman scattering efficiencies from LO and TO phonons�34,35

with fairly consistent results, it is difficult to disentangle the
values of C2 and C3 from experiments. The more readily

accessible quantity is the combination 3C2+C3: it follows
from Eqs. �12� and �13� that

3C2 + C3 = 2 +
�mw

�2� − 3�eo
�2�

��
�2� , �23�

where all the quantities on the right-hand side are directly
measurable. Flytzanis found C2�0 and C3�0 for all III-V
compounds he investigated. Under those circumstances, the
measured sign of 3C2+C3 indicates which anharmonic con-
tribution �electrical or mechanical� is dominant in a given
material. We find, however, that the sign of C2 is not the
same for all III-V compounds, which invalidates such an
analysis.

Interestingly, our calculated 3C2+C3 disagree in sign with
the values inferred from experiment8,9 �see Table III�. It is
apparent from Eq. �23� that the sign of 3C2+C3 is rather
sensitive to not only the signs, but also the relative magni-
tudes of �eo

�2� and �mw
�2� . While the signs of our calculated �mw

�2�

and �eo
�2� agree with experiment �see Table III� there is a sig-

nificant discrepancy regarding their magnitudes. The well-
known limitations of density-functional theory in reproduc-
ing dielectric properties, such as the optical gap
�underestimated� and the dielectric constant �overestimated�,

TABLE I. Parameters that determine the nonlinear susceptibility of zinc-blende compounds in the infrared
range, grouped into first- and second-derivative quantities �Eqs. �6�–�11��. Rows labeled “Model” pertain to
the empirical-model calculations of Flytzanis: ��

�2� is taken from Ref. 24, the remaining values from Ref. 10.

First derivative Second derivative

Z*
�TO

�THz�
��

�2�

�pm/V�
�TO

�Å2�
��2�

�nC/m�

�3�

�TJ/m3�

GaAs LDA 2.05 8.0 472 −54 −1.89 4.29

GGA 2.05 8.3 337 −34 −1.67 5.10

Model 127 84 5.90 −1.2

Expt. 2.2a 8.0a 170b −38c

GaP LDA 2.10 10.6 131 −12.9 −1.50 4.82

GGA 2.15 10.9 114 −9.8 −1.36 4.76

Model −2.0 11.5 93 43 7.77 −2.1

Expt. 2.0a 11.0a 71b −20c

AlP LDA 2.24 12.7 45 −5 0.28 4.64

GGA 2.24 13.1 42 −5 0.24 4.32

Expt. 2.28a 13.2d

AlAs LDA 2.14 10.4 79 −9 0.27 4.00

GGA 2.11 10.8 73 −8 0.22 4.94

Expt. 2.3a 10.8e

AlSb LDA 1.86 9.2 205 −19 −0.09 3.09

GGA 1.79 9.5 187 −18 −0.12 3.34

Model −1.6 9.8 47 77 8.34 −1.5

Expt. 1.9a 9.6a 153b

aQuoted in Ref. 25.
bReference 26.
cReference 27.
dQuoted in Ref. 28.
eQuoted in Ref. 29.
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may be of concern in this regard. We note, however, that a
possible error in the magnitude of ��

�2� will not affect the sign
of 3C2+C3, while 
�3�, Z*, and ��2�, the remaning parameters

entering C2 and C3, are expected to be reasonably accurate
within density-functional theory, which typically describe
rather well lattice-dynamical and zero-field polarization
properties �e.g., Born charges� of III-V semiconductors.29

Hence our prediction for the sign for 3C2+C3 should be
sound. In view of the discrepancy with experiment, it would
be useful to have careful measurements of the relative mag-
nitudes of �mw

�2� and �eo
�2�, but we are not aware of any other

work along these lines besides the pioneering investigations
of Boyd, Pollack and co-workers.8,9

A convenient measure of the relative importance of the
two lattice-anharmonicity mechanisms is the ratio C2 /C3,
also included in Table III. We expect reasonably accurate ab
initio results for this quantity, since it is independent of ��

�2�,
the “weak link” in the calculation. Our values clearly cannot
be reconciled with those of Flytzanis. In the next section we
will discuss what this implies for the interpretation of the
recent experiment of Dekorsy et al.,5 which attempted to
obtain values for the parameters C2 and C3 separately.

C. Zero crossings of �SHG
„2… in the terahertz range

The quantity 	�SHG
�2� ���	 is displayed in Fig. 1 for GaAs.

The dashed line in the upper panel corresponds to a sensible
choice of parameters assembled from the experimental and
theoretical investigations from the 1960s and 1970s �these
will be referred to as “old parameters”�. In between the ex-
pected strong resonant enhancements at �TO/2 and �TO,
there are two dips, at 5.1 and 7.4 THz, the first more pro-
nounced than the second. They result from sign reversals of
Re �SHG

�2� ��� in Eq. �1�. If SHG is observed over a frequency
range containing the first zero crossing, its frequency �0 can
be detected as a sharp dip in the second-harmonic power. If,
furthermore, 3C2+C3 is known from separate measurements

TABLE II. Lattice-induced contributions to the nonlinear sus-
ceptibility of zinc-blende compounds �Eqs. �3�–�5��. Rows labeled
“Model” pertain to the empirical-model calculations of Flytzanis.

C1 C2 C3

AlP LDA −0.38 0.05 −1.82

GGA −0.37 0.04 −1.78

AlAs LDA −0.37 0.03 −0.91

GGA −0.34 0.02 −0.82

AlSb LDA −0.25 −0.00 −0.22

GGA −0.23 −0.00 −0.18

Model −1.97 0.35 −0.11

GaP LDA −0.27 −0.04 −0.53

GGA −0.28 −0.07 −0.56

Model −0.37 0.11 −0.05

Expt. −0.53a

Expt. −0.75a

GaAs LDA −0.35 −0.02 −0.12

GGA −0.29 −0.03 −0.15

Model −0.83 0.14 −0.07

Expt. −0.51a

Expt. −0.59b

Expt. −0.68a

Expt. −0.48c

aQuoted in Ref. 10.
bReference 34.
cReference 36.

TABLE III. Third and fourth columns: parameters C2 and C3 combined in a way that relates more directly
to experiments. Fifth and sixth columns: electro-optic and microwave nonlinear susceptibilities of Eqs. �12�
and �13� �in pm/V�. Rows labeled “Model” pertain to the empirical-model calculations of Flytzanis.

3C2+C3 C2 /C3 �eo
�2� �mw

�2�

AlP LDA −1.68 −0.026 28 −82

GGA −1.66 −0.022 26 −74

AlAs LDA −0.83 −0.028 50 −75

GGA −0.77 −0.023 48 −58

AlSb LDA −0.23 0.012 154 6

GGA −0.19 0.017 145 25

Model 0.93 −3.33

GaP LDA −0.71 0.146 88 −90

GGA −0.78 0.128 82 −69

Model 0.27 −2.22

Expt. 0.28a 20a −24a

GaAs LDA −0.19 0.203 309 −107

GGA −0.22 0.175 240 −30

Model 0.35 −1.96

Expt. 0.39a 43a −51a

aReferences 8 and 9.
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of ��
�2�, �eo

�2�, and �eo
�2�,8,9 the remaining free parameter in Eq.

�1�, C2 /C3, can then be adjusted to fit the zero-crossing fre-
quency. This was proposed in Ref. 2 as a way of determining
C2 and C3 separately.

Dekorsy et al.5 recently used a free-electron laser to mea-
sure the far-IR dispersion of the SHG power in GaAs from
4.4 to 5.6 THz. They observed the expected resonance close
to �TO/2, followed by a strong drop. Because of insufficient
filtering of the fundamental signal in the detector above
5.6 THz, which masked the SHG signal, they were unable to
locate precisely the zero crossing and only a lower bound of
5.3 THz was established. Since this is slightly above the
5.1 THz predicted for �0 from the old parameters, they then
discussed how the values of C2 and C3 had to be revised to
increase �0 to 5.3 THz �the assumption being that the lower
bound is reasonably close to the actual zero crossing�. They
opted to leave 3C2+C3 unchanged at 0.35 �the theoretical
value from Ref. 10, which is fairly close to the experimental
0.39�; a good fit, shown as a solid line in the upper panel of
Fig. 1, was then obtained by changing C2 /C3 from −2.0 to
about −1.23. This amounts to essentially doubling C3, from
−0.07 to −0.14, while changing C2 only slightly, from 0.14 to
0.16.

The dashed line in the lower panel of Fig. 1 shows the
dispersion obtained with our ab initio parameters. The zero-
crossing frequency is raised significantly, to 6.2 THz. In or-
der to assess the impact of the uncertainty in ��

�2� on the
dispersion, we show as a solid line the curve that results
from reducing ��

�2� from 472 pm/V to 277 pm/V. This af-

fects the Ci’s according to Eqs. �3�–�5�, and we have chosen
the amount of rescaling so as to bring our value for C1 into
agreement with the experimental number from Ref. 34,
C1=−0.59. The zero-crossing frequency also changes, from
6.2 THz to 5.67 THz, only slightly above the measured
lower bound of 5.3 THz. Clearly, different sets of values for
C2 and C3 can lead to dispersions with very similar zero
crossings �the solid lines in the two panels of Fig. 1�, and
thus both consistent with the experimental data, underscoring
the need for reliable theoretical input. Interestingly, we find
that for the other III-V compounds no zero crossing occurs
for �TO/2����TO. This is illustrated in Fig. 2 for GaP.

V. SUMMARY

We have carried out a detailed ab initio investigation of
the IR dispersion of the nonlinear susceptibility ��2� in III-V
zinc-blende semiconductors. The results were compared with
Flytzanis’s empirical model10 and with experiment, with par-
ticular emphasis on the recent second-harmonic generation
measurements carried out by Dekorsy et al.5 These authors
based the interpretation of their data on the parameters ob-
tained in Ref. 10 from model calculations. By revising them
somewhat, they were able to obtain a reasonable fit to the IR
dispersion of �SHG

�2� . Instead, we find a completely different
set of parameters, which, however, is still consistent with
experiment.

Our findings can be summarized as follows: �i� We pro-
vide theoretical support to the main qualitative conclusion of
Ref. 5: that the ratio 	C2 /C3	 between the contribution from
second-order lattice dipole moment �C2� versus phonon in-
teraction through the third-order lattice potential anharmo-
nicity �C3� is smaller than previously thought. �ii� However,
we find that this is a consequence of not only an increase in
	C3	,5 but also a significant decrease in 	C2	, with the result
that the former dominates the latter �	C2 /C3	
1�. �iii� The
sign of C2 is not constant thoroughout the III-V series, and
for the two most-studied compounds �GaAs and GaP� it is

FIG. 1. Calculated IR dispersion of 	�SHG
�2� ���	 in GaAs, for dif-

ferent choices of the parameters in Eq. �1�. �C1 ,C2 ,C3�=
�−0.59,0.14,−0.07�, �−0.59,0.16,−0.13�, �−0.35,−0.024,−0.12�,
and �−0.59,−0.041,−0.20� for the curves labeled “Old parameters,”
“Dekorsy,” “Ab initio,” and “Rescaled ab initio,” respectively. Fol-
lowing Ref. 5, we set the damping parameter 	 to 0.29 THz. The
meaning of these parameter sets is explained in the text.

FIG. 2. Calculated IR dispersion of 	�SHG
�2� 	 in GaP, using the ab

initio parameters without damping �	=0�. In contrast to GaAs �Fig.
1�, no sharp dip is observed between the two maxima at �TO/2 and
�TO.
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negative, contrary to prior understanding. �iv� For all com-
pounds except AlSb, we find that the sign of the microwave
nonlinear susceptibility �mw

�2� is opposite to that of the optical
���

�2�� and electro-optical ��eo
�2�� coefficients, in agreement

with early experiments on GaAs and GaP.8,9 However, our
calculated negative sign for 3C2+C3, which is sensitive to
the relative magnitudes of �eo

�2� and �mw
�2� , disagrees with those

experiments. �v� The parameter fit to the IR dispersion of
�SHG

�2� relies on the occurrence of a sharp minimum in SHG
power between �TO/2 and �TO. The observed zero crossing
in GaAs is reproduced by our calculations, but is also con-
sistent with an alternative set of parameters characterized by
3C2+C3�0 and 	C2 /C3	�1. For the other compounds con-
sidered, we find no zero crossing.
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APPENDIX A: A METHOD FOR THE DIRECT
EVALUATION OF C1 AND 3C2+C3

As discussed in the main text, by using Eqs. �12� and �13�
one can obtain experimental values for C1 and 3C2+C3 from
separate measurements of ��

�2�, �eo
�2�, and �mw

�2� . In this appen-
dix we describe the computer-experiment analogs of such
measurements.

We define “high-frequency” �optical� fields E and “low-
frequency” �static� fields E as follows:23 when an optical
field E is applied, the ions are not allowed to move, so that
the polarization response is purely electronic; in contrast,
both ions and electrons respond to a static field E, resulting
in a total change in polarization that contains ionic as well as
electronic contributions �but the cell is kept strain free, since
we are interested in frequencies above the elastic resonances
of the medium�. In Ref. 14 the high-frequency and static
dielectric constants �� and �0 were evaluated by finite differ-
ences as first derivatives with respect to E and E, respec-
tively. Extending this to second order yields the high-
frequency ��

�2� and the low-frequency �microwave� �mw
�2� .

Evaluating the electro-optic �eo
�2� requires combining a

static and an optical field:

��eo
�2��xyz =

1

2

d

dEz
� �Px

�Ey
� =

1

2

d

dEz
���

�1��xy . �A1�

Here the action of the static field is described by a total
derivative as a reminder that the polarization depends on a
static field both explicitly and implicitly, through the atomic
positions. Clearly the order of the �partial and total� deriva-
tives matters. We can view their combined action as a con-

ventional mixed derivative on an auxiliary function P̃�E ,E�
defined as follows: �i� apply a field E and let both electrons
and ions respond; �ii� add a field E, and let the electrons
readjust under the total field E+E while keeping the ions

fixed in the positions obtained in the first step. P̃�E ,E� is
defined as the polarization after step �ii�. Then

d

dEz
�� �Px

�Ey
��

E=�E=0

=
�2P̃x

�Ez�Ey
=

�2P̃x

�Ey�Ez
. �A2�

As before, we apply small fields along �111�: E=��x̂+ ŷ+ ẑ�,
and E=��x̂+ ŷ+ ẑ�. Then, defining �P̃�E ,E�= p̃�� ,���x̂+ ŷ
+ ẑ�, we find

�eo
�2� =

1

4

�2p̃

����
, �A3�

which we evaluate as

�2p̃

����
=

p̃��,�� − p̃��,− �� − p̃�− �,�� + p̃�− �,− ��
4��

+ O��2,�2� .

�A4�

We found that a more stringent force tolerance for the atomic
relaxations must be used when evaluating �mw

�2� than when
evaluating �eo

�2�. This results from the fact that in the latter
case the displacements are second order in the field, whereas
in the former they are first order.37 Well-converged values
were obtained by using a force tolerance of
10−7 hartree/bohr for �mw

�2� , while for �eo
�2�10−5 hartree/bohr

was sufficient.
The values for �eo

�2� and �mw
�2� obtained using this method

agree to within 1 pm/V with the ones obtained from the
separate calculation of C1, C2, and C3 described in Sec. III.
This provides an internal consistency check of our calcula-
tions. Although it is somewhat more expensive and does not
provide as much information �e.g., it does not produce sepa-
rate values for C2 and C3�, the method described in this
appendix provides a simple means of controlling the me-
chanical boundary conditions under applied fields. Although
we only considered atomic displacements, the same strategy
can be extended to strain deformations. In this way one can
easily compute, for example, the clamped �strain-free� and
unclamped �stress-free� electro-optic coefficients or the static
��2� including the strain response.23,37

APPENDIX B: IMPROVING THE CONVERGENCE WITH
RESPECT TO k-POINT SAMPLING

Although total-energy ground-state calculations for insu-
lators converge exponentially fast with respect to k-point
sampling, for finite-field calculations the convergence is con-
siderably slower.38 This results from the discretized Berry-
phase �DBP� polarization expression �Eq. �B2� below� used
in the electric enthalpy functional,14 and as a consequence
the second field derivatives in Eqs. �8� and �9� also converge
slowly. In order to alleviate this problem we used in our
finite-field calculations a modified DBP expression for the
polarization, Eq. �B4� below.

For notational simplicity we limit our discussion to the
case of a single valence band in one dimension. The elec-
tronic polarization of a bulk insulator under periodic bound-
ary conditions can be written, by analogy with the dipole
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moment of a molecule, as Pel=−e
x� /L, where L is the
length of the periodic box. The Berry-phase expression for

x� is39


x� �
L

2�
Im ln
�	ei2�x/L	�� , �B1�

where � is a many-body insulating wave function. For a
finite system in a supercell, evaluating the dipole moment
with this expression amounts to replacing the nonperiodic
operator x with the periodic operator �L /2��sin�2�x /L�.40

The difference between the two near the origin, where the
molecule is located, is of order 1 /L2. Using for � a Slater
determinant of single-particle Bloch states, we recover from
this expression the King-Smith-Vanderbilt DBP expression
for the polarization of a band insulator:39

Pel = −
e

2�
Im ln 


s=0

N−1

det S�ks,ks+1� + O�1/L2� , �B2�

where S�ks ,ks+1�= 
uks
	uks+1�. An alternative expression for


x� is


x� �
L

2�
�4

3
Im ln
�	ei2�x/L	�� −

1

6
Im ln
�	ei4�x/L	��� ,

�B3�

which is correct to O�1/L4�, as can be seen using the same
type of reasoning as in Ref. 40. Equation �B3� leads to a
modified DBP polarization formula

Pel = −
e

2�
�4

3
Im ln 


s=0

N−1

det S�ks,ks+1�

−
1

6
Im ln 


s=0

N−1

det S�ks,ks+2�� + O�1/L4� . �B4�

This is closely related to the expression obtained by combin-
ing Richardson’s extrapolation, Eq. �20�, with Eq. �B2�,
viewed as a finite-difference representation of the k deriva-
tive in the continuum Berry-phase formula.41

We show in Fig. 3 the convergence with the size N�N
�N of the shifted Monkhorst-Pack grid of the second-order
quantities ��

�2�, �TO, and ��2� �these are the third derivatives
of the electric enthalpy which involve at least one field de-
rivative�. For each quantity, we plot as a function of 1/N2 the
value obtained using both the conventional polarization ex-

pression �B2� �dashed line� and the modified expression �B4�
�solid line�. Notice that the values for ��

�2�, �TO, and ��2�

obtained from the former fall nearly on a straight line. Ex-
trapolating to N=� through a least-squares fit against 1 /N2 is
a reliable way of predicting the converged values, with errors
of usually around 1%. This procedure requires several calcu-
lations at different N, starting at N=12 to avoid the contri-
bution from higher-order terms in 1/N. The modified polar-
ization expression produces results of similar accuracy with a
calculation for a single value of N. We found that N=16
usually provides accurate values for the calculation of non-
linear susceptibilities to within 1 pm/V. As we can see from
the graph, ��2� calculated in this way converges rapidly: The
resulting value at N=6 is closer to the converged value of
0.284 nC/m than that calculated with the conventional func-
tional at N=20. The improvement for �TO and ��

�2� is less
dramatic, but in general there is a clear improvement for
most materials. The notable exception is GaAs, the material
with the smallest gap, where there is an improvement for all
quantities except ��

�2�, which actually converges more slowly
when using the modified fourth-order expression. We have
found empirically that this expression works best for large-
band-gap materials.
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