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Even though the rare-earth tritellurides are tetragonal materials with a quasi-two-dimensional band structure,
they have a “hidden” one-dimensional character. The resultant near-perfect nesting of the Fermi surface leads
to the formation of a charge density wave �CDW� state. We show that, for this band structure, there are two
possible ordered phases: A bidirectional “checkerboard” state would occur if the CDW transition temperature
were sufficiently low, whereas a unidirectional “striped” state, consistent with what is observed in experiment,
is favored when the transition temperature is higher. This result may also give some insight into why, in more
strongly correlated systems, such as the cuprates and nickelates, the observed charge ordered states are gen-
erally stripes as opposed to checkerboards.
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I. INTRODUCTION

Many strongly correlated �layered� materials with quasi-
two-dimensional �2D� structure show fluctuating or static
stripe order �unidirectional density wave states� over a sub-
stantial range of temperatures.1–3 In particular, there has been
considerable interest in studying whether or not stripes are
inextricably connected to the high temperature superconduc-
tivity that occurs in the cuprates.1,2 However, characterizing
the stripe order in these materials is difficult due to the com-
plex and strongly correlated nature of these materials and the
presence of significant amounts of quenched disorder.4

From the symmetry viewpoint, there is no difference be-
tween a unidirectional charge density wave �CDW� state in a
weakly interacting quasi-2D system and a stripe-ordered
state of a strongly correlated system. CDW states can occur
in the weak coupling limit only if there are sufficiently well
nested portions of the Fermi surface. Since this is nongeneric
in more than one dimension �1D�, one would like to identify
what is special about those higher dimensional materials in
which nested Fermi surfaces appear. Moreover, for a layered
quasi-2D material with tetragonal �C4� symmetry, the CDW
ground state can either be bidirectional �checkerboards�
maintaining the point group symmetry of the lattice, or uni-
directional �stripes� with a reduced symmetry, and again we
would like to understand what physics governs this choice.

The rare-earth tritelluride series RTe3 �R=Y, La–Tm� is
particularly well suited for a detailed study of these issues.
RTe3 consists of square Te planes alternating with weakly
coupled RTe slabs. �See Fig. 2 of Ref. 5 for example.� The
electronically active valence band is derived from the
5p orbitals of the planar Te atoms and is thus expected to be
relatively weakly correlated. The existence of a unidirec-
tional CDW was first detected by transmission electron
microscopy.6,7 Angle resolved photoemission spec-
troscopy5,8,9 �ARPES� measurements have shown that the
CDW ordering wave vector nests large portions of the Fermi
surface, which are in turn gapped, thus strongly indicating
that the CDW is a consequence of Fermi surface nesting.
More recent x-ray scattering and scanning transmission mi-
croscopy measurements have confirmed the existence of the
CDW and its unidirectional character in great detail.10,11 De-

tailed studies of the Fermi surface topology using ARPES
�Ref. 5� and positron annihilation12 support the notion that
the CDW is the result of a nesting-driven Fermi surface in-
stability. However, the driving force for the strong breaking
of the point group symmetry �C4→C2� produced by the uni-
directional CDW formation in RTe3 has not been clear pre-
viously.

We shall show in the present paper that the nesting of the
Fermi surface of RTe3 reflects a “hidden” 1D character of the
electronic band structure which derives from the highly an-
isotropic hopping amplitude of the Te px and py orbitals.13

Consequently, CDW order occurs for a dimensionless effec-
tive interaction, �, in excess of an extremely small critical
value, �c�1. �In 1D, the fact that �c=0 is the famous Peierls
instability.� Moreover, we shall show that there are two pos-
sible patterns of CDW order that can best take advantage of
the nesting: Checkerboard order that occurs for � slightly
larger than �c, and stripe order, which is also rotated relative
to the checkerboard order, which occurs for ���0��c�1
+O��c��; in more physical terms, what this means is that
when the CDW transition temperature, Tc, or the CDW gap,
�0, is sufficiently large, stripe order is favored. �The result-
ing phase diagram is shown in Fig. 4.�

II. BAND STRUCTURE CONSIDERATIONS

It is well established from transport measurements14,15

that the coupling between layers in RTe3 is small. Compari-
sons between different rare-earth compounds confirm the mi-
nor role of the rare earth in the electronic structure.5,15

Hence, the physical properties of RTe3 are dominantly deter-
mined by the Te planes common to all RTe3. It is therefore
natural to consider a simple model of the electronic structure
of a single Te plane.

It is known, from first principle band structure
calculations,16 that the energy of the 5pz is shifted by crystal
field effects so that it lies well below the Fermi energy. Con-
sequently, the relevant bands close to the Fermi surface are
the 5px and 5py orbitals, which are approximately 5/8 filled.
The crystallographic unit cell contains two Te atoms per
plane due to a slight inequivalence between two sublattices
produced by the RTe slab orientation and the crystal struc-
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ture being very weakly orthorhombic;12 for simplicity, we
will ignore these subtleties and consider an idealized Te
square lattice. The band structure can be well approximated
in the tight-binding approximation; the resulting Hamiltonian
is shown schematically in Fig. 1.

Following Ref. 6, we neglect all interactions of longer
range than the nearest neighbor hopping, with the conse-
quence that there is no hybridization between the px and py
bands. �Small further neighbor interactions, such as the sec-
ond neighbor hopping t� in Fig. 1, have a large effect on the
Fermi surface topology where the two bands intersect, but
can readily be shown to have little effect on the results ob-
tained below.� Working in units where the lattice constant of
the square lattice a=1, the dispersion for the px band and py
band can be readily derived

�k,px
= − 2t� cos�kx� + 2t� cos�ky� ,

�k,py
= 2t� cos�kx� − 2t� cos�ky� , �2.1�

where t� �t�� represents the hopping amplitude parallel �per-
pendicular� to the extended direction of the given p orbital.
Due to the highly anisotropic profile of the p orbital electron
wave function, the hopping amplitude t�, along the extended
direction of the given p orbital, is much larger than the hop-
ping amplitude t� perpendicular to the extended direction.
Indeed these hopping amplitudes have been estimated16 to be
t� �2.0 eV, t��0.37 eV, and t��0.16 eV for RTe3. Thus it
is reasonable to set t�=0 and to treat t� / t� �0.18 as a small
parameter.

The small magnitude of the ratio t� / t� implies a secret
quasi-1D character of the band structure. For t�=0, the sys-
tem would be equivalent to an array of 1D wires. Nonethe-
less, the system would maintain overall C4 symmetry since
these px and py “wires” are perpendicular to each other.
Thus, even in this limit, the system would not display 2D
anisotropy in any transport measurement. However, the re-
sulting band structure would consist of two parallel 1D
Fermi surfaces �FS’s� as shown in Fig. 2�a�. With kF defined
by the implicit relation �=−2t� cos kF, where � is the chemi-
cal potential, any wave vector �±2kF ,ky� would then per-

fectly nest the px-FS for arbitrary ky and wave vectors
�kx , ±2kF� would perfectly nest the py-FS for any kx. In par-
ticular, the wave vectors �±2kF , ±2kF� perfectly nest both the
px and py FS’s.

A small but nonzero t� introduces nonzero but small cur-
vature to the FS �see Fig. 2�b��; the px-FS is determined by

kx = ± �kF − � t�

t�
	 cos ky

sin kF
+ O� t�

2

t�
2 	
 , �2.2�

where kF is defined above. Here ���� represents the right
�left� portion of the px-FS, respectively. Obviously, the py-FS
can be obtained from the px-FS by 90° rotation.

As a consequence of the finite curvature, the wave vector
�±2kF ,ky� nearly perfectly nests the px-FS only for ky =	,
and equivalently the py-FS is best nested by �	 , ±2kF�. How-
ever, away from the half-filling, �±2kF ,	� does a poor job in
nesting the py-FS and conversely for �	 , ±2kF�. Note that
�2kF ,	�, �−2kF ,	�, �	 ,2kF�, and �	 ,−2kF� are related by the
C4 symmetry of the host lattice. On the other hand, the wave
vector �2kF ,2kF� �and its C4 symmetry related vectors�,
which perfectly nests the full FS for t�=0, does a reasonable
job in nesting both the px-FS and the py-FS. Thus, for small

FIG. 1. The px and py orbitals in the single Te square lattice.
Due to the highly anisotropic profile of the p orbitals, the hopping
amplitude, t�, along the extended direction of the given p orbital is
much larger than the hopping amplitude t� along the direction per-
pendicular to the extended direction. t� is a second-neighbor hop-
ping, which is the shortest-range interaction that mixes the px and
py bands and which we neglect for present purposes.

FIG. 2. Fermi surfaces �a� for t�=0 and �b� for t� small, but
nonzero. For t�=0, the wave vector Q2��2kF ,2kF� nests both the
px-FS and the py-FS perfectly. For nonzero t�, the wave vector
Q1��2kF ,	� does a much better job of nesting the px-FS but a
poor job on the py-FS. On the other hand, Q2 does a moderately
good job of nesting the entire FS.
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t� / t�, there are two independent candidates �not related to
each other via C4 symmetry� for the CDW ordering wave
vectors:

Q1 � �2kF,	�, Q2 � �2kF,2kF� . �2.3�

To see which ordering vector is preferred, we now com-
pute the corresponding charge density �Lindhard� suscepti-
bility 
�q ;T�. For a given wave vector q at a given tempera-
ture T,


�q;T� = − 2�
�

 dk

�2	�2

f��k�,T� − f��k+q�,T�
�k� − �k+q�

, �2.4�

where the integral is over the first Brillouin zone, �= px , py is
the band index, and �k�=�k�−�. The factor of 2 is from two
spin polarizations of the electrons and f��k� ,T� denotes the
Fermi-Dirac distribution function.

For small t� / t�, the susceptibilities at these two vectors
have the following approximate analytical forms, which are
valid for temperatures T� t� �in units kB=1�:


�Q1;T� � 
�EF�ln� �0t�

T + �1t�
2 /t�


 + 
�EF�ln� �0t�

T + �2t�

 ,

�2.5�


�Q2;T� � 2
�EF�ln� �0t�

T + �3t�

 , �2.6�

where 
�EF���2	t� sin kF�−1 is the density of states per
spin per band and �0t� is the ultraviolet cutoff, which is of
the order of the bandwidth ��0�2�. The parameters �i are
defined by

�1 � �cos kF�/�4 sin2 kF� ,

�2 � 2�cos kF� ,

�3 � �cos kF� . �2.7�

In RTe3, the bands are approximately 5/8 filled; thus kF
�5	 /8. In the small but nonzero t� / t� limit,


�Q1;0� � 
�Q2;0� + 
�EF�ln�2 sin2�kF�� . �2.8�

Therefore, if the CDW transition occurs at low enough tem-
peratures the wave vector Q1 will be favored so long as
	 /4�kF�3	 /4. However, at high enough temperatures, T
�T0� t�

2 / t�, 
�Q2 ;T� is greater than 
�Q1 ;T�. Therefore, we
expect there to be a finite temperature T0 such that if the
CDW transition temperature Tc�T0, the ordering vector is
q�Q1, while for Tc�T0, q�Q2.

For a more quantitative analysis, we have numerically
evaluated the susceptibility 
�q ;T� of Eq. �2.4�, for wave
vectors q over the whole Brillouin zone. The calculated sus-
ceptibility has a maximum at a wave vector qmax close to Q1
or Q2, depending on whether the temperature T�T0 or T
�T0, in agreement with our analysis of the FS. The precise
location of qmax shifts slightly as a function of T, but so long
as T� t�, the maximum always lies close to either Q1 or Q2,
so this deviation does not significantly affect the resulting

picture of the phase diagram. We will henceforth neglect this
small effect and focus our discussion on the wave vectors Q j.
Figure 3 shows the calculated 
�q ;T� for q=Q j.

This result can be understood as follows: At low tempera-
tures, the states arbitrarily close to the nearly perfectly nested
portions of the Fermi surface dominate the susceptibility fa-
voring Q1. However, for T�T0, the curvature of the FS has
negligible effect, so Q2 is preferred. Since Q1 nests only the
px portion of the FS, there is little competition between the
ordering tendency at Q1 and at the symmetry related vector

Q̄1= �	 ,2kF�. Thus, as we shall show below, wherever CDW
ordering with wave vector Q1 occurs, simultaneous ordering

occurs at Q̄1, making this a state with “checkerboard” order.
However, since ordering at wave vector Q2 opens a gap on
almost entire FS, it prevents ordering at the symmetry related

vector Q̄2= �−2kF ,2kF�; when Q2 is the preferred ordering
vector, the resulting state has “stripe” order.

III. MEAN-FIELD PHASE DIAGRAM

To obtain an explicit phase diagram, we add an electron-
phonon coupling and solve the resulting model in mean-field
approximation. Thus we investigate the following mean-field
Hamiltonian:

HMF = �
k,�

�k�ck�
† ck� + �

q


�EF�
2�q

��q�2 + �
k,q,�

�qck+q�
† ck�,

�3.1�

where the sum over q runs over the possible ordering vec-

tors, q= ±Q1, ±Q̄1, ±Q2, and ±Q̄2, and all harmonics, such

as ±2Q j and ±Q j ±Q̄ j. The order parameter �q for the CDW
with the ordering vector q is related to the lattice distortion
�xq� through �q=�q�xq�, where �q is the electron-phonon
coupling, and the dimensionless effective interaction �q
= ��q

2
�EF�� / �M�q
2�, where �q is the phonon frequency and

M is the ion mass. The self-consistent value of the gap is
obtained by minimizing the free energy computed from HMF
with respect to �q. Note that �−q=�q

*. We use the approxi-
mation �q=� in the rest of this paper.

FIG. 3. The Linhard susceptibility 
�q ;T� as a function of T for
q=Q1��2kF ,	� and q=Q2��2kF ,2kF�.
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At high temperatures, clearly �q=0 for all q. As the tem-
perature is lowered, for sufficiently large �, solutions with
nonzero values of �q appear. In general, when �q is nonzero
at some wave vector q, it is nonzero, although possibly much
smaller, at all harmonics, as well.

For commensurate order, the mean-field equations can, in
principle, be evaluated numerically exactly, but for high or-
der commensurability this is quite a complicated problem, as
there are many harmonics, and hence, many possible patterns
of order. For incommensurate order, even this is not possible.

Fortunately, in the present case, for the most part the tran-
sitions are continuous, or at worst weakly first order. There-
fore, the phase boundaries can be identified by expanding the
mean-field �Landau� free energy to low order in powers of
�q. The coefficients in this expansion are expressed as con-
volutions of free Green functions, as derived explicitly up to
fourth order in the Appendix. To this order, only the funda-
mentals and their second harmonics enter the expansion; if q
and q̄ are two �symmetry related� fundamental ordering vec-
tors, then the higher harmonics in powers of the fundamental
satisfy �nq+mq̄���q

n�q̄
m�. Indeed, in this context, we can treat

the harmonics as slaves to the fundamentals and obtain a
Landau free energy expressed exclusively in terms of �q and
�q̄, as is done explicitly in the Appendix. The result is a free
energy density

F = �
j=1

2 �rj���Qj
�2 + ��Q̄j

�2� +
uj

4
���Qj

�2 + ��Q̄j
�2�2

+ � j��Qj
�2��Q̄j

�2
 + ¯ , �3.2�

where

rj = 
�EF�/� − 
�Q j;T� , �3.3�

and ¯ signifies both higher order terms in powers of �, as
well as unimportant biquadratic terms, such as ��Q1

�2��Q2
�2,

which come into play only if ordering occurs both at Q1
= �2kF ,	� and Q2= �2kF ,2kF�. The coefficients uj and � j are
evaluated in the Appendix.

The mean-field phase diagram in Fig. 4 was constructed
from the free energy as follows: The phase boundaries were
determined as the points at which either r1 or r2 vanishes, so
both r1 and r2�0 in the high temperature phase. Throughout
the ordered region of the phase diagram, we always find that
�1�0 and �2�0, so wherever Q1 ordering is favored, si-

multaneous ordering at Q1 and Q̄1, i.e., checkerboard order,
occurs, while in the regions where Q2 ordering is favored,
either �Q2

or �Q̄2
is nonzero, but not both, i.e., striped order

occurs. The transition to the stripe phase is continuous so
long as u2�0, which is the case at large coupling. The tri-
critical point occurs where u2 vanishes. Strictly speaking,
where the transition becomes first order �the dashed lines in
the figure�, the Landau expansion is inadequate; the dashed
lines should therefore be interpreted as schematic represen-
tations of the true phase boundaries. In evaluating the coef-
ficients in the Landau expansion, we use the band structure

with the representative values given in the caption of Fig. 4,
but the phase diagram is qualitatively similar for any t�� t�

and 	 /4�kF�3	 /4.
The main new physics apparent in this phase diagram

arises from the sign of � j. The fact that �2 is robustly posi-
tive follows from the fact that Q2 does a moderately good
job of nesting the entire FS; in the presence of a nonzero
�Q2

, most of the FS is gapped, so there are almost no re-

maining portions of the FS to be nested by Q̄2. Conversely,
the fact that Q1 fails so badly at nesting the py portions of the
FS implies that there is no substantial interference between

Q1 and Q̄1 ordering; this leads to the expectation of a near
vanishing biquadratic coupling, or in other words, �1
�−u1 /2�0, an expectation that we find is approximately
satisfied. �At T=0, �1�−25 and u1�47.�

Using the Landau free energy with coefficients given in
the Appendix, for the band structure with the representative
values, we can estimate the various critical values of the
coupling constant �: The minimum value for the existence of
a CDW ground state is �c�0.093; the critical value that
separates the regime of checkerboard order from stripe order
is �0�0.103; the tricritical coupling is �tc�0.105; the tem-
perature at the tricritical point is Ttc�0.098 eV. The maxi-
mum checkerboard ordering temperature T0, which occurs on
the edge of the first order transition to the striped phase, is
the one qualitative feature of the phase diagram that depends
on the higher order terms in the Landau expansion that we
have not computed. The estimate for T0 given in the figure
comes from the assumption that the first order phase bound-
ary lies close to the point at which r2 vanishes.

IV. FLUCTUATION EFFECTS

Because of the hidden 1D character of the ordering we
have been exploring, we expect fluctuation effects will have

FIG. 4. �Color online� The mean-field phase diagram. For �
��0, the system orders to a stripe phase below the transition tem-
perature. The associated phase transition is second order for �
��tc and first order for �0����tc. For �c����0, the system
orders to a checkerboard pattern. For ���c, there is no CDW in-
stability down to zero temperature. Explicit numbers refer to the
representative values of t� =2.0 eV, t�=0.37 eV, and kF�5	 /8.
TMF signifies the mean field Tc; the actual Tc will be smaller due to
fluctuation effects.

YAO et al. PHYSICAL REVIEW B 74, 245126 �2006�

245126-4



a large quantitative effect on the mean-field phase diagram.
Indeed, it is common in quasi-1D CDW systems for the or-
dering temperature Tc to be significantly suppressed below
its mean-field value. This is reflected in larger values �than
the prediction of mean-field theory� of the ratio, �0 /Tc, of
the zero temperature gap �0 to the actual Tc.

17,18

We can estimate the extent to which fluctuations suppress
Tc in two different limits: If the anisotropy is not too large,
i.e., if t� � t���0, the suppression is fractionally small and
can be estimated, as in the theory of superconductivity, by
the Brout criterion, TMF−Tc�TMF�0

2 / t�t�, where TMF is the
mean-field transition temperature. Conversely, if t� ��0
� t�, while �0 may still be crudely determined by mean-field
considerations, Tc�TMF, and is determined by entirely dif-
ferent physics. In this limit, the intrachain CDW fluctuations
can be treated using the theory of the one-dimensional elec-
tron gas, and t� can be included in the context of interchain
mean-field theory, with the result that Tc� t��t� / t���, where
� is an interaction dependent constant.19,20 Whenever there is
a large fluctuational suppression of Tc, local CDW correla-
tions are expected to survive in a broad range of tempera-
tures above Tc; roughly, the local CDW correlations develops
in the temperature range Tc�T�TMF.

For RTe3, �0�260−400 meV,5 corresponding to a mean
transition temperature TMF�1500–2000 K and ��0.1.
Since t��0.38 eV��0, a reliable estimate of Tc is not pos-
sible for these materials, although a large suppression rela-
tive to the mean-field value can be expected. An expression
due to Barisic21 based on physically plausible but hard to
justify approximations yields Tc��t� / t��TMF�300 K. In-
deed, very recently, it has been found22 that the CDW phase
transition in RTe3 occurs �depending on R� in the range Tc
=260–400 K, and substantial CDW correlations persist well
above Tc.

One consequence of remaining local CDW correlations
above Tc will be the presence of peaks in the structure factor
at positions corresponding to the Bragg vectors of the or-
dered state, but with width inversely proportional to the ther-
mal correlation length.23 However, in the case of a stripe
phase, more dramatic effects can be expected. If there is only
a single transition, then the “stripe liquid” phase above Tc
does not break any of the lattice symmetries, and conse-
quently equivalent peaks in the structure factor should ap-
pear both at the stripe ordering vector and at the conjugate
wave vector �rotated by 90°�. Such behavior has already
been seen, albeit only in the magnetic scattering, in the stripe
liquid phase of La2−xSrxNiO4.24 On the other hand, a two
stage transition is also possible with an intermediate, “stripe
nematic” phase,25 in which stripe fluctuations are sufficiently
violent to restore translation, but not the full C4 symmetry of
the host crystal; in such a phase, the peaks at the stripe or-
dering wave vector should be stronger �possibly, much stron-
ger� than those at the conjugate wave vector. In this case,
there must be a second transition at still higher temperatures
to an isotropic state.

If future experiments can confirm the predictions above
regarding the fluctuation effect, they will provide an impor-
tant laboratory for exploring the physics of a stripe liquid,
with possible broader implications to many stripy materials.

V. CONCLUDING REMARKS

The present mean-field theory gives results that are
broadly consistent with experimental observations in RTe3.
From the value of the CDW gap measured by ARPES,5,8 one
can estimate the mean-field transition temperature to be
TMF�1500–2000 K, which is an order of magnitude greater
than the theoretical value of T0 and also greater than Ttc.
Hence, the theory predicts that RTe3 should have a unidirec-
tional CDW ordered phase �stripes� with ordering vector ap-

proximately equal to either Q2= �2kF ,2kF� or Q̄2= �2kF ,
−2kF�.26 This is consistent with the experiments5,6,8 which
find stripe order with QCDW��0.71	 ,0.71	� in the present
nondoubled unit cell notation.27 With the simplified band
structure used in the present analysis, 2kF�3	 /4 �mod2	�,
However, as mentioned above, the maximum of the suscep-
tibility occurs at a slightly different weakly temperature de-
pendent wave vector; at T=350 K, the maximum occurs at
qmax= �0.72	 ,0.72	�, which is almost identical to the ex-
perimental results at comparable temperatures. Moreover, the
mean-field theory predicts that the phase transition into the
stripe ordered phase from the higher temperature phase is a
second order phase transition. This is also consistent with
recent experimental results.22

Even though we are dealing with a stoichiometric phase
with an integer number of electrons per unit cell, if the tran-
sition is continuous, then �at least for commensurability N
�4� the CDW ordered state just below Tc is generically
incommensurate, in the sense that the ordering vector is not
locked to the lattice. This follows from the fact that the low-
est order term which locks the CDW to the lattice is propor-
tional to �N cos�N�� and so is irrelevant �for N�4� in the
renormalizationgroup sense28 at Tc. �Here � is the order pa-
rameter and �=2kFx0 determines the relative phase between
the CDW and the underlying crystalline lattice.� In the
present problem, two effects contribute to shift the ordering
vector from its commensurate value. First, even at T=0,
there is a shift of 2kF=3	 /4�1+O�t� / t��2� �which we have
not discussed explicitly� due to the 2D dispersion. Moreover,
Q2 depends weakly on the temperature and �as mentioned
above� is noticeably different from its T=0 value at T=Tc.
However, it is possible that, under appropriate circum-
stances, there will be a second commensurability lock-in
transition with critical temperature Tcom�Tc.

Another subtlety of the problem derives from the exis-
tence of Te bilayers in RTe3. If the bilayer splitting tbil��0,
it can be ignored, and a single transition occurs as treated in
the present work. However, if t� � tbil��0, we should treat
the ordering in the bilayer split bands separately. In this case,
there should be two distinct ordering transitions, at distinct
ordering temperatures, with slightly different ordering vec-
tors, kF,±=kF± tbil /vF.

Recent results22 on RTe3 with different rare earth ele-
ments, R, show that in some cases there does, in fact, appear
to be a second phase transition at temperatures below Tc. For
various reasons, we conjecture that where the second transi-
tion occurs, it is due to the bilayer splitting, but whether it is
this, or a commensurate lock-in, or some other transition
remains unsettled.
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Charge density waves often break the point group sym-
metry of the host lattice. This phenomenon is particularly
common in strongly correlated materials including many
transition metal oxides that exhibit stripe order. The strong
interactions present in those �d-band� systems make the
physics of pattern selection more difficult to study from a
microscopic viewpoint. However, one may hope that ex-
trapolating from the weak coupling limit �solved in the
present paper� may give some insight into the deeper issues
of pattern selection in highly correlated materials.

The underlying physics that is responsible for the exis-
tence of a CDW state in the present class of reasonably
weakly interacting quasi-2D systems is the existence of a
hidden 1D character of the band structure. In the present
paper, we have explored only the grossest aspects of this
structure—primarily those amenable to a mean-field analy-
sis. At temperatures or frequencies in excess of the ordering
temperature, where the band structure can be approximated
as that of intersecting 1D systems, it is probable that more
interesting fluctuation effects, associated with the breakdown
of Fermi liquid theory in 1D, should be observable. Indeed,
some evidence already exists29 from high energy spec-
troscopies of anomalous power-law behaviors reminiscent of
the 1D Luttinger liquid. We are currently exploring this as-
pect of the problem.

ACKNOWLEDGMENTS

We would like to thank S. Brown, A. Fang, I. R. Fisher, A.
Kapitulnik, N. Ru, and K. Y. Shin for helpful discussions,
and J. Allen and G.-H. Gweon for partially inspiring this
work. This work was supported in part by NSF Grant No.
DMR0531196 at Stanford University.

APPENDIX: THE LINKED CLUSTER EXPANSION

Here we sketch the details of the linked cluster expansion
that was used to obtain the coefficients of the GL free energy.
We treat the off-diagonal part of the mean-field Hamiltonian
Eq. �3.1�,

V = �
k,q,�

�qck+q�
† ck� �A1�

as a perturbation to obtain the Landau free energy:

F���q�� = F0 + �
q


�EF�
2�

��q�2 + �
l=2

�

Ul���q�� , �A2�

where the set ��q� contains, in principle, all harmonics of the
fundamental ordering vectors, although in practice we re-
strict ourselves to fourth order terms for the continuous
phase transitions. The functionals, U�, are defined as

U� =
�− 1��+1

�

1

�



0

�

d�1 ¯ 

0

�

d�l�T�V��1� ¯ V����� .

�A3�

The expansion in terms of U� contains only fully connected,
one-loop diagrams, where the finite-temperature Green func-
tions for the electrons are

G0
��k,�n� =

1

i�n − �k�

, �A4�

with �n= �2n+1�	 /�, and the order parameters, �Q, act as
external, single-particle potentials �see, for example, Fig. 5�.

To the fourth order, the Landau free energy in terms of
order parameters associated with Q1 ,Q2 and their harmonics
is

F = F0 + �
j=1

2

�rj���Qj
�2 + ��Q̄j

�2� + r̄ j���2Qj
�2 + ��2Q̄j

�2�

+ r̃ j���Qj+Q̄j
�2 + ��Qj−Q̄j

�2� + dj���Qj
�4 + ��Q̄j

�4�

+ gj��Q1
�2��Q2

�2 + �bj��Qj

2 �−2Qj
+ �

Q̄j

2
�−2Q̄2

�

+ cj��Qj
�Q̄j

�−Qj−Q̄j
+ �Qj

�−Q̄j
�Q̄j−Qj

� + c.c.�� , �A5�

where the coefficients are given by the integrals

rj = 
�EF�/� − 
�Q j;T� , �A6�

r̄ j = 
�EF�/� − 
�2Q j;T� , �A7�

r̃ j = 
�EF�/� − 
�Q j + Q̄ j;T� , �A8�

bj = 
�
G0

��0�G0
��Q j�G0

��2Q j� , �A9�

cj = 
�
�G0

��0�G0
��Q j�G0

��Q j + Q̄ j�

+ G0
��0�G0

��Q̄ j�G0
��Q j + Q̄ j�� , �A10�

dj = 
� �G0
��0�G0

��Q j�2G0
��2Q j� +

1

2
G0

��0�2G0
��Q j�2� ,

�A11�

gj = 
�
�G0

��0�2G0
��Q j�G0

��Q̄ j� + G0
��0�2G0

��Q j�G0
��− Q̄ j�

+ G0
��0�G0

��Q j�2G0
��Q j + Q̄ j� + G0

��0�G0
��Q j�2G0

��Q j − Q̄ j�

+ 2G0
��0�G0

��Q j�G0
��Q̄ j�G0

��Q j + Q̄ j�� , �A12�

and we have adopted the compactified notation:

FIG. 5. The second order Feynman diagram from which we
obtain the Lindhard susceptibility, 
Q. Higher order diagrams differ
only in the number of external legs.
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G0
��q� � G0

��k + q,i�n� , �A13�


�
� 2�

�

1

�
�
i�n


 dk

�2	�2 . �A14�

As the susceptibility towards ordering is always largest
for the fundamental vectors, we integrate out the higher har-
monics, which allows us to write the free energy in a form
that transparently displays the C4 symmetry of the problem

F = �
j
�rj���Qj

�2 + ��Q̄j
�2� +

uj

4
���Qj

�2 + ��Q̄j
�2�2

+ � j��Qj
�2��Q̄2

�2
 . �A15�

The effect of higher harmonics is to renormalize the coeffi-
cients of the quartic terms, which become

uj = 4�dj − �bj�2/r̄ j� ,

� j = gj − �cj�2/r̃ j − uj/2. �A16�
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