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Following the usual procedure of the GW approximation �GWA� within the first-principles framework, we
calculate the self-energy from eigenfunctions and eigenvalues generated by the local-density approximation.
We analyze several possible sources of error in the theory and its implementation, using a recently developed
all-electron approach based on the full-potential linear muffin-tin orbital �LMTO� method. First we present
some analysis of convergence in some quasiparticle energies with respect to the number of bands, and also
their dependence on different basis sets within the LMTO method. We next present a new analysis of core
contributions. Then we apply the GWA to a variety of materials systems to test its range of validity. For simple
sp semiconductors, GWA always underestimates band gaps. Better agreement with experiment is obtained
when the renormalization �Z� factor is not included, and we propose a justification for it. We close with some
analysis of difficulties in the usual GWA procedure.

DOI: 10.1103/PhysRevB.74.245125 PACS number�s�: 71.15.Qe, 71.10.�w, 71.15.Ap

I. INTRODUCTION

Even though the GW approximation �GWA� of Hedin1 is
as old as the local-density approximation �LDA�, it is still in
its early stages because of serious difficulties in its imple-
mentation. In the usual ab initio procedure, G and W are
constructed from the LDA potential, which generate the self-
energy �= iG�W. Additionally, the quasiparticle energies
�QPEs� are usually approximated as a perturbation correction
to the LDA from the matrix elements of the diagonal parts of
�−Vxc

LDA �see Eqs. �18� and �19� below�. In principle, it is
well defined as a procedure. However, there is a controversy
regarding what the numerical result of this procedure is for
semiconductors. Nearly always the GWA is implemented in
conjunction with the pseudopotential �PP� approximation,
which we will call PPGW. It was widely thought that PPGW
predicts band gaps in semiconductors to rather high accu-
racy. However, recent all-electron GW calculations that sur-
vey band gaps in semiconductors using the full-potential lin-
ear muffin-tin orbitals �FP-LMTO� basis by Kotani and van
Schilfgaarde2 result in band gaps which are generally smaller
than experimental values. The result is confirmed by other
calculations using two independently developed full-
potential linear augmented plane-wave �FP-LAPW� codes:
one by Usuda, Hamada, Kotani, and van Schilfgaarde3 and
another by Friedrich, Schindlmayr, Blügel, and Kotani.4

These methods all use essentially the same GW codes origi-
nally developed in conjunction with the LMTO method;2

they differ only in the input eigenfunctions. Calculations
from other, independently developed all-electron GW
methods5–7 are consistent with this conclusion.8

Tiago, Ismail-Beigi, and Louie9 used the PPGW scheme
that included Si 2s and 2p cores in the valence to analyze the
dependence of some semiconductor band gaps on the num-
ber of unoccupied states N� used to construct the self-energy.
They suggested that the discrepancy between all-electron
GW and PPGW gaps could be attributed to incomplete con-
vergence in the all-electron calculations. To address this
point, the convergence in N� is taken up in Sec. III. We begin
with an outline of our all-electron GW method �Sec. II�; it

includes a comparison of the energy bands in Si to those of
an APW calculation taken from Friedrich et al.4 and estab-
lishes the method’s ability to reproduce near-exact LDA ei-
genvalues. In Sec. IV we show how selected QPEs change
with increasingly larger LMTO basis sets for a variety of
semiconductors. The results are weakly dependent on basis
even for relatively small basis sets. We present some ratio-
nale for why this should be so, and note the implications for
both precision and efficiency in implementations of the
GWA for basis sets in general.

Because our results are well converged for either kind of
test, we still think that PPGW is problematic, in contradis-
tinction to the conclusions in a recent paper by Delaney,
García-Gonzaléz, Rubio, Rinke, and Godby,10 who showed
that all-electron GW and PPGW give essentially the same
result for the Be free atom. However, the Be atom is a spe-
cial case in part because the all-electron and pseudo radial
functions should closely correspond to each other �the 2p
radial function has no nodes, and the only core that is
orthogonalized or pseudized is the deep 1s core
��LDA�−105 eV�; moreover, the PP is constructed with the
atom itself as reference. Pseudopotentials are constructed to
solve LDA reliably, but not to solve the GWA. There are now
many detailed checks comparing PP-LDA results against the
corresponding all-electron values, but there are few similar
comparisons for GW. The discrepancies between all-electron
and PPGW appear to be much smaller when PPGW includes
the highest lying core states in the valence.

Section V analyzes different core contributions to the
QPE in several semiconductors. This provides some insight
as to what approximations may be made concerning the core;
we also briefly consider some aspects of PPGW in this con-
text.

In Sec. VI we show some new results for a variety of
materials, as well as repeating some previously reported
calculations2,11–14 with rather tight tolerances. We confirm
that the usual GWA procedure generally underestimates band
gaps. We also show that a partial self-consistency can be
accomplished by calculating QPEs without the renormaliza-
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tion factor Z �i.e., Z=1�. Semiconductor band gaps are sys-
tematically improved using Z=1, though they continue to be
underestimated. An important reason for this is that the LDA
overestimates the screening of W, resulting in an underesti-
mate of �= iGW and band gaps. We show that the adequacy
of the GWA varies from system to system: only when the
starting LDA is reasonably good does the GWA reasonably
predict QP energies. Thus, some kind of self-consistency is
necessary to obtain reasonable results for a wide range of
materials.12

II. METHODOLOGY

A. All-electron LDA in FP-LMTO

Before turning to the analysis, we briefly describe the
LDA method we use as input for the GW calculations.
�Readers interested in the conclusions of this paper not re-
lated to basis-set issues can skip this section.� An early ver-
sion of this method was presented in Ref. 15; we describe
here how additional local orbitals are included to extend the
linear method. Local orbitals are essential to the analysis
because QPE in GWA are sensitive to a wider range of states
than in LDA �e.g., the LDA depends only on occupied
states�. One consequence is that the linear approximation in-
herent in standard linear and pseudopotential methods is less
reliable for the GWA than for the LDA. The basis functions
used in the present technique are a generalization15 of the
standard16 LMTO basis. Conventional LMTOs consist of
atom-centered envelope functions augmented around atomic
sites by a linear combination of radial wave functions � and
their energy derivatives �̇. �=�Rl��Rl ,r� is the solution of
the radial Schrödinger equation at site R at some lineariza-
tion energy �Rl. A linear method matches the �� , �̇� pair to
value and slope of the envelope function at each augmenta-
tion sphere boundary, which means that the LDA
Schrödinger equation can be solved more or less exactly to
first order in �−�Rl inside each augmentation sphere. Enve-
lope functions in the standard LMTO method consist of Han-
kel functions. In the present basis15 the envelope functions
are smooth, nonsingular generalizations17 of the Hankel
functions: the l=0 smooth Hankel satisfies the equation

��2 + ��H0��,rs;r� = − 4�g0�rs,r� ,

g0�rs;r� = ���rs�−3 exp�− �r/rs�2� → ��r� as rs → 0,

�1�

and reduces to a usual Hankel function in the limit rs→0. HL
for higher L= �l ,m� are obtained by recursion.17 The basis
can be divided into three types of functions:

�i� A muffin-tin orbital �MTO� 	RjL, which consists of a
smoothed Hankel centered at nucleus R and augmented by
linear combinations of �Rl and �̇Rl for each L channel inside
every augmentation sphere

	RjL�r� = HL��Rjl,rRjl
s ;r − R�

+ 	
R�k�L�

CR�k�L�
RjL �P̃R�k�L��r� − PR�k�L��r�� . �2�

PR�k�L� is a one-center expansion of HL��Rjl ,rRjl
s ;r−R�, and

P̃R�k�L� is a linear combination of �Rl��Rjl ,r� and �̇Rl��Rjl ,r�
that matches PR�k�L� at the augmentation sphere radius. Ex-
pansion coefficients CR�k�L�

RjL are chosen to make 	RjL�r�
smooth across each augmentation boundary. �Rjl is chosen to
be at or near the center of the occupied part of that particular
l channel. Products of such functions enters into the con-
struction of the Hamiltonian and output density. The present
method differs in significant ways from the usual LMTO and
LAPW methods: the density is not generated from simple
products of MTOs, Eq. �2�, but bears some resemblance to
the projector augmented wave prescription.18 It greatly facili-
tates l convergence in the augmentation; see Ref. 15.

�ii� “Floating orbitals” consisting of the same kind of
function as �i�, but not centered at a nucleus. Thus, there is
no augmentation sphere where the envelope function is cen-
tered. There is no fundamental distinction between this kind
of function and the first type, except that the distinction is
useful when analyzing convergence. Floating orbitals make
little difference in LDA calculations, but a basis consisting of
purely atom-centered envelope functions is not quite suffi-
cient to precisely represent the interstitial over the wide en-
ergy window needed for GW calculations. Without their in-
clusion, errors in QPEs of order 0.1 eV cannot be avoided, as
we will show.

�iii� A kind of “local orbital,” which has a structure simi-
lar to �i�. The fundamental distinction is that the “head” �site
where the envelope is centered� consists of a new radial
function 
l

z evaluated at energy �l
z either far above or far

below the linearization energy �l. For deep, corelike orbitals,

l

z is integrated at the core energy; for high-lying orbitals, �l
z

is typically taken 1–2 Ry above the Fermi level EF. In the
former case a tail is attached, with its smoothing radius rs

chosen to make the kinetic energy continuous across the
head augmentation sphere. It is thus atypical of conventional
local orbitals, as it is nearly an eigenstate of the LDA Hamil-
tonian without requiring other basis functions.

As is well known, the reason for using augmented wave
methods in general �and especially the LMTO method�, is
that the Hilbert space of eigenfunctions in the energy range
of interest is spanned by much fewer basis functions than
with other basis sets. In the present method two envelope
functions j=1,2 are typically used for low l channels s, p,
and d, and one for higher l channels �f and sometimes g�.
The augmentation + local orbital procedure ensures that the
basis is reasonably complete inside each augmentation
sphere within a certain energy window; the envelope func-
tions + floating orbitals ensures completeness of the basis in
the interstitial. The distinction between standard LMTO en-
velope functions and the smoothed ones used here is impor-
tant because the generalized form significantly improves this
convergence. Core states not treated as local orbitals are
handled by integrating the radial Schrödinger equation inside
an augmentation sphere and attaching a smoothed Hankel
tail, allowing it to spill into the interstitial. Thus the Hartree
and exchange-correlation potentials are properly included;
only the matrix element coupling core and valence states are
neglected.

When used in conjunction with GW calculations we typi-
cally add local orbitals for states not spanned by �
 , 
̇� and
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whose center of gravity falls within 
±25 eV of the Fermi
level EF. Both the low-lying and high-lying states can be
important, and we shall return to it later. Figure 1 shows the
effects of linearization in Si, where an APW calculation of
the LDA energy bands is available.19 Friedrich et al.19 com-
pared LDA bands generated by a full APW calculation to
those generated by LAPW. They are reproduced in Fig. 1,
together with the bands generated by the LMTO+local
+floating orbitals described above. The LAPW and APW are
nearly indistinguishable on the scale of figure for energies up
to 
25 eV. For energies above 25 eV, the LAPW begins to
deviate from the other two, showing the effects of lineariza-
tion. The APW and generalized LMTO bands are essentially
indistinguishable on the scale of figure for energies up to

40 eV. Above that, slight differences begin to appear; the
differences gradually increase for still higher energies. Fig-
ure 1 also tabulates the RMS deviation from the APW bands
for several energy windows. The present method agrees with
the APW bands to 
0.01 eV for levels within EF±1 Ry, and
to 
0.25 eV for levels below EF+4 Ry. Friedrich et al. re-
port similar improvements to their LAPW bands when local
orbitals are added.4 They also compare bands generated by a
PP, and show that the errors are comparable to the conven-
tional LAPW method. Figure 1 establishes rather convinc-
ingly that the present method is nearly complete over a rather
wide energy window in Si. When local orbitals are included,
it is comparable to an LAPW method that includes local
orbitals,19 and it is superior both to PP and conventional
LAPW methods.

B. All-electron GW with mixed basis for W

We briefly describe our all-electron implementation of the
GW approximation. A more detailed account will be given
elsewhere.20 The self-energy � is

��r,r�,�� =
i

2�
� d��G�r,r�,� − ���ei���W�r,r�,��� .

�3�

In this paper G will be taken to be the one-body noninteract-
ing Green function as computed by the LDA, and the
screened Coulomb interaction W is computed in the random-
phase approximation �RPA� from G. Both G and W are ob-
tained from the LDA eigenvalues �kn and eigenfunctions
�kn. For a periodic Hamiltonian, we can restrict r and r� to
a unit cell and write G as

Gk�r,r�,�� = 	
n

All
�kn�r��kn

* �r��
� − �kn ± i�

. �4�

The infinitesimal −i� is to be used for occupied states, and
+i� for unoccupied states. W is written as

W = �−1v = �1 − v�−1v , �5�

where =−iG�G is the bare polarization function shown
below, v=e2 / �r−r�� is the bare Coulomb interaction, and � is
the dielectric function. For simplicity, the spin degree of
freedom is omitted.

Neglecting the off-diagonal part of �, we can evaluate
QPE Ekn from

Ekn = �kn + Zkn��kn���r,r�,�kn���kn� − �kn�Vxc
LDA�r�

���kn�� . �6�

Zkn is the quasiparticle �QP� renormalization factor

Zkn = �1 − �kn�
�

��
��r,r�,�kn���kn��−1

, �7�

and accounts for the fact that � is evaluated at the LDA
energy rather than at the QPE. Equation �6� is the customary
way QPEs are evaluated in GW calculations. In Sec. VI, we
present an argument that using Z=1 �or neglecting the Z
factor� is a better choice than Eq. �7�, and shows how QPEs
are affected in actual calculations. However, the results pre-
sented here use the Z factor except where noted.

In FP-LMTO, eigenfunctions of the valence states are ex-
panded in linear combinations of Bloch-summed MTOs, Eq.
�2�,

�kn�r� = 	
RjL

aRjL
n 	RjL

k �r� . �8�

Inside augmentation sphere R, the Hilbert space of the va-
lence eigenfunction �kn�r� consists of the pair �or triplet� of
orbitals ��Rl, �̇Rl or �Rl, �̇Rl, �Rl

z � at that site,21 and can be
represented in a compact notation ��Ru�. u is a compound
index for both L and one of the ��Rl , �̇Rl ,�Rl

z � triplet. The
interstitial is comprised of linear combinations of envelope
functions consisting of smooth Hankel functions, which can
be expanded in terms of plane waves.17 Therefore the �kn�r�

FIG. 1. �Color online� LDA energy bands in Si, computed by
different methods. APW bands from Ref. 19 are denoted by “+” and
can be regarded as near exact. Dotted lines denote bands calculated
by the same authors using the LAPW method, without local orbit-
als. Solid lines denote bands computed by the present generalized
LMTO method, including local and floating orbitals as described in
the text �180 energy bands were included in the basis�. On the right
is a table of the RMS deviation relative to the APW bands for
several energy windows, computed along the L-� line. The first
column denotes the range of bands used to compute the RMS de-
viation; the horizontal dashed lines denote the approximate energy
window for each range. The second and third columns denote how
the present method and the LAPW method, respectively, deviate
from the APW bands �in eV�, as described in the text.
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can be written as a sum of augmentation and interstitial parts

�kn�r� = 	
Ru

�Ru
kn�Ru

k �r� + 	
G

�G
knPG

k �r� , �9�

where the interstitial plane wave �IPW� is defined as

PG
k �r� = 0 if r � any MT

= exp�i�k + G�r� otherwise, �10�

and the �Ru
k are Bloch sums of �Ru,

�Ru
k �r� � 	

T
�Ru�r − R − T�exp�ik · T� . �11�

T and G are lattice translation vectors in real and reciprocal
space, respectively.

Throughout this paper, we will designate eigenfunctions
constructed from MTOs as “VAL.” Below them are the core
eigenfunctions, which we designate as “CORE.” There are
two fundamental distinctions between VAL and CORE: First,
the latter are constructed independently by the integration of
the spherical part of the LDA potential, and they are not
included in the secular matrix. Second, the cores are confined
to MT spheres.22 CORE eigenfunctions are also expanded
using Eq. �9� in a trivial manner; �G

kn=0 and only one of
�Ru

kn �0. The discussion below applies to all eigenfunctions,
VAL and CORE.

Through Eq. �9�, products �k1n��k2n� can be expanded
by PG

k1+k2�r� in the interstitial region because PG1

k1 �r�
� PG2

k2 �r�= PG1+G2

k1+k2 �r�. Within sphere R, wave-function prod-
ucts can be expanded by BRm

k1+k2�r�, which is the Bloch sum
of the product basis �BRm�r��, which in turn is constructed
from the set of products adapting the procedure by
Aryasetiawan.23 Equation �9� is equally valid in a LMTO or
LAPW framework, and eigenfunctions from both types of
methods have been used in this GW scheme.3,4 We restrict
ourselves to LMTO-derived basis functions here.

We define the mixed basis �MI
k�r����PG

k �r� ,BRm
k �r��,

where the index I��G ,Rm� classifies the members of the
basis. By construction, MI

k is a good basis set for the expan-
sion of products of �kn. Complete information to calculate �
and En�k� are matrix elements of the products
�qn ��q−kn�MI

k�, the LDA eigenvalues �kn, the Coulomb
matrix vIJ�k��MI

k �v �MJ
k�, and the overlap matrix

MI
k �MJ

k�. �The overlap matrix of IPW is necessary because
PG

k � PG�
k ��0 for G�G�.� The Coulomb interaction is ex-

panded as

v�r,r�� = 	
k,I,J

�M̃I
k�vIJ�k�M̃J

k� , �12�

where we define

�M̃I
k� � 	

I�

�MI�
k ��Ok�I�I

−1 , �13�

OI�I
k = MI�

k �MI
k� . �14�

W and the polarization function  shown below are ex-
panded in the same manner as Eq. �12�.

The exchange part of � is written in the mixed basis as

�qn��x��qn� = 	
k

BZ

	
n�

occ

�qn��q−kn�M̃I
k�vIJ�k�

�M̃J
k�q−kn���qn� . �15�

The screened Coulomb interaction WIJ�q ,�� is calculated
through Eq. �5�, where the polarization function  is written,

IJ�q,�� = 	
k

BZ

	
n

occ

	
n�

unocc

M̃I
q�kn��q+kn���q+kn���knM̃J

q�

� � 1

� − �q+kn� + �kn + i�

−
1

� + �q+kn� − �kn − i�� . �16�

Equation �16� assumes time-reversal symmetry. We use the
tetrahedron method for the Brillouin zone �BZ� summation
in Eq. �16� following Ref. 24. We first calculate the contri-
bution to  proportional to the imaginary part of the second
line in Eq. �16�, and determine the rest of  by Hilbert
transformation �Kramers-Krönig relation�. Such an approach
significantly reduces the computational time required to cal-
culate .

The correlation part of � is

�qn��c�����qn�

= 	
k

BZ

	
n�

All

	
IJ

�qn��q−kn�M̃I
k�M̃J

k�q−kn���qn�

��
−�

� id��

2�
WIJ

c �k,���
1

− �� + � − �q−kn� ± i�
.

�17�

Here −i� is for occupied states; +i� is for unoccupied states.
Wc�W−v.

GW calculations usually approximate Eq. �6� by

Ekn = �kn + Zkn��kn��VAL�r,r�,�kn���kn�

− �kn�Vxc
LDA��nVAL�,r���kn�� , �18�

where �VAL and Vxc
LDA��nVAL�� are calculated only from

eigenfunctions belonging to VAL. In the present method we
calculate the Ekn including the core contributions from

Ekn = �kn + Zkn � ��kn��x�r,r�� + �c�r,r�,�kn���kn�

− �kn�Vxc
LDA��ntotal�,r���kn�� . �19�

Note that Vxc
LDA��ntotal� ,r� is for the entire density ntotal. As n�

in Eq. �15� can be divided between CORE and VAL, we have
�x=�x

CORE+�x
VAL. In this paper, we neglect the CORE con-

tribution to �c. In Sec. V we examine in some detail the
contributions by shallow cores to correlation by including
them in VAL using local orbitals, and will see that their
contribution is small except for very shallow cores.
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In short, no important approximation is made other than
the GW approximation itself; and it is to the best of our
knowledge the only implementation of GWA that makes no
significant approximations. Results depend slightly on what
kind of basis set is used to generate G and W, as we will
show, and also on the tolerances in parameters used in the
GW-specific part of the calculation.

LMTO-based calculations presented here employ a
widely varying set of basis functions, ranging from 
20 to
90 orbitals per atom, as described in more detail below. They
typically consist of a basis of spdfg+spd orbitals centered
on each atom, some floating orbitals and sometimes local
orbitals. In the Si calculations local p orbitals of either 2p
character or of 4p character were used, as we describe below.
For the GW part of the calculation, the Si results shown
below use parameters representative of the various system
studied: LMTO basis functions are reexpanded in plane
waves to a cutoff of 3.3 a.u. in the interstitial region, i.e.,
�k+G � �3.3 bohrs−1 in the second term of Eq. �9�. The IPW
part of the mixed basis used to expand v, , and W used a
cutoff �k+G � �3.0 bohrs−1; the product basis part consisted
of 90–110 Bloch functions/atom �we use a different product
basis for �x

CORE and �x
VAL�. Augmentation sphere radii were

chosen so that spheres approximately touched but did not
overlap, and the product basis functions entering into the

mixed basis M̃ in Eqs. �16� and �17� were expanded to l=5.
In the calculation of Eq. �17� the poles of G were Gaussian
broadened by �=0.003 or 0.01 Ry. These parameters corre-
spond to rather conservative tolerances: tests at tighter toler-
ances in these parameters change the QPE by 
0.01 eV.
�Systematic checks were performed for each material stud-
ied.� The tetrahedron method was used for  with a 6�6
�6 k mesh �doubling the number of points in the energy
denominator� except where noted. The same mesh is used to
calculate  and �. This k mesh is reasonably well con-
verged, systematically overestimating conduction-band states
by 
0.02 eV in Si and similar semiconductors relative to the
fully k-converged result.25

III. CONVERGENCE IN QUASIPARTICLE ENERGIES:
NUMBER OF UNOCCUPIED STATES

In Fig. 2, we show the �25v→X1c gap for Si computed by
Eq. �19� as a function of the number of unoccupied states N�
in Eqs. �16� and �17�: i.e., summation n� over unoccupied
states is restricted to n��N�. Figure 2 depicts our main with
pentagons �Si 2p treated as VAL�. It tracks well the all-
electron results of Ku and Eguiluz,26 which used an LAPW
method, except their data is 
0.05 eV less than ours. How-
ever, their results are limited to N��31, which is not suffi-
cient to analyze convergence for large N�. If one assumes the
LAPW converges with N� at the same rate as the LMTO
case, their best result with N�=31 should be 
0.1 eV less
than the converged value. Indeed, a very recent calculation
of the same system by Friedrich, Schindlmayr, Blügel, and
Kotani,4 based on LAPW with an LDA basis of 
300 basis
functions, showed N�-convergence similar to LMTO.

Tiago, Ismail-Beigi, and Louie9 presented a PPGW calcu-
lation of some QPE in Si, Ge, and GaAs where they included

the higher-lying core states into the valence so as to assess
the effect of the core. They monitored the rate of conver-
gence in QPE with N�; their data for Si are shown as open
triangles in Fig. 2. There are some similarities, but also two
discrepancies:

�i� For N��30, the behavior is rather different.
�ii� In the asymptotic region N��30, the PPGW and

LMTO results converge at somewhat different rates.
In order to examine point �i�, we tried LMTO calculations

where W is fixed �i.e., N� is truncated only in Eq. �4��. This
calculation �open circles in Fig. 2� tracks well the PPGW
result for N��30. This looks reasonable because the PPGW
is combined with the plasmon-pole approximation, which
satisfies the sum rule for Im �−1 for any N�; thus W con-
verges rather quickly with respect to N�. However, the two
LMTO calculations show little difference in the asymptotic
behavior, which means that it is controlled by N� in Eq. �17�,
as was already discussed by Tiago et al.

It can be seen that the N� dependence of either LMTO
calculation is slightly different than the PPGW result for both
intermediate and large N�: the change in the �25v→X1c gap
from N�=35 to N�=60 for PPGW is roughly twice the
change obtained by the LMTO method. As we noted in Sec.
II, LMTO-LDA eigenvalues are very close to the full APW
results in this energy range �see Fig. 1�. This indicates that
the eigenfunctions are also precise. Moreover, Friedrich et
al.4 compare LDA-APW eigenvalues to an LAPW+local or-
bitals method; the three sets of eigenvalues �APW and
LMTO+local orbitals, LAPW+local orbitals� are very close
to one another. By contrast, the LDA energy bands computed
by either conventional LAPW or PP methods correspond to

FIG. 2. �Color online� �25v→X1c gap in Si in GWA as a func-
tion of the number of unoccupied states N�. Filled �yellow� squares:
LAPW GWA taken from Ku and Eguiluz �Ref. 26�. The authors
presented data only for N��31. Also, their data was given for the
minimum gap, so we shifted their results by +0.14 eV to estimate
the �25v→X1c gap. Some checks show that the shift should be

0.14 eV, approximately independent of N�. Filled �green� penta-
gons: LMTO results varying N� both G and W. LMTO results were
shifted by −0.02 eV to correct for incomplete k convergence �Ref.
25�. The Si 2p was included in the valence using a local orbital �the
LAPW calculation of Ku and Eguiluz did not�. The total dimension
of the LMTO basis is 180. Results from the same basis are shown
as filled �green� pentagons in Fig. 4, and also filled �green� penta-
gons No. �13� in Fig. 5. Open triangles: PPGW from Ref. 9, which
included the Si 2p levels as part of the valence, and in which W was
computed using the plasmon-pole approximation. Open circles:
LMTO results varying N� in G but not W.
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APW eigenvalues far less well; see Ref. 4. Finally, the de-
pendence on N� as computed by the LAPW+local orbitals
method is essentially similar to the present LMTO results.
When these observations are considered as a whole, they
suggest that what discrepancy does exist between LMTO
+local orbitals �or LAPW+local orbitals� and PPGW may be
an artifact of the pseudopotential construction in the PPGW
method. We cannot rule out possible limitations to the
present method, however. Differences with PPGW are small
in absolute terms. Even though eigenvalues generated by
LMTO and LAPW+local orbitals are very close to APW
eigenvalues, eigenfunctions may be less well described. And
even though the LMTO and LAPW Hmiltonians are very
different, the QPEs are generated by a common GW code. If
there is some limitation in the numerical procedure, it would
be common to both LMTO and LAPW calculations.

It is also possible that the calculation by Tiago et al. suf-
fers from incomplete k convergence. Their PPGW used a 4
�4�4 k mesh. k convergence is mainly limited by diver-
gent behavior for �k � →0 in Eq. �15�. To treat this diver-
gence, we use the offset-� method, which was originally
developed by ourselves2 and is now used by other groups.7,27

It is essentially equivalent to techniques that treat the diver-
gent part analytically, as is typically done by PPGW practi-
tioners. Figure 3 shows the dependence of �25v→X1c gap on
nk, but in general all of conduction bands shift nearly rigidly
with changes in nk �nk�number of linear divisions of the k
mesh in the Brillouin zone�. Band gaps are approximately
linear in the reciprocal of the total number of points, 1 /nk

3.
The figure shows that a 4�4�4 k mesh overestimates the
k-converged gap by 
0.1 eV.25 This may explain most of the
remaining discrepancy between the PPGW calculations of
Tiago et al. and the present results.

In Sec. V we analyze the dependence of QPEs on the core
treatment. Proper treatment of the core is somewhat subtle,28

and we use the local orbitals for the analysis. Because they
are already nearly exact solutions of the LDA for the states
they constructed to represent, they minimally hybridize with
other basis functions; consequently, any higher-lying CORE
state can readily be converted into a valence state with mini-
mal perturbation of the LDA basis. Use of local orbitals en-
ables us to investigate how different kinds of core contribu-

tions affect QPEs in a well-controlled and systematic way.
We show that differing treatments of the Si 2p core only
slightly affect QPEs; similar results are found for other deep
cores. A significantly larger dependence is apparently found
using the PPGW method.

IV. CONVERGENCE IN QUASIPARTICLE ENERGIES:
BASIS DEPENDENCE

Here we study the convergence in QPEs as the LMTO
basis set changes, retaining all the eigenfunctions for a given
basis in the calculation �N� encompasses all unoccupied
states�. A given LMTO basis defines a finite Hilbert space of
eigenfunctions; the GWA is a well-defined procedure in that
space, and we can study how the QPEs change as the Hilbert
space is refined. This procedure corresponds more closely to
analyses of basis-set convergence common in other kinds of
calculations �e.g., LDA and Hartree-Fock�. We can also an-
ticipate that it will be smoother than the N� truncation of Sec.
III; indeed, this will turn out to be the case �see especially
Fig. 5�: the band gaps are insensitive to the choice of basis
once a certain level of completeness is reached. It is also
obviously true that the Hilbert space depends on the choice
of basis constructing it. Therefore, the results presented here
are specific to the LMTO basis described in Sec. II, and in
particular, what kinds of orbitals are included, e.g., orbitals
of f or g character, or local orbitals that correct the linear-
ization inherent in most of the standard methods �LMTO,
LAPW, and the construction of a norm-conserving PP�. By
adding different kinds of orbitals we can identify how differ-
ent parts of the Hilbert space �most notably corrections to
linearization common to most methods�, affect QPEs. Since
the LMTO basis is tailored to the crystal potential, LDA
eigenfunctions converge more rapidly with the basis dimen-
sion than do plane-wave-based basis sets.31 Consequently,
we might expect a more rapid convergence in the corre-
sponding GWA QPEs. On the other hand, by transformation
to, e.g., Wannier functions, it should be possible to design a
generic scheme that exhibits similarly rapid convergence.

Initially, we compare in Fig. 4 the dependence of the
�25v→X1c gap in Si on N� for two basis sets: one relatively
small and another relatively large. The right panel of Fig. 4
compares the same data, but the horizontal scale corresponds
the energy of state N� at �. Also in this panel, the small-basis
data was artificially shifted down by 0.01 eV to make it
easier to compare their energy dependence.29 The difference,
initially 0.01 eV, increases by an additional 0.01 eV as the
energy E approaches 
Ef +50 eV. For higher energies, the
discrepancy between the two increases more rapidly. This is
because the ability of the small LMTO basis to describe ei-
genvalues above 
Ef +40 eV begins to degrade.

However, we can see that the gaps at the respective maxi-
mal N� �i.e., all unoccupied states included� are in good
agreement. Including all unoccupied states in a limited basis
is another kind of Hilbert-space truncation, but it is also well
defined: it is Hilbert space of eigenfunctions basis consisting
of LMTO eigenfunctions and their products �Sec. II�, and
apply the GWA within that Hilbert space. The LMTO basis
can efficiently choose the important part of the Hilbert space

FIG. 3. �Color online� �25v→X1c gap in Si as a function 1/nk
3,

where nk
3 is the number of k points in the full Brillouin zone. The

dependence on 1/nk
3 shown for �25v→X1c is essentially the same

for all of the unoccupied QPEs we examined. Gaps for nk=6, nk

=5, and nk=4 exceed the nk=8 case by 0.02, 0.04, and 0.10 eV,
respectively. We can also estimate what the nk→� gap would be by
extrapolating the approximately linear dependence on 1/nk

3 to zero
�dashed line�. The nk=8 case apparently overestimates the con-
verged result by 0.01 eV.
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tailored to the crystal potential. Thus good agreement need
not be some fortutitous artifact of this particular pair of the
LMTO basis sets, even though the maximal N� is small in
light of a traditional N� cutoff analysis.32 Indeed, the N� cut-
off of Sec. III may choose the Hilbert space less well, espe-
cially since that kind of truncation is not smooth. Below we
present a detailed analysis of the dependence on the basis set
to justify the good agreement in Fig. 4:29 the band gaps are
insensitive to the choice of basis once a certain level of com-
pleteness is reached.

Figure 5 shows the results of a systematic study of the
convergence in the first unoccupied QPE at �, X, and L in Si
with progressively larger basis sets. LDA eigenvalues are not
shown because they are the same within 
0.01 eV for all
cases �0.60 eV for X, 1.42 eV for L, 2.52 eV for ��. These
data comprise very diverse basis sets, particularly for the
LMTO method, which traditionally uses a minimal basis.
Some details concerning these sets help explain in what man-
ner convergence is reached:

�i� Filled �yellow� diamonds �1� includes spdfsp atom-
centered functions and is the only basis without floating or-
bitals. There are no local orbitals; Si 1s ,2s ,2p are CORE.

�ii� Filled �blue� circles �2 and 3� add floating orbitals of
sp and of spd character, respectively. Their effect is to cause
QPEs to decrease slightly relative to �1�. Adding still more
floating orbitals �even large numbers of them� shift QPEs by

0.01 eV.

�iii� Other filled �blue� circles �5,6,10,12� include still
more envelope functions comprised of a mixture of atom-
centered functions and floating orbitals, but adding no local
orbitals.

�iv� Filled �green� square and open square �4 and 7� cor-
respond to �3 and 6�, respectively, but adding a local orbital

�green: Si 2p, open: Si 4p�. When the 2p is included as VAL,
CORE consists of Si 1s ,2s only. A local orbital of either
Si 2p or Si 4p shifts QPEs—in roughly equal but opposite
directions.

�v� Filled �green� pentagon and open pentagon �8,9,11,13�
include an additional Si 4d local orbital. �11� corresponds to
�10�+ �Si 2p or Si 4p�+Si 4d. �13� corresponds to �12�+¯
as well. �8� is �6�+Si 4p+Si 4d. The effect of Si 4d is small.

These points show in a compelling way that once the
basis reaches a certain level of completeness, the change of

FIG. 4. �Color online� The left panel shows �25v→X1c gap in Si as a function of the number of unoccupied states N� for a smaller basis
�filled squares� and a larger basis �pentagons�. The latter are redrawn from Fig. 2. The top horizontal scale shows an approximate relation
between energy and N� in the large basis �interpolated from levels at ��. The right panel contains the same data but reverses the top and
bottom horizontal scales. Had N� in the upper horizontal axis been drawn for the small basis �squares�, the scale would be a little different:
the last data point corresponds to N�=82 instead of 120. In the right panel the small-basis QPE’s �filled squares� were shifted by −0.01 eV
�Ref. 29� to clarify how large- and small-basis data diverge as the energy increases. The inset compares convergence in X1c as a function of
1/N� to a PPGW calculation that includes 2p states in the valence �Ref. 9� �open triangles� and a PPGW calculation that does not �Ref. 30�
�open diamonds�. LMTO data were shifted by −0.02 eV to correct for incomplete k convergence �Ref. 25�. Some of the differencess between
PP and LMTO data �triangles and hexagons� may be related to incomplete k convergence; see Sec. III.

FIG. 5. �Color online� QPE in the GWA at �15c �top�, L1c

�middle�, and X1c �bottom� in Si relative to the valence-band maxi-
mum, using different basis sets in the present FP-LMTO. Abscissa
is the total number of basis functions N. Yellow diamonds show a
minimal basis �see text�. All results depicted by blue �filled� circles
contain no local orbitals. Those depicted by filled �empty� squares
or pentagons include the Si 2p �Si 3p� as local orbitals. See the text
for further description.
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QPE with further enlargement is very small. Set �1�, which
consists only of atom-centered functions, is somewhat in-
complete except inside the augmentation spheres where the
eigenfunctions are constructed out of linear combinations of
�
 , 
̇�. Considering the open structure of zinc blende, such a
basis may be expected to be less complete in the interstitial.
Comparing basis sets without local orbitals �circles� with set
�1� shows that this particular purely atom-centered basis is
slightly deficient for reliable calculation of QPEs, since the
addition of floating orbitals induces a �k-dependent� reduc-
tion in the conduction band of 
0.02−0.10 eV. It is an open
question whether a still more sophisticated atom-centered
basis33 would be adequate to describe the interstitial.

Once the interstitial is reasonably complete �cf. sets �3�
and higher�, there is an almost negligible dependence on ba-
sis provided no orbitals are included that extend the linear
method or alter how the core is treated. Basis sets marked by
a common symbol �squares, circles, pentagons� share essen-
tially the same Hilbert space in the augmentation regions;
only the basis set corresponding to the interstitial region
changes. The variation is ±0.01 eV for a wide range of basis
sets.29

Figure 5 also gives us some insight into the limitations of
the linear method. Basis sets �3� and �4�, which differ only in
how the Si p channel is treated inside the augmentation re-
gion, affect QPEs more strongly than radically enlarging the
Hilbert space of the envelope functions—compare �3�→ �4�
and �3�→ �12�. Envelope functions affect only the intersti-
tial; they negligibly affect the Hilbert space of the augmen-
tation region. For the latter it is largely irrelevant how many
envelope functions are used—and consequently, the size of
N� entering into Eqs. �16� and �17�. What is relevant is the
completeness of �
 , 
̇�, and results are independent of basis
dimension provided that the entire �
 , 
̇� Hilbert space is
included. Said another way, the LMTO method is by design
reasonably complete over a certain energy window in the
augmentation spheres, more or less independent of the enve-
lope functions. A similar story may be told for the interstitial:
sets �3,6,10,12� differ in the number of envelope functions by
as much as a factor of three, but QPEs are unchanged within
±0.01 eV. QPEs do shift, in a consistent manner, when
�
 , 
̇�→ �
 , 
̇ ,
4p� or �
 , 
̇�→ �
 , 
̇ ,
2p�, essentially in-
dependent of the number of envelope functions �3→4, 6
→7, 10→11, 12→13�.

Table I shows data for three other materials �CdO, Ge,
and GaAs�. We can see �1� rapid convergence in QPEs as the
basis is enlarged for a fixed set of augmentation functions;
and �2� extensions to a linear augmentation affect QPEs in a
manner approximately independent of the total dimension of
the Hamiltonian. �In GaAs, both 3d and 4d must be included
as VAL. If not, significant errors result2.� We have tested a
number of other materials as well, and these trends appear to
be rather general. As might be expected, the number of basis
functions needed to make the Hilbert space reasonably com-
plete depends somewhat on the elements involved. The
heavier atoms have larger radii and consequently slower l
convergence in the number of envelope functions needed;
also, d orbitals often play an important role. More orbitals
are required to make the basis complete when heavier atoms
are involved.

As noted, the linear �
 , 
̇� Hilbert space is already rea-
sonably complete in the case of Si. But this is not true in
general: oxides and nitrides form a materials class where the
effect is significantly larger. CdO is one such example �CdO
forms in the NaCl structure; the valence-band maximum falls
at L and the conduction-band minimum falls at �.� As hap-
pens for Si, there is a weak dependence on basis when the
number of envelope functions is changed and the Hilbert
space of the augmentation is held constant. But the QPEs
change by 
0.15±0.05 eV when the O 3p and Cd 5d states

TABLE I. QPEs of the first unoccupied state at �, L, and X, for
different basis sets, in eV �relative to valence maximum�. Columns
na, nf, and nl denote the number of atom-centered functions, the
number of floating orbitals, and the number of local orbitals, respec-
tively. The Hamiltonian dimension is the sum of these numbers.
Experimental data are adjusted for spin-orbit coupling by adding
1/3 of the splitting in the �15 valence bands. The first four CdO
basis sets are identical to the last four except for the addition of
local orbitals in the O 3p and Cd 5d channels. A 6�6�6 k mesh
was used in these calculations.

Data
type na nf nl � L X

CdO

Expt.
+0

0.84

LDA 59 18 12 −0.53 4.26 3.58

GW 59 18 12 0.14 5.18 4.97

59 50 12 0.10 5.14 4.92

82 66 12 0.10 5.16 4.89

82 82 12 0.10 5.16 4.88

59 18 3 −0.01 5.05 4.78

59 50 3 −0.06 5.01 4.73

82 66 3 −0.02 5.05 4.73

82 82 3 −0.02 5.06 4.74

Ge

Expt.
+0.10

1.00 0.88 1.20

LDA 50 18 10 −0.12 0.07 0.65

GW 50 18 10 0.80 0.65 0.94

68 18 10 0.84 0.68 0.97

82 50 10 0.83 0.67 0.96

82 82 10 0.82 0.67 0.96

GaAs

Expt.
+0.11

1.63 1.96 2.11

LDA 42 18 6 0.34 0.86 1.34

GW 42 18 6 1.44 1.68 1.79

68 18 6 1.46 1.69 1.79

82 50 6 1.44 1.66 1.77

82 82 6 1.43 1.66 1.77

82 82 11 1.43 1.68 1.81
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are added, as Table I shows. �In this particular case it is the
O 3p contribution that is dominant; however, cases arise
when the contributions from high-lying d or f orbitals can be
of order 1–2 eV. NiO is such a case11.�

The inset of Fig. 4 shows some PPGW results for refer-
ence. Based on the observation that cutoff in the Hilbert
space should be important, PPGW data by Tiago et al. should
be extrapolated to 1/N�→0 because they used a very large
LDA basis.

V. CORE CONTRIBUTIONS TO �c

In a series of papers, Shirley and co-workers analyzed the
effects of the core on QPE in atoms �Shirley, Mitás, and
Martin,�34� and Shirley and Martin�35�� semiconductors �Shir-
ley, Zhu, and S. G. Louie36,37� within the pseudopotential
framework. Approximate core contributions to both Eqs. �16�
and �17� were evaluated. They also compared pseudopoten-
tials constructed from both LDA exchange and from Hartree-
Fock �HF� exchange for atoms and molecules,38 and incor-
porated pseudopotentials of both types in studying core
effects.36,37 They found sizable shifts in QPE in Si, and rather
dramatic and k-dependent shifts in Ge and GaAs. These
analyses highlight the importance of core effects. However,
the decomposition of the various core contributions in Ref.
37 is somewhat involved, and it is rather closely tied to the
pseudopotential construction that was a part of their imple-
mentation. This makes it a little difficult to disentangle the
various contributions.

Here we examine contributions from the shallowest cores
to �c within the framework of our GW. As we noted, all the
eigenfunctions are divided into two groups, CORE and VAL,
as explained in Sec. II. Using local orbitals we can represent
the shallowest cores in VAL. To distinguish true core effects
from artifacts of implementation,28 we include these cores in
the valence with local orbitals and treat them in a special
way, as described below. We denote such eigenfunctions as
core, and the rest as val. Thus we distinguish three kinds of
orbitals: CORE, core, and val;

�20�

In Si, for example, we use CORE= �1s ,2s�, core= �2p�, and
val= �3s ,3p ,3d , . . . �. Because the core states are well sepa-
rated from higher-lying states, G can be partitioned into G
=GCORE+Gcore+Gval. �x is always calculated from the entire
G, while �c is calculated from core and val only �we do not
consider any case where some portion of the self-energy is
supplied by the LDA�: �c= i�Gcore+Gval�Wc, where Wc

=W��−v, and  is calculated from Gcore+Gval. Thus core
states contribute to �c directly through G in iGWc, and also
through Wc. We resolve these contributions; that is, we cal-
culate �c in one of four ways:

�i� Neglect the core contribution to �c entirely: i.e., �c
= iGval�W�val�−v�, where W�val� means that  is calcu-
lated from Gval only. We denote this as “exchange-only
core.”

�ii� Neglect the core contribution to screening: �c
= i�Gcore+Gval��W�val�−v�.

�iii� Neglect the core contribution to G: �c= iGval�W��
−v�.

�iv� �c= i�Gcore+Gval��W��−v�: there is no distinction
between core and val states.

Table II shows that the difference between exchange-only
�i� and GW �iv� approximations to core treatment is small in
Si �
0.03 eV for X1c�. As expected, the adequacy of an
exchange-only core depends on how deep the core is. The
exchange-only approximation for shallow cores, such as the
Ga 3d and In 4d, and the highest-lying p core in column I
�Na, K, Rb� and column IIA alkali metals �Mg, Ca, and Sr�,
is rather crude. It is interesting that the core contributions to
 and to G are not always additive.

The difference between �iii� and �iv� is in general rather
small; that is, the inclusion of core contributions to  alone
is sufficient to bring QPE results within 0.05 eV of the full
results in Table II except for the very shallow Ga 3d channel.
For moderately deep cores, exchange-only treatment �i� is
generally adequate, as Aryasetiawan suggested. A rough rule
of thumb seems to be: for cores whose total charge Qspill
outside the augmentation radius is less than 0.01 electrons,

TABLE II. QPE of the first unoccupied state at �, L, and X relative to top of valence, for core treatments �i�–�iv� as described in the text,
in eV. States and corresponding eigenvalues �c

LDA treated as core are: 2p in Si, 3d in Ga and Ge, and 2s in Mg. Si data corresponds to the
basis set �13� in Fig. 5; GaAs data corresponds to the 68+18+6 orbital basis in Table I; Ge data corresponds to the 68+18+10 orbital basis
in that table. Here G means �Gcore+Gval�, W means W�� �see text�. A 6�6�6 k mesh was used in these calculations. For results with
better k convergence and larger basis sets, see Table III.

�i�: Gval ,W�val� �ii�: G ,W�val� �iii�: Gval ,W �iv�: G ,W

�c
LDA � L X � L X � L X � L X

Si −89.6 3.17 2.09 1.14 3.17 2.09 1.14 3.17 2.06 1.15 3.16 2.02 1.11

Ge −24.7 0.98 0.74 0.98 0.96 0.73 0.95 0.88 0.71 0.99 0.84 0.68 0.97

GaAs −14.8 1.65 1.83 1.86 1.63 1.82 1.85 1.54 1.75 1.83 1.46 1.69 1.79

MgO −71.4 7.31 10.55 11.62 7.36 10.56 11.62 7.30 10.55 11.60 7.36 10.55 11.60
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exchange-only treatment of them results in errors 
0.1 eV
or less for the lowest excited states. �This radius may be
taken as approximately half the nearest-neighbor bond
length.�

Inclusion of core contributions to  can significantly in-
crease the computational cost �in the Si case, leaving out the
2p contribution to  reduces the computational cost by

40%�. The relative smallness of corrections to exchange-
only treatment, and the observation that core contributions to
 alone are adequate for all but the most shallow cores,
suggests that a simple approximate inclusion of core contri-
butions to  �Eq. �16��, should be adequate for all but the
most shallow cores such as the Ga 3d. �Fleszar and Hanke
proposed a construction for pseudopotentials when core
states are not pseudized.39� Supposing the core was confined
to the augmentation sphere at site R, we can eliminate all

contributions to the matrix element M̃I
q�kn ��q+kn�� except

from the product-basis contribution at R. Since also the aug-
mented part of � depends rather weakly on �̇Rl, we can
neglect the �̇Rl contribution to the eigenfunctions and assume

that M̃I
q�kn ��q+kn�� only depends on n, n�, k, or k+q

through the coefficients, ��Ru
kn�*�Ru

k+qn�. Moreover, the core-
level energy is large and negative, and nearly independent of
k or n. Since the dominant contributions to  will come
from coupling to low-lying states, we can approximate �kn
−�k�n� by a constant, e.g., EF−�core. These approximations
are all modest but can vastly simplify the computation of
CORE.

The fact that the core spills out slightly from the augmen-
tation region needs to be taken into account.22 This can
readily be accomplished by integrating the core and corre-
sponding valence �l to a larger radius, and orthogonalizing
�l to the core. Checks show that the adjustment to 
l is small
unless the core is very shallow, in which case the core should
be treated as a valence state.

A. Comparison to PPGW

When the highest cores are put explicitly into the valence
as Tiago et al. did, there is reasonable agreement between
PPGW and our results for sp semiconductors. Comparison
with the paper of Tiago et al. to Table II above shows that
there is agreement at the 
0.1 eV level in Si �Ref. 40� and a
similar agreement is found for GaAs and Ge, with the PPGW
results systematically higher than our results by 
0–0.1 eV.
Similarly, Fleszar and Hanke39 calculated QPEs in the GWA
for a variety of II-VI semiconductors, including the highest s
and p cores in the valence. Their values are also in reason-
able agreement with the results presented in Table III, though
the PPGW data are systematically higher by 
0.0–0.2 eV.
�Part of the discrepancy can be traced to contributions from
high-lying d states, which are included in the present calcu-
lation using local orbitals.� Even when the high-lying s and p
core states are included explicitly in the valence, it still
seems to be the case that PPGW band gaps are systematically
slightly larger �by 
0.1 eV� in semiconductors than our GW
predict.

Materials involving transition metals are rather more
complicated. In a recent PPGW calculation, Marini, Onida,

and del Sole analyzed the QP valence bands of Cu,41 com-
paring in some detail the occupied d bands to photoemission
experiments. The LDA places the position of these levels
approximately 0.5 eV closer to EF than the experiments
show. The authors find that the d bands narrow and shift
downward by approximately 0.5 eV, bringing the PPGW d
bands into excellent agreement with photoemission experi-
ments. They report that the PPGW results depend rather dra-
matically on the treatment of the Cu core 3s and 3p levels:
that it is necessary to include both states explicitly in the
valence to obtain reasonable results. They found that the cor-
relation contribution �c

core from these states shifts the d bands
downward 
0.5 eV.

We conducted a similar calculation by using the present
all-electron GW, and find a very different result. In our case,
the GW correction to the LDA d bands is small—between 0
and 0.1 eV. Moreover, QPEs are essentially independent of
how the Cu 3p state is treated: the 3d levels change by less
than 0.05 eV when the Cu 3p state is explicitly included in
the valence �using a 3p local orbital�, as compared to being
treated as core at the exchange-only level. The Cu 3p state is
rather deep, and the weak dependence on correlation contri-
butions from it is consistent with the rule of thumb indicated
above: Qspill�0.005 electrons; �3p

LDA�−70 eV. In the Cu
case, it appears likely that the main discrepancy between
PPGW and our GW �whether d bands shift by 0.5 eV or not�
originates in the discrepancies in �c

core.

VI. ADEQUACY OF GWA APPLIED TO A RANGE OF
MATERIALS

In Ref. 10, Delaney et al. argued that GWA based on the
LDA eigenfunctions and eigenvalues, is an adequate �or bet-
ter� approximation than self-consistent GW. It is apparently
the case that self-consistency worsens agreement with ex-
periment for the Be atom. Moreover, Holm and von Barth42

found that the valence bandwidth of the homogeneous elec-
tron gas is considerably worsened by self-consistency; simi-
larly a self-consistent GW calculation by Ku and Eguiluz
resulted in an overestimate of the valence bandwidth in Ge.6

Thus, self-consistency of this type has shortcomings. On the
other hand, even in simple materials such as sp semiconduc-
tors, GWA band gaps based on LDA eigenvalues and eigen-
functions are always underestimated when properly
calculated.2,39 The GWA based on LDA is evaluated as a
perturbation relative to LDA; thus the band gap can be poor
if the LDA itself is poor. Thus, some kind of self-consistency
is necessary to reduce the dependence on the starting point.

In this section, we consider three points about the GWA
based on LDA, Eq. �6�:

�A� Use of the Z factor. We show that using Z=1 in Eq.
�6� is a way to include partial self-consistency, and it should
be a better approximation than including the Z factor.

�B� Off-diagonal �. Equation �6� is a perturbation treat-
ment that involves only the diagonal matrix element of �.
We consider the effect of the full � in a variety of systems
analyzing how the adequacy of GWA is dependent on the
adequacy of LDA. Even GWA with Z=1 fails for cases when
the starting LDA is poor.
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�C� Band-disentanglement problem. Even when LDA
eigenfunctions are reasonable, if eigenvalues are wrongly or-
dered the perturbation treatment can have important adverse
consequences.

A. Z factor

Let us consider a partial kind of self-consistency where
only eigenvalues are updated: both eigenfunctions and W are
unchanged from the LDA. This is a little different from the
usual eigenvalue-only self-consistency, where eigenfunctions
are frozen but W is updated. Updating eigenvalues widens
semiconductor band gaps. This reduces the screening, which
causes W to increase, which in turn causes gaps to increase
still more. Thus we expect that results from such kind of
partial self-consistency we are considering here should fall

somewhere between the usual one-shot GW and the usual
eigenvalue-only self-consistency. Partial self-consistency,
while incomplete, should result in better QPEs than the stan-
dard one-shot GW, since eigenvalues shift in the right direc-
tion. The Appendix evaluates how this kind of self-
consistency modifies Eq. �6� for a model two-level system.
The result is that this kind of self-consistency can be ap-
proximately realized by putting Zkn=1 in Eq. �6�. A different
justification for omitting the Z factor emerged from a paper
of Niquet and Gonze,43 who calculated the interacting band-
gap energy �within RPA� to obtain a correction to the Kohn-
Sham gap. They found that the difference is essentially Eq.
�6� with Z=1. Finally, a further justification for using Z=1 is
discussed in Chapter 7 of Ref. 44. Z=1 corresponds to the
Rayleigh-Schrödinger perturbation, Z from Eq. �19� to the
Brillouin-Wigner perturbation. It shows the Z=1 scheme

TABLE III. Fundamental gap, in eV. �For Gd, QPE correspond to the position of the majority and
minority f levels relative to EF; for Cu QPE corresponds to the d level.� Low-temperature experimental data
were used when available. QPEs in the “GW” column are calculated with usual GWA Eqs. �6� and �7�. In the
“Z=1” column the Z factor is taken to be unity. In the “�nn�” column the off-diagonal parts of � are included
in addition to taking Z=1. k meshes of 8�8�8 k and 6�6�6 were used for cubic and hexagonal struc-
tures, respectively �symbol w indicates the wurtzite structure�. GW calculations leave out spin-orbit coupling
and zero-point motion effects. The former is determined from � /3, where � is the spin splitting of the �15v
level �in the zinc-blende structure�; it is shown in the “� /3” column. Contributions to zero-point motion are
estimated from Table 2 in Ref. 45 and are shown in the “ZP” column. The “adjusted” gap adds these columns
to the true gap, and is the appropriate quantity to compare to GW.

GW GW

LDA GW Z=1 �nn� Expt. � /3 ZP Adj

C 4.09 5.48 5.74 5.77 5.49 0 0.37 5.86

Si 0.46 0.95a 1.10 1.09 1.17 0.01 0.06 1.24

Ge −0.13 0.66 0.83 0.83 0.78 0.10 0.05 0.93

GaAs 0.34 1.40 1.70 1.66 1.52 0.11 0.05 1.68

wAlN 4.20 5.83 6.24 6.28 0b 0.24 6.52

wGaN 1.88 3.15 3.47 3.45 3.49 0b 0.17 3.66

wInN −0.24 0.20a 0.33 0.69 0b 0.1 0.79

wZnO 0.71 2.51 3.07 2.94 3.44 0b 0.16 3.60

ZnS 1.86 3.21 3.57 3.51 3.78 0.03 0.09 3.90

ZnSe 1.05 2.25 2.53 2.55 2.82 0.13 0.05 3.00

ZnTe 1.03 2.23 2.55 2.39 0.30 0.05 2.74

CuBr 0.29 1.56 1.98 1.96 3.1 0.04 0.01 3.15

CdO −0.56 0.10 0.22 0.15 0.84 0.01b

CaO 3.49 6.02 6.62 6.50 
7 0b

wCdS 0.93 1.98 2.24 2.50 0.03 0.07 2.60

SrTiO3 1.76 3.83 4.54 3.59 
3.3

ScN −0.26 0.95 1.24 0.96 
0.9 0.01b

NiO 0.45 1.1 1.6 4.3

Cuc −2.33 −2.35 −2.23 −2.18 −2.78

Cud −2.33 −2.85 −2.73 −2.18 −2.78

Gd↑ −4.6 −5.6 −6.2 −4.1 −7.9

Gd↓ 0.3 0.2 1.8 1.5 4.3

aSee Ref. 40.
bLDA calculation.
cPosition of �12 d level, with EF set to charge-neutral point.
dPosition of �12 d level, with EF set to LDA value.
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should be better for the Fröhlich Hamiltonian Mahan
analyzed.44

The calculations in Table III support the argument that
using Z=1 is a better approximation than including Z: semi-
conductor band gaps are in significantly better agreement
with experiment. They continue to be smaller than experi-
mental values, which can be qualitatively understood as fol-
lows. Using Z=1 corresponds to updating G, but leaving W
determined from the LDA eigenfunctions and eigenvalues.
Because the gap is underestimated in the construction of 
and W,  is overestimated so that W is screened too
strongly; thus � is too small. It is interesting, however, that
QPEs evaluated with Z=1 can be rather good at times be-
cause of a fortuitous cancellation of errors. We can refine
self-consistency by updating W in a manner similar to the
updating of G; that is, using eigenvalues from Eq. �6� in the
calculation of . However, � computed in the RPA ��=1
−v�, omits excitonic effects. Inclusion of electron-hole cor-
relations to  �via e.g., ladder diagrams� increases Im ����
for � in the vicinity of the gap for semiconductors. There is
a concomitant increase in Re ���� for �→0, as is evident by
the Kramers-Kronig relations; see e.g., Ref. 46. Errors result-
ing from the neglect of excitonic contributions to � partially
cancel errors resulting from LDA eigenvalues, as shown by
Arnaud and Alouani.46 Thus, W calculated from LDA eigen-
values is not so bad in many cases because of this cancella-
tion. Often �� calculated from the LDA eigenvalues is better
than �� calculated from LDA eigenvalues shifted by a scis-
sors operator to match the experimental band gap �see Table
III in Ref. 46�. This cancellation means that GW�Z=1� can
often be rather good, since W itself is also better than what
would be obtained from �eigenvalue� self-consistency. Table
III shows that the fundamental gap for GW�Z=1� is quite
good for mostly covalent semiconductors such as Si or
GaAs, but that the agreement deteriorates as the ionicity in-
creases.

B. Off-diagonal contributions of �

The usual GWA in Eq. �6� does not include the off-
diagonal contribution of �−Vxc

LDA. A simple way to take into
account the contribution of off-diagonal parts is to replace
the energy-dependent matrix � with some static Hermitian
matrix Vxc as in the following, and to solve the eigenvalue
problem, replacing Vxc

LDA in the LDA Hamiltonian with this
potential. We take

Vxc =
1

2	
ij

��i��Re����i��ij + Re���� j��ij�� j� , �21�

for �. Here Re signifies the Hermitian part; the eigenvalues
�i and the eigenfunctions �i are in LDA. This Vxc is used in
our QP self-consistent GW method.11–13 This Vxc retains the
diagonal part contribution as in Eq. �6� �we now consider the
Z=1 case�. From the perspective of the QP self-consistent
GW method, including the off-diagonal � corresponds to the
first iteration, and the LDA corresponds to the zeroth itera-
tion. Table III shows how the fundamental gap is affected by
the off-diagonal parts of Vxc for selected semiconductors.

Because the semiconductor eigenfunctions and density are
already rather good, the off-diagonal contributions are small.
Contributions from the off-diagonal part of Vxc significantly
increase when eigenfunctions have significant d character
�see SrTiO3 and ScN in Table III�. For correlated systems the
effects can be rather dramatic; see Ref. 12 for how the QPEs
are affected by the off-diagonal parts of � in CeO2.

In general, GWA errors are rather closely tied to the qual-
ity of LDA starting point. In the covalent sp semiconductors
C, Si, and Ge, GW gaps are rather good for Z=1. In the
series Zn�Te,Se,S ,O�, the deviation between the LDA and
experimental gap steadily worsens, and so does the GW gap.
For ZnO, and even more so in CuBr, the GW gap falls far
below experiment. For these simple sp materials, errors are
related to their ionicity, which can be seen qualitatively as
follows. As ionicity increases, the dielectric response be-
comes smaller; consequently the nonlocality missing from
the LDA exchange-correlation potential47 becomes progres-
sively more important. Roughly speaking, a reasonable pic-
ture of electronic structure in sp systems resembles an inter-
polation between the LDA, which has no nonlocality in the
exchange and underestimates gaps, and Hartree-Fock, which
has nonlocality but wildly overestimates gaps because the
nonlocal exchange is not screened. As ionicity increases the
gap widens and the dielectric function decreases. As the
screening is reduced the LDA becomes a progressively worse
approximation. Thus, the LDA is not an adequate starting
point for GW in the latter cases.

Discrepancies between GW and experiments become
drastic when electronic correlations are strong. The GWA
band gap for the antiferromagnetic-II NiO is far from experi-
ment, and moreover the conduction-band minimum falls at
the wrong place �between � and X 11�. As Table III shows,
the LDA puts f levels in Gd too close to EF. GWA results are
only moderately better: shifts in the Gd f level relative to the
LDA are severely underestimated �see Table III�.

GW based on the LDA fails even qualitatively in CoO: it
predicts a metal with EF passing through an itinerant band of
d character. In this case, the GWA gives essentially meaning-
less results. To get reasonable results it is essential to apply
the GWA with a starting point that already has a gap. To get
a band gap for CoO in the single-band picture, a nonlocal
potential, which breaks time-reversal symmetry is required,
something which is not built into the local potential of the
LDA. Similar problems occur with ErAs: the LDA predicts a
very narrow minority f band straddling EF, whereas in reality
the minority f manifold is exchange-split into several distinct
levels well removed from EF.48 GWA shifts the minority f
levels only slightly relative to the LDA: the entire f manifold
remains clustered in a narrow band at the Fermi level, ap-
pearing once again qualitatively similar to the LDA.

Generally speaking, the GWA �even GWA�Z=1�� is rea-
sonable only under limited circumstances—when the LDA
itself is already reasonable.

C. Band disentanglement problem

Even for the simple sp semiconductors, there can be a
“band disentanglement problem” as a consequence of the
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diagonal-only approximation. At times the LDA orders en-
ergy levels wrongly: in hcp Co, for example, it inverts the
order of the minority �5 and �3 levels, which correspond to
states of L3 and L2� symmetry in the fcc structure. Wrong
ordering of levels is a particularly serious difficulty for
narrow-gap semiconductors such as Ge, InAs, InSb, and InN.
Because the LDA underestimates band gaps, the energy-band
structure around � has an inverted structure: the s-like con-
duction band of �1 symmetry �labeled as �2� in the homopo-
lar case� incorrectly falls below the p-like states of �25� sym-
metry.

When the GWA is evaluated from Eq. �6�, the energy
bands retain the same connectivity as in the LDA, as Fig. 6
shows. Consequently, the conduction band has a nonsensical
negative mass near �, and it crosses with one of the valence
bands. The diagonal-only approximation cannot make Ge an
insulator in principle, even though the levels are properly
ordered at �. This problem is avoided if the off-diagonal
parts of � are included, as Fig. 6 shows. The conduction-
band effective mass in the latter case is computed to be m*

=0.042m0, in good agreement with a value of m*=0.038m0
estimated from magnetopiezoreflectance spectra.49 This
shows that the off-diagonal contributions of � are reasonably
well described by Eq. �21�.

VII. CONCLUSIONS

To conclude, we have analyzed various possible sources
of error in implementations of the GWA, using calculations

based on an all-electron method with generalized linear
muffin-tin orbitals as a basis. We analyzed convergence in
QPEs with the number of unoccupied states N�: the rate of
convergence for intermediate N� �where the LMTO energy
bands were shown to precisely replicate APW bands�, was
qualitatively similar to, but roughly twice that of a PP analy-
sis by Tiago, Ismail-Beigi, and Louie.9 On the other hand, it
closely tracked the convergence calculated by an LAPW
+local orbitals method, which had a very similar LDA band
structure. More generally, those GWA that properly subtract
Vxc

LDA calculated from the full density are in reasonable agree-
ment with each other;2,4,6,11,50 those that subtract valence
density only5,7 are also in reasonable agreement for cases
such as Si and SiC where the cores are sufficiently deep. Our
own experience suggests that the LDA treatment of core lev-
els, where QPE are computed from Eq. �18�, will be prob-
lematic for GW �Ref. 2� unless the cores are very deep. Since
a PP construction is an approximation whose justification is
grounded in an all-electron theory, we should expect GW
calculations based on a LDA PP should be similarly prob-
lematic. There is apparently a significant dependence on how
cores are treated in PP implementations,37,39,41,51 even in Si
and Cu with their deep 2p and 3p cores.

We then presented a new analysis of convergence that is
of particular importance for minimal-basis implementations,
and argued that measuring convergence in the traditional cut-
off procedure—by the number of unoccupied states N� as
given in Figs. 2 and 4—is not particularly meaningful for a
minimal basis. We presented an alternative truncation of the
full Hilbert space of eigenfunctions, namely, to use the entire
Hilbert space of a relatively small basis. We showed that a
suitably constructed minimal basis is sufficient to precisely
describe the GWA QPE within 1 Ry or so of the Fermi level,
and that this kind of cutoff procedure seems to be more ef-
ficient than the traditional N� cutoff of a large basis. We also
showed that traditional linearization of basis functions, either
explicit in an all-electron method or implicit through the con-
struction of a pseudopotential, result in errors approximately
independent of the size of basis. The addition of local orbit-
als to extend the linear approximation results in modest shifts
in sp nitride and oxide compounds, and shifts of the order
1–2 eV in transition-metal oxides.

We analyzed core contributions to the self-energy, and
showed that an exchange-only treatment of the core is ad-
equate in most cases. For all but the most shallow cores
�such as Na 2p and Ga 3d�, we showed that it is sufficient to
include the core contribution to the polarization only; an ap-
proximate and rather painless implementation was suggested.
These results can provide a framework for improved treat-
ment of the core within a pseudopotential approximation.

Finally, we considered the adequacy of GWA based on the
LDA, for different kinds of materials, and also Eq. �6� as an
approximation to the GWA. We presented logical and nu-
merical justifications that using Z=1, and showed that it gen-
erally gives better band gaps in insulators. In general, inclu-
sion of the off-diagonal part of � and some kind of self-
consistency is essential to make the GWA a universally
applicable and predictive tool. Taking into account both the-
oretical and practical aspects, the quasiparticle self-
consistent GW scheme we have proposed11–13 has the poten-

FIG. 6. �Color online� Energy bands in Ge for k=2� /a�00k� for
small k within the GWA, using Z�1. Spin-orbit coupling was omit-
ted. Three approximations are compared: LDA �dashed blue line�,
GW in the diagonal-�-only approximation, Eq. �6� �black line with
circles�, and GW with � computed according to Eq. �21� �solid
green line�. In all three cases the three states of p character ��25�
symmetry� form the valence-band maximum; this was taken to be
the energy zero. The LDA predicts the conduction band, the �2�
state of s character, to be slightly negative, causing the energy
bands to be wrongly ordered at �. For k�0, the �25� state of pz

symmetry couples to the �2� state, and the two repel each other.
Both kinds of GW put �2�c at approximately the correct position,
1 eV. However, the diagonal-only GW must follow the topology of
the LDA: the eigenvectors are unchanged from the LDA. Therefore
the band starting out at �2�c sweeps downward, while the pz band
starting out at �25�v sweeps upward, and the two bands cross near
k=0.02. When the off-diagonal parts of � are included, these two
bands repel each other as they should.
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tial to be an excellent candidate for such a tool: it obviates
some of the difficulties seen in the standard self-consistency,
it no longer depends on the LDA, and it appears to predict
QPEs in a consistently reliable way for broad classes of ma-
terials.
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APPENDIX: JUSTIFICATION FOR Z=1

Let us consider a limited self-consistency within GWA as
follows. We restrict self-consistency as follows:

�1� We make only the QPE self-consistent. Eigenfunctions
are constrained to be the LDA eigenfunctions.

�2� W is assumed to be fixed. Thus only the eigenvalues
entering into G are made self-consistent.

Under these assumptions, we can show that QPEs are
rather well approximated by Eq. �6� with Z=1. To illustrate
it, consider a two-states model whose LDA eigenvalues and
eigenfunctions are given by �1 ,�1, and �2 ,�2, and the Fermi
energy falls between these states: �2�EF��1. Then the
LDA Green’s function is

GLDA��� =
��1��1�

� − �1 − i�
+

��2��2�
� − �2 + i�

. �A1�

After the limited self-consistency is attained, we will have
eigenvalues

G��� =
��1��1�

� − E1 − i�
+

��2��2�
� − E2 + i�

, �A2�

where E1 is given by

E1 = �1 + Re�1���E1,�G�� − Vxc
LDA��1� . �A3�

There is a similar equation for E2. Note that ��E1 , �G�� is
calculated in GWA from G of Eq. �A2� at E1.

As we can expect that W is dominated by diagonal terms
W1���= �1�1 �W��� ��1�1� and W2���= �2�2 �W��� ��2�2�,
we neglect other matrix elements of W���. Then � becomes

Re�1����E1,�G�����1�

= Re� �1�iG�E1 + ���W������1�d��

� Re� iW1����d��

E1 + �� − E1 − i�

= Re� iW1����d��

�1 + �� − �1 − i�

= Re�1����1,�GLDA����1� . �A4�

A similar equation applies for E2. The energy shift E1→�1
entering into the evaluation � is exactly compensated by the
energy shift in G→GLDA, or equivalently using Z=1 is an
approximate way to obtain self-consistency. Equation �A4�
corresponds to Eq. �6� with Z�1.
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