
Performance of the Vignale-Kohn functional in the linear response of metals

J. A. Berger, P. Romaniello, R. van Leeuwen, and P. L. de Boeij
Theoretical Chemistry, Materials Science Centre, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

�Received 14 July 2006; revised manuscript received 15 October 2006; published 19 December 2006�

Recently the linear response of metallic solids has been formulated within the time-dependent current-
density-functional approach �Romaniello and de Boeij, Phys. Rev. B 71, 155108 �2005��. The implementation,
which originally used only the adiabatic local density approximation for the exchange-correlation kernel is
extended in order to include also the Vignale-Kohn current functional. Within this approximation the exchange-
correlation kernel is frequency dependent, thus relaxation effects due to electron-electron scattering can now be
taken into account and some deficiencies of the adiabatic local density approximation �ALDA�, as the absence
of the low-frequency Drude-like tail in absorption spectra, can be cured. We strictly follow the previous
formulation of the linear response of semiconductors by using the Vignale-Kohn functional �Berger, de Boeij,
and van Leeuwen, Phys. Rev. B 71, 155104 �2005��. The self-consistent equations for the interband and
intraband contributions to the induced density and current density, which are completely decoupled within the
ALDA and in the long-wavelength limit, now remain coupled. We present our results calculated for the optical
properties of the noble metals Cu, Ag, and Au and we compare them with measurements found in literature. In
the case of Au we treat the dominant scalar relativistic effects using the zeroth-order regular approximation in
the ground-state density-functional-theory calculations, as well as in the time-dependent response calculations.
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I. INTRODUCTION

Recently the time-dependent current-density-functional
theory �TDCDFT� formulation for the response of nonmetal-
lic crystals1,2 has been extended to treat metals.3 In these
systems one should not only consider the interband contribu-
tion to the response, involving transitions from �partially�
occupied to �partially� unoccupied bands as in nonmetals, but
also the intraband contribution due to transitions within the
same band, more specifically, from just below the Fermi
level to just above this level. The latter processes are respon-
sible for the collective plasmon response typical for simple
metallic systems.4 We considered the linear response of the
system to a general perturbation with wave vector g and
frequency �. We found that interband and intraband pro-
cesses behave differently for small g and that the self-
consistent-field equations for the interband and intraband
contributions to the response decouple in the optical limit
�vanishing g but finite �� when we make use of the adiabatic
local density approximation �ALDA�. In this approximation
the exchange-correlation scalar potential vxc�r , t� is just a
local functional of the density. Within the ALDA this method
yields good results for the dielectric and the electron energy
loss functions of several transition metals. However the adia-
batic approximation fails in describing the low-frequency
Drude-like absorption, which is missing in all the calculated
absorption spectra. This absorption is due to relaxation pro-
cesses such as electron-electron and electron-phonon scatter-
ing. The description of the electron-phonon interaction re-
quires the use of a multicomponent-density functional
approach.5,6 The electron-electron scattering can be de-
scribed within our method by using more advanced
exchange-correlation functionals where a frequency-
dependent exchange-correlation kernel is used.

In this work we go beyond the ALDA and we employ an
exchange-correlation vector potential, Axc�r , t�, which we

approximate as a local functional of the current density using
the expression derived by Vignale and Kohn.7,8 The evalua-
tion of the Vignale-Kohn �VK� expression requires knowl-
edge of some properties of the homogeneous electron gas,
i.e., the exchange-correlation energy per unit volume, �xc

h ���,
and the longitudinal and transverse exchange-correlation ker-
nels, fxcL

h �� ,�� and fxcT
h �� ,��, respectively, where � is the

electron density of the electron gas. Knowledge of the first is
already required in the ALDA and can be obtained from the
accurate results of Monte Carlo calculations.9,10 The
exchange-correlation kernels, on the other hand, are not
known accurately. There are two works in which parametri-
zations are given for both fxcL

h �� ,�� and fxcT
h �� ,��. One is by

Conti, Nifosì, and Tosi �CNT� �Ref. 11� and the other is by
Qian and Vignale �QV�.12 An important difference between
the parametrizations of CNT and QV occurs in the �→0
limit of fxcT

h �� ,��. Whereas fxcT
h �� ,�� of CNT vanishes in

that limit, the QV parametrization does not, i.e., it has a
small but finite value. The fact that fxcT

h �� ,�� vanishes in the
�→0 limit in the case of the CNT parametrization has the
important consequence that the VK expression for �Axc�r ,��
reduces to that of the ALDA in that limit. The value of
fxcT

h �� ,0� is related to �xc, the exchange-correlation part of
the shear modulus, a quantity that is known only approxi-
mately. In previous work we showed that it is this difference
in behavior of the two parametrizations in the zero-frequency
limit that leads to very different absorption spectra of infinite
polymer chains and bulk semiconductors.13,14 Whereas spec-
tra obtained with the CNT parametrization are relatively
close to spectra obtained within the ALDA, spectra obtained
with the QV parametrization are very different from the
ALDA results and from the experiments. Since QV give an
expression for their parametrization in which fxcL,T

h �� ,0� en-
ter, their parametrization can easily be adapted for the case
fxcT

h �� ,0�=0. With the resulting parametrization we obtained
absorption spectra for silicon that are again close to the spec-
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tra obtained with the CNT parametrization and those ob-
tained within the ALDA.13,14 In view of the obtained results
mentioned above and the fact that we are mainly interested
in the frequency dependence of the VK functional in order to
describe relaxation effects due to electron-electron scattering
we choose to enforce continuity with the ALDA in the limit
�→0 by setting fxcT

h �� ,0�=0 also in the QV parametrization.
Furthermore, we will show that only in the case that
fxcT

h �� ,0�=0 the VK functional leads to optical spectra with
the correct � dependence in the limit of �→0. We explicitly
checked that finite values for fxcT

h �� ,0� lead to the same de-
ficiencies in the optical spectra of metals as in those of
semiconductors.14

The outline of this paper is as follows. In Sec. II we start
by giving a description of the theory we use. We first give an
introduction to TDCDFT and its application in the linear
response regime. Then we introduce the self-consistent set of
equations which describe the linear response of metallic
crystals. Furthermore, we introduce the VK functional and
discuss the parametrizations of the exchange-correlation ker-
nels of the homogeneous electron gas fxcL,T

h �� ,�� that enter
the VK functional. At the end of the section we give the main
equations we use to treat the dominant scalar relativistic ef-
fects within the zeroth order regular approximation �ZORA�.
We will use the ZORA to describe the scalar relativistic ef-
fects in Au. We report the main aspects of the implementa-
tion in Sec. III. In Sec. IV we show our results for the di-
electric and electron energy loss functions of the crystals of
Cu, Ag, and Au, and we compare them with the best avail-
able experimental data15–22 and the best theoretical data.23,24

Finally, we give our conclusions in Sec. V.

II. THEORY

A. Time-dependent current-density-functional theory

It was shown by Runge and Gross25 that, for a given
initial state, there is a one-to-one correspondence between
the time-dependent density ��r , t� and the time-dependent
external scalar potential v�r , t� up to a purely additive time-
dependent function c�t�. Ghosh and Dhara26,27 extended the
Runge-Gross proof to systems subjected to general time-
dependent electromagnetic fields by proving that, for a given
initial state, there exists a one-to-one correspondence up to a
gauge transformation between the time-dependent current
density and the set of potentials �v�r , t� ,A�r , t��, in which
A�r , t� is the time-dependent external vector potential �see
also Refs. 28 and 29�. Ghosh and Dhara further provide a
practical scheme for calculating time-dependent densities
and current densities. Here an interacting many-particle sys-
tem in an external electromagnetic field is replaced by an
auxiliary noninteracting many-particle system in an effective
field desribed by the set of Kohn-Sham potentials
�vs�r , t� ,As�r , t��.30 This set of potentials has the property
that, for a given initial state, it produces the exact time-
dependent current density and the exact time-dependent den-
sity. If the initial state is the ground state, it is already deter-
mined by the ground-state density on the basis of the
Hohenberg-Kohn theorem.31 This time-dependent Kohn-

Sham theory was later strengthened by a generalization of
the Runge-Gross theorem by Vignale who showed that under
some assumptions such a set of potentials indeed exists and
is unique.29 In the Kohn-Sham scheme the time-dependent
single-particle wave functions are solutions of the following
equation �we use atomic units �e=�=m=1� throughout the
paper�:

i
�

�t
�n�r,t� = �1

2
�p̂ + As�r,t��2 + vs�r,t���n�r,t� , �1�

where p̂=−i� is the momentum operator. Given the initial
state, the time-dependent potentials vs�r , t� and As�r , t� pro-
duce the exact time-dependent density and current density,

��r,t� = 	
n

fn�n
*�r,t��n�r,t� , �2�

j�r,t� = 	
n

fn Re�− i�n
*�r,t� � �n�r,t�� + ��r,t�As�r,t� ,

�3�

where fn are the occupation numbers given by the Fermi-
Dirac distribution function at zero temperature, i.e., fn
= f��n�=2 for �n	�F and 0 otherwise, with �n the ground
state orbital energies and �F the Fermi energy. Here we as-
sumed that our initial state is nondegenerate and is described
by a single Slater determinant. The first and second terms on
the right-hand side of Eq. �3� correspond to the paramagnetic
and diamagnetic current, respectively. Both the density and
the current density are gauge invariant.

In this paper we treat the dynamic linear response of a
metallic solid to a macroscopic field within TDCDFT. A
time-dependent electric field Eext�r , t� applied to a solid at a
time t= t0 will induce a macroscopic polarization Pmac�r , t�.
For a uniform external field the macroscopic polarization can
be obtained from the induced current density by

Pmac�t� =
− 1

V



t0

t 

V

�j�r,t��drdt�, �4�

where V is the volume of a unit cell. This polarization is
proportional to the macroscopic field Emac�t�, comprising
both the external and the average induced field within the
solid,

Pmac�t� = 

t0

t


e�t − t�� · Emac�t��dt�. �5�

Here the constant of proportionality 
e�t− t�� is the electric
susceptibity, which, unlike Pmac�t� and Emac�t�, is a bulk
property of the system since it is independent of its shape
and size.

B. Linear response

The first-order perturbation of the ground state is gov-

erned by the perturbation Hamiltonian �Ĥs containing all
terms linear in the field,
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�Ĥs�r,t� = 1
2 �p̂ · �As�r,t� + �As�r,t� · p̂� + �vs�r,t� . �6�

We choose the gauge to be the microscopic Coulomb gauge
of Kootstra et al.1 in which the Kohn-Sham scalar and vector
potentials are given by

�vs�r,t� = �vH,mic�r,t� + �vxc,mic�r,t� , �7�

�As�r,t� = �Amac�r,t� + �Axc�r,t� . �8�

Here �vH,mic�r , t� is the microscopic part of the Hartree po-
tential and �vxc,mic�r , t� is the microscopic part of the
exchange-correlation potential. The term �Amac�r , t� denotes
the macroscopic vector potential,

�Amac�r,t� = �Aext�r,t� + �Aind�r,t� , �9�

where �Aext�r , t� is the external vector potential and
�Aind�r , t� is the induced macroscopic vector potential. The
latter potential accounts for the long-range contribution of
the Hartree potential of the surface charge as well as the
retarded contribution of the induced transverse current den-
sity. We can neglect the microscopic part of the vector po-
tential which is consistent with the Breit approximation used
in the ground state calculation.1,32,33 We choose the field
Emac�r , t� to be fixed and its relation to �Amac�r , t� is given
by �t�Amac�r , t�=−Emac�r , t�. We leave the relation between
Emac�r , t� and Eext�t� unspecified as this depends on the
sample size and shape and requires knowledge of 
e. Finally,
�Axc�r , t� is the exchange-correlation vector potential. In
practice approximations are required for the exchange-
correlation potentials �vxc�r , t� and �Axc�r , t�.

In a recent work3 �vxc
ALDA�r , t� was used for the exchange-

correlation scalar potential and the exchange-correlation vec-
tor potential was neglected. In this case the Kohn-Sham vec-
tor potential is completely determined by the macroscopic
electric field which is kept fixed. We then only need to solve
the equation for the induced density self-consistently, and
afterwards the induced current density can be calculated. Ap-
proximations beyond the ALDA imply a self-consistent so-
lution of the equations for both the induced density and in-
duced current density, which will remain coupled.

To study the linear response properties of systems, which
are initially in the ground state and perturbed by a time-
dependent electromagnetic field, it is convenient to work in
the frequency domain. To do this we use a Fourier transfor-
mation defined by

�Ãs�r,�� =
 �As�r,t�ei�td� . �10�

For notational convenience we will drop the tilde on

�Ã�r ,�� in the following and assume that it is clear from the
frequency dependence that we are dealing with a different
quantity. We consider a general perturbation characterized by
the wave vector g and frequency � according to

�As�r,�� = eig·r�Ag,s�r,�� , �11�

where �Ag,s�r ,�� is lattice periodic, i.e.,

�Ag,s�r,�� = �Ag,s�r + R,�� , �12�

with R a Bravais lattice vector. We choose the perturbation
to be real and therefore we have

�Ag,s�r,�� = �A−g,s
* �r,− �� . �13�

We have similar expressions for the scalar potential.
We are interested in the linear response of the system for

vanishing g but finite �, which is the regime describing op-
tical properties. An essential point of our formulation is that
interband and intraband processes behave differently for
small g. It can be shown that within the linear response re-
gime the induced density and induced current density can be
written as3

���r,�� = eig·r��g�r,�� , �14�

�j�r,�� = eig·r�jg�r,�� , �15�

where ��g�r ,�� and �jg�r ,�� are lattice periodic. In order to
show that interband and intraband processes behave differ-
ently for small g we split ��g�r ,�� and �jg�r ,�� into their
contributions from interband and intraband processes and
evaluate these contributions separately. We therefore write

��g�r,�� = ��g
inter�r,�� + ��g

intra�r,�� , �16�

�jg�r,�� = �jg
inter�r,�� + �jg

intra�r,�� . �17�

For finite g the lattice periodic density ��g�r ,�� and lattice
periodic current density �jg�r ,�� can be written in terms of
the lattice periodic potentials and Kohn-Sham response func-
tions. We give these expressions in the following concise
form:

� ��g
inter

i�jg
inter/�

� = � 
��,g
inter − i
�jp,g

inter /�

i
jp�,g
inter /� �
jpjp,g

inter /�2�� �vg,s

i��Ag,s
� ,

�18�

for the interband contributions, and

i���/g��g
intra

�jg
intra � = ��2/g2
��,g

intra �/g
�jp,g
intra

�/g
jp�,g
intra �
jpjp,g

intra �� ig�vg,s

i��Ag,s
� ,

�19�

for the intraband part. We note that the matrix vector prod-
ucts in the above expressions include an integration over a
real-space coordinate. Furthermore we defined

�
jpjp,g = 
jpjp,g�r,r�,�� − 
jpjp,g�r,r�,� = 0� , �20�

where the Kohn-Sham response function 
jpjp,g��� at �=0
enters our expressions because we have made use of the
conductivity sum rule given by

�
jpjp
�r,r�,0��ij + �0�r��ij��r − r�� = 0, �21�

which is convenient in practical applications. However, this
means that we neglect the small Landau diamagnetic contri-
bution for the transverse component of the induced current
density.4 We note that the terms appearing on the left-hand
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sides of Eqs. �18� and �19� are all of order 1. The Kohn-
Sham response functions that enter the above expressions are
given by


ab,g�r,r�,�� =
1

Nk
lim

�→0+
	
k

	
n,n�

�fnk − fn�k+g�

1 + �n,n�


��nk

* �r�ãg�n�k+g�r����n�k+g
* �r��b̃−g�nk�r���

� − ��n�k+g − �nk� + i�

�22�

in which ãg and b̃g can be either �̃g=e−ig·r or j̃p,g=
−i�e−ig·r�−�†e−ig·r� /2, where the dagger on the nabla opera-
tor indicates that it acts on terms to the left of it. In Eq. �22�
�n are the eigenvalues of the Kohn-Sham orbitals �n of the
unperturbed system. The positive infinitesimal � in Eq. �22�
ensures the causality of the response function. The Bloch
functions are normalized on the Wigner-Seitz cell with vol-
ume VWS, and the number of k points in the summation is
Nk=VBvK /VWS, in which VBvK is the volume of the Born-von
Kármán cell. The intraband �interband� contribution to the
response functions is given by the terms with n=n� �n
�n�� in the summation over n and n�. In the intraband case
the factor 1 / �1+�n,n�� corrects for the double counting.

The various interband contributions to the response func-
tions given in Eq. �18� have the following � dependence:3


��,g
inter � 1,


�jp,g
inter ,
jp�,g

inter � � ,

�
jpjp,g
inter � �2, �23�

whereas the intraband response functions given in Eq. �19�
have the following � and g dependence at small g but finite
�,3


��,g
intra � g2/�2,


�jp,g
intra ,
jp�,g

intra � g/� ,

�
jpjp,g
intra � 1. �24�

Therefore the terms that enter the matrices in Eqs. �18� and
�19� are all of order 1. This means that according to Eq. �19�
in the limit g→0 the Kohn-Sham scalar potential does not
contribute to the intraband contribution to the induced den-
sity and current density. Only the Kohn-Sham vector poten-
tial contributes to the intraband contribution to the induced
density and current density. Since the Kohn-Sham vector po-
tential itself depends on the total induced current density, i.e.,
the sum of the interband and intraband contributions, the set
of self-consistent equations for the interband and intraband
contributions to the density and current density are coupled.
From the induced current density obtained from this self-
consistent scheme we can obtain the electric susceptibility 
e
from Eqs. �4� and �5� which within the linear response re-
gime can be rewritten as

Pmac��� =
− i

�V



V

�j�r,��dr �25�

and

Pmac��� = 
e��� · Emac��� . �26�

C. The Vignale-Kohn functional

The general expression for the exchange-correlation vec-
tor potential is to first order

�Axc,i�r,�� = 	
j

 dr�fxc,ij�r,r�,���j j�r�,�� . �27�

This expression defines the tensor kernel fJxc�r ,r� ,��. Vig-
nale and Kohn derived an approximation for �Axc�r ,��
�Refs. 7 and 8� by studying a periodically modulated electron
gas with wave vector q under the influence of an external
perturbation with wave vector k. This expression was proved
to be valid if k ,q�kF ,� /vF, where kF and vF are the Fermi
momentum and the Fermi velocity, respectively. By con-
struction the VK functional obeys several exact constraints.
The VK functional satisfies the zero-force and zero-torque
constraints which state that the exchange-correlation poten-
tials cannot exert a net force or a net torque on the system.
Furthermore, it obeys the requirement of generalized trans-
lational invariance which states that a rigid translation of the
current density implies a rigid translation of the exchange-
correlation potentials. Finally, it satisfies the Onsager sym-
metry relation which restricts the form of exchange-

correlation kernel fJxc�r ,r� ,��. Vignale, Ullrich, and Conti
showed that the complicated VK expression for �Axc�r ,��
could be written in the following physically transparent
form:34

i��Axc,i�r,�� = �i�vxc
ALDA�r,�� −

1

�0�r�	j

� j�xc,ij�r,�� ,

�28�

where the first term on the right-hand side is just the linear-
ization of the ALDA exchange-correlation scalar potential.
Using a gauge transform this longitidinal part of �Axc�r ,��
can be included in the scalar potential. The second term is
the divergence of a tensor field �Jxc�r ,�� which has the struc-
ture of a symmetric viscoelastic stress tensor,

�xc,ij = �̃xc�� jui + �iuj −
2

3
�ij	

k

�kuk� + �̃�ij	
k

�kuk

�29�

in which the velocity field u�r ,�� is given by

u�r,�� =
�j�r,��

�0�r�
. �30�

The coefficients �̃xc�r ,�� and �̃xc�r ,�� are determined by
the longitudinal and transverse response kernels of the ho-
mogeneous electron gas evaluated at the density �0�r�,
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�̃xc�r,�� =
i

�
�0

2�r�fxcT
h ��0�r�,�� , �31�

and

�̃xc�r,�� =
i

�
�0

2�r�� fxcL
h ��0�r�,�� −

4

3
fxcT

h ��0�r�,��

−
d2�xc

h

d�2 ��0�r��� , �32�

where �xc
h ��� is the exchange-correlation energy per unit vol-

ume of the homogeneous electron gas. The quantities

�̃xc�r ,�� and �̃xc�r ,�� can be interpreted as viscoelastic
coefficients.34,36 The coefficients fxcL,T

h ��� are defined by the
identity8,35

fxcL,T
h ��� � lim

k→0
fxcL,T

h �k,�� . �33�

Unfortunately the longitudinal and transverse exchange-
correlation kernels are not known accurately. However, they
have been extensively studied and some exact features are
well known.11,12,36–38 In particular Conti and Vignale36 ob-
tained the exact results for lim�→0 limk→0 fxcL,T

h �k ,�� by
comparing the microscopic linear-response equations with
the macroscopic viscoelastic equation of motion. Their
evaluations led to the following identities for the three-
dimensional electron gas:

lim
�→0

lim
k→0

fxcL
h �k,�� =

1

�2�Kxc +
4

3
�xc� , �34�

lim
�→0

lim
k→0

fxcT
h �k,�� =

�xc

�2 , �35�

where Kxc and �xc are the exchange-correlation parts of the
bulk and shear modulus, respectively, which are real quanti-
ties. Since Kxc=�2�d2�xc

h ��� /d�2� we see from Eqs. �34� and

�35� that the parameter �̃xc�r ,�� contains a factor for which
one can prove the exact relation34,36

lim
�→0

� fxcL
h

„��r�,�… −
4

3
fxcT

h
„��r�,�… −

d2�xc
h

d�2 ���r��� = 0.

�36�

From the above relations we can determine the behavior of

the coefficients �̃xc�r ,�� and �̃xc�r ,�� in the limit �→0. We
obtain

lim
�→0

− i��̃xc�r,��
�0

2�r�
= 0, �37�

lim
�→0

− i��̃xc�r,��
�0

2�r�
= fxcT„�0�r�,0… . �38�

We see that only if �xc=0 the VK expression �28� reduces to
the ALDA in the limit �→0, otherwise it does not. The
exchange-correlation part of the shear modulus can be re-
lated to the Landau parameters Fl as36

�xc =
2��F

5

F2/5 − F1/3

1 + F1/3
. �39�

The bulk modulus Kxc=�2�d2�xc
h ��� /d�2� can be obtained

from accurate results of Monte Carlo calculations.9,10 The
shear modulus �xc, however, is not accurately known. Values
for �xc can be obtained from the calculations performed by
Nifosì, Conti, and Tosi38 or from Eq. �39� using the Landau
parameters calculated by Yasuhara and Ousaka.12,36,39 Even
though the results may not be accurate, it is clear from these
calculations that �xc is much smaller than Kxc. Surprisingly,
however, it turns out that �xc has a much bigger influence
than Kxc on the optical spectra of infinite polymer chains and
bulk semiconductors leading to a collapse of these
spectra.13,14 If we make the approximation �xc=0 we obtain
results close to the results obtained within the ALDA, since
in this approximation the VK expression, Eq. �28�, reduces to
the ALDA in the limit �→0 and the values of the coeffi-
cients fxcL,T

h ��� are close to fxcL,T
h �0� for ���pl which is the

range of frequencies that were interested in.
Finally, let us briefly discuss the two parametrizations that

exist for fxcL,T
h ��� and that we will use in this chapter. Conti,

Nifosì and Tosi �CNT� �Ref. 11� calculated Im fxcL,T
h ��� di-

rectly by means of an approximate decoupling of an exact
four-point response function. CNT then introduced param-
etrizations for Im fxcL,T

h ��� that reproduce their numerical re-
sults. The real part can then be obtained from the Kramers-
Krönig dispersion relations. Their results have the correct
behavior in the limit �→�, the high-frequency limit of
ImfxcL

h ��� being equal to that obtained by Glick and Long.40

The real parts of fxcL,T
h ��� can be obtained from the Kramers-

Krönig dispersion relations where the high-frequency limits
of fxcL,T

h ��� were obtained from third-frequency-moment
sum rules.36,41–43 However, their results do not reduce to the
exact results in the limit �→0 given in Eqs. �34� and �35�
because they invoke the compressibility sum rule,

lim
k→0

lim
�→0

fxcL
h �k,�� =

Kxc

�2 , �40�

thereby interchanging the order of the limits with respect to
the exact result �34�. This is equivalent to the approximation
�xc=0. Because of the uncertainty in the precise values of
�xc, the fact that it is small compared to Kxc and the appeal
of a theory that reduces to the ALDA in the limit �→0 CNT
prefer to enforce equality of the order of limits.11 A distinct
feature of the CNT result is a pronounced peak around �
=2�pl in Im fxcL,T

h ���, where �pl is the plasmon frequency.
An alternative parametrization was given by Qian and

Vignale.12 First they obtained an exact result for the slope of
Im fxcL,T

h ��� at �=0. Then they adopt an interpolation for-
mula first introduced by Gross and Kohn42 to model
Im fxcL,T

h ���. To satisfy the constraint on the slope of
Im fxcL,T

h ��� at �=0 they need one more parameter. This ex-
tra parameter in their scheme is the width of a Gaussian peak
around �=2�pl that accounts for the two-plasmon contribu-
tions found by CNT. The coefficients in their interpolation
formula are then chosen such to reproduce the correct behav-
ior in the limit �→� as well as the correct behavior in the
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limit �→0 determined by their result for the slope of
Im fxcL,T

h ��� at �=0 and Eqs. �34� and �35�. Their model
shows a peak that is less pronounced than CNT’s. Since QV
give an expression for their parametrization in which
fxcL,T

h �0� enter explicitly, their parametrization can easily be
adapted for the case fxcT

h �0�=0. For reasons mentioned in the
Introduction we, like CNT, prefer to use a theory that reduces
to the ALDA in the limit �→0. This means that we will use
the QV parametrization only with fxcT

h �0�=0 �i.e., �xc=0�.
We will denote this approximation by QVA.

D. Relativistic corrections

In the case of Au we include scalar relativistic effects in
our formulation by using the zeroth-order regular approxima-
tion �ZORA�44–46 along the same line as described in Refs.
47–49 and 57. We use the the ground-state ZORA equation,

�ĝ ·
K�r�

2
ĝ + vs,0�r���ig�r� = �ig�ig�r� , �41�

to get the orbitals and the orbital energies needed in Eq. �22�
to calculate the response functions. Here vs,0�r� is the self-
consistent Kohn-Sham potential of the ground state and the
factor K�r� is given by

K�r� =
2c2

2c2 − vs,0�r�
, �42�

where c is the velocity of light. The time-dependent Hamil-
tonian including scalar relativistic effects within the ZORA is
given by

ĤZORA�t� = �̂
K�r�

2
�̂ + vs�r,t� , �43�

where

�̂ = p̂ + As�r,t� . �44�

The scalar-relativistic induced current density within the
ZORA can now be obtained from the nonrelativistic current
density in Eq. �15� by the substitution of the auxiliary opera-
tor j̃p,g by the auxiliary operator

j̃p,g
ZORA =

− i

2
�e−ig·rK�r� � − �†K�r�e−ig·r� �45�

in the response functions given in Eq. �22�.
As we will show in the next section, in our implementa-

tion we will need the curl of the induced current density,

�m�r,�� = �  �j�r,�� . �46�

In a similar way as for �j we can write

�m�r,�� = eig·r�mg�r,�� . �47�

An expression for �mg�r ,�� can be obtained from Eq. �17�
by taking the curl on either side which amounts to the sub-
stitution of m̃g=−i��†e−ig·r�� for ãg in the Kohn-Sham
response functions given in Eq. �22�. In the case that we
consider scalar relativistic effects within the ZORA we can

do a similar evaluation to obtain the auxiliary operator
m̃g

ZORA. It is given by

m̃g
ZORA = − i��†e−ig·rK�r�  ��

−
i

2
�e−ig·r��K�r��  � + �†  ��K�r��e−ig·r� .

�48�

For the materials discussed in this paper K�r��1 and
�vs,0�r��2c2 everywhere except close to the nuclei. The
term �K�r�=K2�r��vs,0�r� / �2c2� is thus smaller than one
everywhere, except in a small volume around the nuclei
which, however, has a negligible contribution to the integrals
in which it appears. Therefore we will neglect the second
term on the right-hand side of Eq. �48�.

III. IMPLEMENTATION

As shown in Ref. 13 we can write �Axc�r ,�� as expressed
in Eqs. �28�–�30� in a more convenient way,

�Axc�r,�� = −
i

�
� ��vxc

ALDA�r,�� + �uxc�r,���

+ �axc�r,�� + �  �bxc�r,�� , �49�

where �uxc�r ,�� is a scalar field, �axc�r ,�� is a polar vector
field, �bxc�r ,�� is an axial vector field. These fields can be
written in the following compact matrix vector product:13

 �uxc

i��axc

i��bxc
� = y�� y�j 0

yj� yjj yjm

0 ymj ymm
� ��

i�j/�

i�m/�
� . �50�

The matrix entries are given as

y�� = − i�

4

3
�̃xc + �̃xc

�0
2 , �51�

y�j = yj�
T = − i� 4

3
�̃xc + �̃xc

�0
2 − 2

�̃xc�

�0
���0

�0
, �52�

yjj = − i� 1

3
�̃xc + �̃xc

�0
2 − 4

�̃xc�

�0
+ 2�̃xc� ���0 � ��0

�0
2

− i��2
�̃xc�

�0

� � ��0

�0
+

�̃xc

�0
2

���0�2

�0
2 I� , �53�

yjm = ymj
T = − i�

�̃xc

�0
2 ���0

�0
 � , �54�

ymm = − i�
�̃xc

�0
2 I , �55�

in which we define the antisymmetric 33 matrix ���0 /�0

 �ij =−	k�ijk��k�0� /�0 and where �̃xc� �r ,�� and �̃xc� �r ,�� are
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the first- and second-order derivatives of �̃xc�r ,�� with re-
spect to the ground-state density. The matrix in Eq. �50� is a
local function of the ground-state density and its first- and
second-order gradients and has additional � dependence

through the coefficients �̃xc�r ,�� and �̃xc�r ,��.
Using Eq. �49� the exchange-correlation contribution to

the perturbation given in Eq. �6� can now be rewritten within
our linear response formulation as

�Ĥxc�r,�� = �̃−g��vg,xc
ALDA�r,�� + �ug,xc�r,���

+ j̃p,−g · �ag,xc�r,�� + m̃−g · �bg,xc�r,�� ,

�56�

In the case of Au where we include scalar relativistic effects
within the ZORA one should read j̃p,−g

ZORA and m̃−g
ZORA instead

of j̃p,−g and m̃−g in Eq. �56�. Using Eq. �56� the self-
consistent linear-response equations �18� and �19� can be
written in the following form:

 ��g
inter

i�jg
inter/�

i�mg
inter/�

� =  
��g
inter − i
�jpg

inter/� − i
�mg
inter/�

i
jp�g
inter/� �
jpjpg

inter /�2 �
jpmg
inter /�2

i
m�g
inter/� �
mjpg

inter /�2
�
mmg

inter /�2�
 �vg,H,mic + �vg,xc,mic

ALDA + �ug,xc

i���Ag,mac + �ag,xc�
i��bg,xc

� , �57�

for the interband parts, and as

i��/g��g
intra

�jg
intra

�mg
intra � = �2/g2
��g

intra �/g
�jpg
intra

�/g
�mg
intra

�/g
jp�g
intra �
jpjpg

intra �
jpmg
intra

�/g
m�g
intra �
mjpg

intra
�
mmg

intra �
 ig��vgH,mic + �vg,xc,mic

ALDA + �ug,xc�
i���Ag,mac + �ag,xc�

i��bg,xc
� ,

�58�

for the intraband contributions, with �
abg= �
abg���
−
abg��=0��. The matrix vector products in the above ex-
pressions again include an integration over a real-space co-
ordinate. The above relations have been written in such a
way that all matrix elements are real and finite in the limit
�g ,��→ �0,0�. The explicit expressions for the Kohn-Sham
response functions have been given in Refs. 3 and 13. In the
limit of vanishing g the set of equations �57� reduces to that
one used in the case of nonmetallic crystalline systems13 for
which we need to consider only fully occupied bands and
fully unoccupied bands. In this limit the term ig��vgH,mic

+�vg,xc,mic
ALDA +�ug,xc� on the right-hand side of Eqs �58�

vanishes.3 Therefore in the optical limit g→0 the intraband
parts of the density, the current density and the curl of cur-
rent density only have contributions from the macroscopic
vector potential and the terms �ag,xc and �bg,xc that enter the
VK expression for the exchange-correlation vector potential.
Once the two sets of Eqs. �57� and �58� are solved we can

calculate the macroscopic dielectric function as

���� = 1 + 4�
e��� , �59�

where 
e��� is the electric susceptibility, and the electron
energy loss function as

2�

k2V
S�g,�� = − Im

1

ĝ · ��g,�� · ĝ
, �60�

where S�g ,�� is the dynamical structure factor. The above
expression is valid for general g. Here we evaluate it in the
optical limit g→0. In a recent work3 it was shown that
within the ALDA the intraband contribution to the dielectric
function is real when evaluated in the optical limit. Therefore
there is no intraband contribution to the absorption spectrum
within this approximation. By using the Vignale-Kohn func-
tional it is no longer possible to separate interband and intra-
band contributions to the dielectric function. Interband and
intraband processes are coupled through the exchange-
correlation potentials �ag,xc and �bg,xc which are complex
vectors, and give rise to the Drude-like tail on the low-
frequency range of the absorption spectrum.

IV. RESULTS

We calculated the macroscopic dielectric functions ����
and the electron energy loss functions −Im������−1 in the
spectral range 0–10 eV for the isotropic crystals of copper,
silver, and gold in a fcc lattice. We used the experimental
lattice constants 3.61 Å for Cu, 4.09 Å for Ag, and 4.08 Å
for Au. All calculations were performed using a modified
version of the ADF-BAND program.1–3,50–52 We made use of
a hybrid valence basis set consisting of Slater-type orbitals
�STOs� in combination with the numerical solutions of a
free-atom Herman-Skillman program.53 Cores were kept fro-
zen up to 3p for Cu, 4p for Ag, and 4f for Au. The spatial
resolution of this basis is equivalent to a STO triple-zeta
basis set augmented with two polarization functions.54 The
Herman-Skillman program also provides us with the free-
atom Kohn-Sham potential. The crystal potential was evalu-
ated using an auxiliary basis set of STO functions to fit the
deformation density in the ground-state calculation and the
induced density in the response calculation. For the evalua-
tion of the k-space integrals we used a numerical integration
scheme with 175 symmetry-unique sample points in the irre-
ducible wedge of the Brillouin zone, which was constructed
by adopting a Lehmann-Taut tetrahedron scheme.55,56 In all
our ground-state calculations we used the local density ap-
proximation �LDA� for the exchange-correlation functional.
In the response calculations we employed the Vignale-Kohn
functional. All results shown here were obtained using the
Vosko-Wilk-Nusair parametrization10 of the LDA exchange-
correlation potential, which was also used to derive the
ALDA exchange-correlation kernel, and both the QVA and
CNT parametrizations for the longitudinal and transverse
kernels fxcL,T

h ��� which enter the VK expression for the
exchange-correlation vector potential. In Figs. 1–3 the real
and imaginary parts of the dielectric functions of Cu, Ag, and
Au are reported. The results obtained using the VK func-
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tional with the QVA and CNT parametrizations fxcL,T
h ��� are

in close agreement. The main difference is the Drude-like tail
in the absorption spectra where the two results are roughly
0.25 eV apart. For convenience we do not report the ALDA

results3,57 since they are almost identical to the VK results
with the important exception that the Drude-like tail in its
absorption spectrum is absent since the ALDA is a local
function in time and therefore cannot describe relaxation
processes. When the VK functional is employed we obtain a
Drude-like tail in the low-frequency range. This absorption is
due to relaxation processes of which the part due to electron-
electron scattering can be described by using an exchange-
correlation functional that is nonlocal in time. In the appen-
dix we analyze the low-frequency behavior of the dielectric
function within our method. There we show that in the case
we apply the Vignale-Kohn functional with �xc=0, for fre-
quencies bigger than a characteristic frequency �1, which we
defined in the appendix, the real part of the dielectric func-
tion diverges as �−2, whereas the imaginary part should de-
cay as �−3. For frequencies below �1, the real part of the
dielectric function is finite whereas the imaginary part di-
verges as �−1. If on the other hand we apply the Vignale-
Kohn functional with �xc�0 we obtain the same low-
frequency behavior as we found above for the case �xc=0
with the important difference that for frequencies below a
characteristic frequency �0��1, which we defined in the
appendix, the imaginary part of the dielectric function will
go to zero as �. Therefore, instead of a Drude-like tail we
observe a low-frequency peak in our calculated absorption
spectra around �1.

The low-frequency behavior we obtain with the Vignale-
Kohn functional with �xc=0 is in agreement with the de-

FIG. 1. The calculated and measured real ��1���� and imaginary
��2���� parts of the dielectric function of copper. The calculated
spectra were obtained using the VK functional with both the QVA
and CNT parametrizations for the exchange-correlation kernels of
the homogeneous electron gas. The experimental results are taken
from Refs. 16–18.

FIG. 2. The calculated and measured real ��1���� and imaginary
��2���� parts of the dielectric function of silver. The calculated
spectra were obtained using the VK functional with both the QVA
and CNT parametrizations for the exchange-correlation kernels of
the homogeneous electron gas. The experimental results are taken
from Refs. 16, 18, and 19.

FIG. 3. The calculated and measured real ��1���� and imaginary
��2���� parts of the dielectric functions of gold. The calculated
spectra were obtained using the VK functional with both the QVA
and CNT parametrizations for the exchange-correlation kernels of
the homogeneous electron gas. The experimental results are taken
from Refs. 19–21. The theoretical curves are results of scalar-
relativistic calculations.
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scription of the intraband contribution to the dielectric func-
tion within the classical Drude model. Within this simple
model the real and imaginary parts of the dielectric func-
tions, �1��� and �2���, respectively, are given by

�1
D��� = 1 −

�p
2�2

1 + �2�2 , �61�

�2
D��� =

�p
2�

��1 + �2�2�
, �62�

with �p the plasma frequency and the � the relaxation time.
The latter is in general frequency dependent.58–61 For ��
�1, which is true for the near infrared, Eqs. �61� and �62�
become

�1
D��� = 1 −

�p
2

�2 , �63�

�2
D��� =

�p
2

�3�
. �64�

The real part of the dielectric function scales as �−2, whereas
the imaginary part scales as �−3 for a frequency-independent
�, in agreement with our calculations. For ���1, the Drude
equations reduce to

�1
D��� = 1 − �p

2�2, �65�

�2
D��� =

�p
2�

�
. �66�

Again we find a qualitative agreement between the Drude
description and our model: a finite real part and an imaginary
part which scales as �−1. We note that in our calculations we
only take into account relaxation processes due to electron-
electron scattering whereas the Drude model also describes
relaxation processes due to other phenomena such as
electron-phonon scattering. Our results are in good agree-
ment with the experimental results although the spectra ob-
tained for gold show some discrepancies, especially the first
peak in the absorption spectrum is not well described. The
Drude-like tails in the absorption spectra seem to be well
described for the three materials. However, since we only
consider relaxation processes due to electron-electron scat-
tering and not those due to electron-phonon scattering our
results should be below those obtained with experiment.
Therefore the QVA parametrization used in the VK func-
tional performs better than the CNT parametrization, since
the results we obtain for the Drude-like tails using the former
do not overestimate the experimental Drude-like tails. Our
results are also in agreement with accurate results obtained
from solving the Bethe-Salpeter equation �BSE�.23 In par-
ticular, the Drude-like tails in these BSE spectra are close to
the experimental tails indicating that indeed the electron-
electron contribution to the scattering is dominant in the fre-
quency range that we consider. In Fig. 4 we show the elec-
tron energy loss spectra �EELS� of Cu, Ag, and Au. The
EELS of Cu and Au are already well-described within the
ALDA.3 Again the results obtained using the VK functional

with the two parametrizations are in close agreement with
each other and with the results obtained within the ALDA.
The ALDA fails to reproduce the finite width of the sharp
plasmon peak at about 3.8 eV in the EELS of silver.15,20 In
the EELS obtained with the VK functional one obtains a
plasmon peak with finite width. The appearance of this peak
is due to the fact that now the imaginary part of the dielectric
function is small but nonvanishing at the frequency where
the real part crosses the zero axis. This feature is qualita-
tively well described by the VK functional with the QVA and
CNT parametrizations for fxcL,T

h ���, although its position is
redshifted by about 0.3 eV with respect to the experiments as
a direct consequence of the underestimation of the onset en-
ergy of the interband absorption. Furthermore, the height of
the plasmon peak in our calculations is larger than that in the
reported experiments. The heights of the QVA and CNT
peaks are 10.5 and 8.2, respectively, whereas the heights of
the peaks reported by Palik and by Ehrenreich and Philipp
are about 1.4 and 3.9, respectively.15,20 However, these ex-
periments were performed at room temperature. Morgan and
Lynch showed that the height of this plasmon resonance in-
creases significantly when the temperature is decreased.22 At
room temperature they obtain a plasmon peak with a height
of about 3.0, whereas at 4.4 K they obtain a peak of about
4.8. They also showed that the level of impurities in the
sample strongly influences the height of the peak, which de-
creases with increasing impurity level. Therefore the experi-
mental results can be considered a lower bound for the re-
sults obtained from calculations on perfect crystals at zero
temperature. We can thus consider our results to give a rea-
sonable estimation of the height of the plasmon peak. This
plasmon peak has been calculated by Marini et al. as well
within the GW approximation.24 They obtain a good agree-

FIG. 4. The calculated and measured electron-energy loss spec-
tra of copper, silver, and gold. The experimental results are taken
from Refs. 15, 19, and 20. The calculated results reported for Au
refer to scalar-relativistic calculations. Since the QVA and CNT
spectra are very close to each other we only use one arrow in each
panel to indicate both spectra. The QVA spectra and the CNT spec-
tra are denoted by the continuous and dashed curve, respectively.
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ment with the measurements performed by Palik.20

V. CONCLUSIONS

In this paper we have included the Vignale-Kohn expres-
sion for the exchange-correlation vector potential in our for-
mulation of the linear response of metals within the time-
dependent current-density approach. This functional is
nonlocal in time and therefore relaxation effects due to
electron-electron scattering could be taken into account. The
evaluation of the VK functional requires the knowledge of
the exchange-correlation kernels of the homogeneous elec-
tron gas fxcL,T

h ��� as a function of the density and the fre-
quency. We have used the two existing parametrizations for
fxcL,T

h ��� by Conti, Nifosì, and Tosi and by Qian and Vignale.
In the optical limit g→0 the two sets of self-consistent equa-
tions describing the interband and intraband contributions to
the response remain coupled when the Vignale-Kohn expres-
sion for the exchange-correlation vector potential is in-
cluded. We have calculated the dielectric and electron energy
loss functions of copper, silver, and gold and we have com-
pared them with the best available measurements reported in
literature and with our results from calculations within the
adiabatic local density approximation. The VK functional
yields results which are in good agreement with the experi-
mental results and BSE results. The real parts of the dielec-
tric functions and the regions in the absorption spectra where
the interband processes are dominant are similarly described
by the two approximations and are close to previous results
obtained within the ALDA. In addition, the VK functional
reproduces the low-frequency Drude-like tails in the absorp-
tion spectra, which were absent in the previous ALDA cal-
culations. The electron energy loss spectra obtained with the
VK functional are close to the spectra obtained within the
ALDA with a notable difference in the case of silver: the first
sharp plasmon peak found in the experimental EELS is well
described in the spectrum obtained with the VK functional
with a finite width contrary to the ALDA spectrum. There-
fore, the VK functional with �xc set to zero provides an
efficient way to obtain results for the optical spectra and
EELS of metals that are comparable to BSE results. Our
results are, however, obtained at much lower computational
cost. Furthermore, we gave justifications of our choice to set
�xc equal to zero.

APPENDIX: LOW-FREQUENCY BEHAVIOR OF THE
DIELECTRIC FUNCTION

We define two vectors P and F as

P =  ��

i�j/�

i�m/�
� , �A1�

containing the densities, in which the interband and intra-
band contributions are added, i.e., ��=��inter+��intra and
similarly for �j and �m, and

F =  0

i��Amac

0
� + �vHxc,mic

ALDA

0

0
� +  �uxc

i��axc

i��bxc
� , �A2�

which contains all first-order contributions to the perturbing
potentials. Here the perturbation F is decomposed into three
terms: Fmac containing only the macroscopic field, Fa con-
taining the adiabatic parts given by the microscopic Hartree
potential and the ALDA exchange-correlation potential
�vHxc,mic

ALDA =�vH,mic+�vxc,mic
ALDA, and Fd containing the dynamic

part of the exchange-correlation vector potential. From Eqs.
�57� and �58� it becomes clear that we can write

P = �Xinter +
1

�2Q†Xintra · Q� · F , �A3�

where

Q = ig 0 0

0 1 0

0 0 1
� , �A4�

and Xinter and Xintra are the matrices of the interband
and intraband Kohn-Sham response functions given in Eqs.
�57� and �58�. In the linear response regime we can write
Fa=Ya ·P for the adiabatic part of the potential vector, and
Fd=Yd ·P for the dynamic part. Here the matrix Yd is the
matrix that enters Eq. �50� and Ya is defined as

Ya = ya 0 0

0 0 0

0 0 0
� , �A5�

with the frequency independent kernel ya defined by the re-
lation ya��=�vHxc,mic

ALDA . The total perturbing potential is then
given by

F = Fmac + �Ya + Yd� · P . �A6�

The low-frequency behavior of the matrix Yd is determined
by the low-frequency behavior of the viscoelastic coeffi-

cients �̃xc�r ,�� and �̃xc�r ,�� which in turn is determined by
the low-frequency behavior of fxcL,T���. Since fxcL,T���
= fxcL,T

* �−�� and considering the results obtained in Eqs. �37�
and �38� we can write the following expressions for the low-

frequency behavior of �̃xc�r ,�� and �̃xc�r ,��:

− i��̃xc

�0
2�r�

= i�A + �2B + O��3� , �A7�

− i��̃xc

�0
2�r�

=
�xc

�0
2�r�

+ i�C + �2D + O��3� , �A8�

where A, B, C, and D are real. Furthermore, from the work of
Qian and Vignale12 we know the exact result for the slope of
the imaginary parts of fxcL,T

h ��� in the limit �→0, which
they show to be finite. This means that in the above expres-
sions A and C are finite. Using Eqs. �A7� and �A8�, we can
write the following low-frequency expansion for Yd:
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Yd = 	
p

�i��pYd,p, �A9�

where all Yd,p are real and Yd,0��xc. It now becomes clear
that we can obtain P by solving Eqs. �A3� and �A6� self-
consistently. We have carefully formulated these response
equations such that a regular solution can be found for
limg→0 P�g�=P, with P the solution of Eq. �A3� at g=0. In
this limit we can write the following low-frequency expres-
sion of Eq. �A3�:

��2I − ��2	
p

�i��pXp
inter + X̃intra��Ya + 	

p

�i��pYd,p�� · P

= ��2	
p

�i��pXp
inter + X̃intra� · Fmac, �A10�

where, since Xinter���=Xinter*�−��, we have used the series
expansion Xinter=	p�i��pXp

inter. Here the matrices X2p+1
inter van-

ish if � is below the interband absorption edge, and the ma-

trix X̃intra is frequency independent and defined as

X̃intra = lim
g→0

Q† · Xintra · Q = 0 0 0

0 �
jpjp

intra �
jpm
intra

0 �
mjp

intra
�
mm

intra� .

�A11�

All matrices are real valued. Note that due to their matrix

structure the product X̃intraYa vanishes. From Eq. �A10� it
immediately becomes clear that the low frequency behavior

of the solution is largely determined by X̃intra and the low
frequency coefficients of Yd. Since P���=P*�−��, we can
use the series expansion P=	n=n0

� �i��nPn, where we assume
that the expansion truncates at a certain value n0 since we are
interested in the low-frequency behavior of P. We can then
write Eq. �A10� as

�	
p=0

�

�i��pXp�� 	
n=n0

�

�i��nPn� = 	
m=0

�

�i��mFm, �A12�

with

Xp = − �p,2I + Xp−2
interYa − X̃intraYd,p + 	

s=0

p−2

Xp−s−2
inter Yd,s,

�A13�

Fm = �− Xm−2
inter + �m,0X̃intra�Fmac. �A14�

Note that the odd-indexed potential coefficients vanish,
F2m+1=0. We mention the first two matrix and vector ele-
ments in particular,

X0 = − X̃intraYd,0, F0 = X̃intraFmac, �A15�

X1 = − X̃intraYd,1, F1 = 0 . �A16�

By equating all orders in Eq. �A12� separately, we obtain the
general structure of the mth order of the low-frequency ex-

pansion of the response equation, which is given by the re-
lation

	
n=n0

m

Xm−nPn = Fm �A17�

with Fm�m0
=0, in which we need to choose n0	m0 such that

there is a unique solution. The dimension of the matrices and
vectors is d. This infinite set of equations can be written in
the following triangular block matrix form:

�
X0 0 0 ¯

X1 X0 0 �

X2 X1 X0 �

] � � �

��
Pn0

]

Pm0−1

Pm0

]

� = �
0

]

0

Fm0

]

� ,

from which it becomes clear that there is a unique solution if
X0 is invertible, with n0=m0 and Pn�n0

=0, generated by

Pn = X0
−1�Fn − 	

m=m0

n−1

Xn−mPm� .

If on the other hand, X0 is singular as in our case, we proceed
to find a solution by constructing the singular value decom-
position X0=VDU† with the diagonal matrix D containing
singular values d1¯ds=0 and di�s�0 with s�0, and the
unitary matrices U and V build from the right and left singu-
lar vectors spanning the domain, null space and range of X0.
We can multiply each line from the left by V†, and thus
remove the first s rows from each diagonal block of the
triangular matrix. These rows become replaced by the first s
rows of the line below yielding again a triangular form.

�
� 0

D̃U†� 0 0 ¯

V†X1 � 0

D̃U†� 0 �

V†X2 V†X1 � 0

D̃U†� �

] � � �

�� Pn0

]

Pm0−1

Pm0

]

� = �
0

]

0

V†Fm0

]

� .

Here D̃ is the matrix D with the first s rows removed. The
first s lines of the equation can be removed as these are
trivially satisfied. We can do this by defining new blocks,

�Xn��i,j = ��V†Xn�i+s,j , i 	 d − s ,

�V†Xn+1�i+s−d,j , i � d − s
� �A18�

and similarly new vectors

�Fn��i = ��V†Fn�i+s, i 	 d − s ,

�V†Fn+1�i+s−d, i � d − s
� �A19�

such that we retrieve the original structure, however, in gen-
eral, with a nonzero vector Fm0−1� . Therefore we must set
m0�=m0−1. If Fm0

is in the range of X0 then Fm0−1� will still be
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zero and we can set m0�=m0. By iterating this procedure k
times, until we have found a diagonal block X0�

¯� that is
invertible, we have constructed a unique solution that trun-
cates from below at n0�m0−k with Pn�n0

=0.
We will now discuss three separate cases, being the adia-

batic approximation, in which Yd is set to zero, the dynamic
exchange-correlation case with vanishing static limit and
hence Yd,0=0, but Yd,1�0, and the dynamic case with finite
static value Yd,0�0. In the simplest case �the adiabatic ap-
proximation� we have X0=X1=X2n+1=0, and F2n+1=0. From
Eq. �A17� it immediately follows that in this case the equa-
tions for even and odd indexed P decouple, with the partial
result P2n+1=0. The singular value decompositions for the
first two iterations become trivial, V=U= I and D=0, and we
obtain n0=−2 with the unique even-indexed solutions given
by

P2n = X2
−1�F2n+2 − 	

m=−1

n−1

X2�n−m+1�P2m� , �A20�

where we assumed that X2 is invertible. The susceptibility is
therefore purely real valued and is diverging like �−2. In the
dynamic case with vanishing static limit for Yd, we have
X0=0, X1 singular, F0�0 but in the range of X1 �provided
that Yd,1 is invertible� and again F2n+1=0. The first iteration
is again trivial, with V=U= I and D=0. In the second itera-
tion we can remove the singularity of the new diagonal block
X0�=X1, by appying the SVD again. However, if indeed F−1�
=F0 is in the range of X1 �which is the case if Yd,1 is invert-
ible�, then we do not have to decrease m0 further and we
obtain n0=−1, otherwise we do, and find n0=−2. Assuming
that the second iteration yields an invertible diagonal block,
we have found the solution which truncates at n0=−1�−2�.
We can thus conclude that the susceptibility acquires an
imaginary part that diverges like �−1, and a real value that is
finite, unless the first-order dynamic exchange-correlation
kernel Yd,1 is singular. In the dynamic case with finite static
limit an extra complication arises. In the first iteration the
multiplication from the left with V† reduces not only the
diagonal blocks X0, but removes also rows from the subdi-
agonal blocks. This is due to the fact that X0�1� is of the form

X̃intraYd,0�1� in which X̃intra is singular as is clear from its
matrix structure. If the ranges of X0 and X1 coincide �which
is the case if Yd,0�1� is invertible�, then an equal amount of
rows is removed in the diagonal and subdiagonal blocks, and

also in the vector F0 if Yd,0�1� is invertible. As always F2n+1

=0. One can check readily that in both iterations we do not
need to decrease m0, and we find a solution with n0=0, as-
suming that after the second step an invertible diagonal block
is generated. In this case the susceptibility is real and finite in
the low frequency range. If on the other hand �one of� the
matrices Yd,0�1� is singular a divergent � dependence may
still result.

The analysis given above forms the basis for understand-
ing the solution at finite frequency. Retaining only the lowest
order terms of the interband response function in Eq. �A10� it
becomes clear that we can consider the contribution of Yd,0�1�
as small perturbations if ���0�1�, where

�0 = ��X2
−1X0� , �A21�

�1 = �X2
−1X1� , �A22�

are two characteristic frequencies defined in terms of the X
matrices given in Eq. �A13�. Here �A�=maxi ��i� indicates
the spectral norm of the matrix A, being equal to its largest
eigenvalue. Including the first-order correction to the adia-
batic solution gives

P � �−
1

�2X2
−1 −

1

�4X2
−1�i�X1 + X0�X2

−1���2Xinter + X̃intra�Fmac

�A23�

and leads to an imaginary part for the susceptibility that de-

cays like 1/�3 for ���p as then �2�Xinter�� �X̃intro�, where
it is understood that we consider the frequency range below
the optical gap. For ���0�1� the contributions of Yd,0�1� be-
come dominant and determine the solutions as in the analysis
given above. Going from high to low frequency we expect a
transition from the adiabatic to the dynamic case at around
max��0 ,�1�, and if �0��1 from the dynamic behavior with
vanishing static limit to the case with finite static limit at
around �0. The results of this analysis are summarized in the
following:


e��� � ��1 + i��2, � � �0,

�1� + i�2�/� , �0 � � � �1,

�1�/�
2 + i�2�/�

3, � � �0,�1.
�

�A24�

As a special case we have �0=0 if �xc=0.
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