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We study the one-dimensional extended Hubbard model with alternating size of the hopping integrals using
the density-matrix renormalization group method. We calculate the spin gap, the Tomonaga-Luttinger param-
eter, and the charge-density-wave order parameter for various dimerizations, interaction strengths, and band
fillings. At half band-filling the spin and charge excitations are gapped but these gaps disappear for infinitesi-
mal hole doping. At quarter filling, the umklapp scattering in the half-filled lower Peierls band generates a gap
for the charge excitations but the gapless spin excitations can be described in terms of an effective antiferro-
magnetic Heisenberg model. Beyond a critical strength for the nearest-neighbor interaction, the dimerized
extended Hubbard model at quarter filling develops a charge-density-wave ground state. The dimerization and
the nearest-neighbor Coulomb interaction strongly reduce the Tomonaga-Luttinger parameter from its value for
the bare Hubbard model. We discuss the relevance of our findings for the Bechgaard salts.
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I. INTRODUCTION

The Bechgaard salts are organic conductors which have
attracted much interest over the last 30 years.1,2 Upon varia-
tion of the pressure, the temperature, and the anion X in
�TMTSF�2X and �TMTTF�2X, these compounds exhibit a
rich phase diagram, e.g., a superconducting phase is found to
lie between a paramagnetic metallic phase and a spin-
density-wave phase. The systems can be regarded as quasi-
one-dimensional due to the strong anisotropy of the transport
along the three crystalline axes. Recent experiments3 support
the view that the metallic phase can be characterized as a
Tomonaga-Luttinger liquid at temperatures T�100 K. In-
deed, signatures of the Tomonaga-Luttinger liquid are the
reduced density of states at the Fermi energy as seen in
angle-resolved photoemission spectroscopy,4,5 the negative
temperature dependence of the c-axis resistivity,6 the scaling
behavior of the optical conductivity in the high-energy
range,7 the power-law temperature dependence of the Hall
coefficient,8,9 and the empirical relationship �T1T�−1��s

2�T�
between the measured spin relaxation rate and the magnetic
susceptibility in nuclear magnetic resonance
measurements.10,11 Moreover, distinctly different thermal
conductivities for the charge and spin excitations have been
reported which provide evidence for spin-charge
separation.12

All correlation functions in the Tomonaga-Luttinger liq-
uid display a power-law behavior with unusual, interaction-
dependent coefficients. Many of them are simple functions of
the so-called Tomonaga-Luttinger parameter K�. Most ex-
periments give K��0.2 for the Bechgaard salts. The single-
band Hubbard model in which spin-1/2 electrons move on a
chain and interact only locally is one of the best studied
Hamiltonians for correlated lattice electrons. However, the
model gives K��0.5 for all interaction strengths, which
shows that the long-range parts of the Coulomb interaction
must be taken into account for a proper description of the
Bechgaard salts. In the extended Hubbard model the long-
range parts of the Coulomb interaction are mimicked by a
nearest-neighbor term.13–15

Other factors may also play an important role. For in-
stance, the stacks of TMTTF and TMTSF molecules form
dimerized chains and the alternation of the electron transfer-
matrix elements along the chain must be considered. There-
fore, in this work we study the one-dimensional extended
Hubbard model with alternating hopping amplitudes, i.e., the
one-dimensional dimerized extended Hubbard model, as the
minimal one-dimensional, purely electronic model for the
electronic excitations in the Bechgaard salts. The relevant
bands in the TMTSF and TMTTF salts are filled with three
electrons so that the system is quarter filled in hole notation,
and we use the hole picture in the following.

Since the relevance of a “Peierls instability” toward the
formation of a dimerized insulating ground state16 was
pointed out for quasi-one-dimensional electron systems, a
number of groups analytically investigated the dimerized ex-
tended Hubbard model in various limiting cases. In Ref. 17,
the strong-coupling limit was studied at half band-filling. Us-
ing perturbation theory, the effects of weak Coulomb inter-
actions in a Peierls insulator at half filling were investigated
in Ref. 18. In addition, the bosonization method was applied
for the weak coupling limit in Refs. 19–21 at half filling, and
in Refs. 22 and 23 at quarter band-filling. Numerical studies
were provided by Penc and Mila15 who applied the exact
diagonalization method to the dimerized Hubbard model at
quarter filling. One of us13 carried out a precise calculation
of the charge gap at quarter filling using the density-matrix
renormalization group �DMRG�. Recently, Benthien and
Jeckelmann24 investigated the optical conductivity using the
dynamical DMRG.

Typically, the dimerized extended Hubbard model was
studied at commensurate band-fillings. The Tomonaga-
Luttinger parameter in the model has not been obtained ac-
curately yet. Thus, no direct comparison with the experimen-
tal results of K� observed in the Bechgaard salts has been
possible. Therefore, in this work we investigate the spin gap
and the Tomonaga-Luttinger parameter in the model for vari-
ous dimerizations, interaction strengths, and band fillings,
with an emphasis on the vicinity of the commensurate fill-
ings. In this way, our principal investigation of correlated
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electrons in quasi-one-dimensional dimerized systems could
be relevant also for other materials, e.g., for the inorganic
spin-Peierls system CuGeO3.25

In our work we apply the DMRG method which is one of
the most reliable numerical methods to study the low-energy
properties of one-dimensional correlated electron systems.
Where applicable, we compare our results to the predictions
from field theory and effective single-band Hubbard models.
The purpose of the present work is to show that even in the
presence of dimerization fairly small values K��0.2 are pos-
sible only for a slightly doped charge-density-wave �CDW�
insulator with large enough Coulomb interactions. However,
it is still difficult to reconcile all experimental data for the
Bechgaard salts, which makes us skeptical about considering
the dimerized extended Hubbard model in one dimension as
an appropriate minimal model for the Bechgaard salts.

Our paper is organized as follows. In Sec. II we define the
dimerized extended Hubbard model and introduce the physi-
cal quantities of interest, namely, the spin gap, the CDW
order parameter, and the Tomonaga-Luttinger parameter. In
Sec. III, we separately present our DMRG results for the
dimerized Hubbard model with and without the nearest-
neighbor interaction, and discuss the experimental relevance
of our investigations. We close with a short summary in Sec.
IV.

II. MODEL AND METHOD

A. Hamiltonian

In order to model the Bechgaard salts, we focus on the
transport in a chain of stacked molecules and regard a single
TMTTF or TMTSF molecule as a site. The chain has a geo-
metrical �Peierls� modulation. Besides the intramolecular
Coulomb interaction, we should take into account a nearest-
neighbor Coulomb repulsion because of the fairly short in-
termolecular distance. Thus, our model Hamiltonian of
choice is the one-dimensional dimerized extended Hubbard
model for spin-1/2 electrons on L lattice sites,

Ĥ = − t1 �
l odd

�

�ĉl+1�
† ĉl� + H.c.� − t2 �

l even
�

�ĉl+1�
† ĉl� + H.c.�

+ U�
l

n̂l↑n̂l↓ + V�
l

�n̂l − n��n̂l+1 − n� , �1�

where ĉl�
† �ĉl�� is the creation �annihilation� operator of an

electron with spin �= ↑ ,↓ at site l, n̂l�= ĉl�
† ĉl� is the number

operator, and n̂l= n̂l↑+ n̂l↓. The total number of electrons is
N=N↑+N↓, and n=N /L is the average number of electrons
per lattice site. The electron transfer matrix elements t1 and
t2� t1model the dimerization of the chain, U is the strength
of the Hubbard interaction, and V parametrizes the nearest-
neighbor Coulomb repulsion. We call a pair of sites that is
connected by the hopping amplitude t1 a “dimer.”

The dimerization splits the tight-binding cosine band into
a bonding band �“lower Peierls band”� and an anti-bonding
band �“upper Peierls band”�. The bare band structure is
shown in Fig. 1. The dispersion relation of the two Peierls
bands is given by

�1,2�k� = ± �t1
2 + t2

2 + 2t1t2cos k for �k� 	



2a
, �2�

where a is the lattice spacing, which we set to unity in the
following. The gap between the two Peierls bands is �P
=2�t1− t2�. The total bandwidth is W=2�t1+ t2�. In the ab-
sence of a dimerization, for t1= t2= t, we recover the band
structure of the tight-binding model in the reduced zone
scheme.

B. Physical quantities

In this work we employ the DMRG method which pro-
vides very accurate data for ground-state properties of one-
dimensional correlated electron systems; for a review, see
Refs. 26 and 27. We use the DMRG to calculate the spin gap
�s, the CDW order parameter �, and the Tomonaga-Luttinger
parameter K�. To this end, we consider a chain with L /2
dimers with L /2 even for a two-band system. We study
chains with up to 320 sites and open-end boundary condi-
tions. We keep up to m=3600 density-matrix eigenstates in
the DMRG procedure and extrapolate the calculated quanti-
ties to the limit m→�. In this way, the maximum error in the
ground-state energy is below 10−6t1. Lastly, we extrapolate
our finite-size results to the thermodynamic limit, L→�.

The spin gap is defined by

�s = lim
L→�

�s�L� ,

�s�L� = E0�L,N↑ + 1,N↓ − 1� − E0�L,N↑,N↓� , �3�

where E0�L ,N↑ ,N↓� is the ground-state energy of a system of
length L with N↑ up-spin and N↓ down-spin electrons.

Later in this work, we shall focus on the CDW ground
state of our model �1� at quarter band-filling. For large
enough nearest-neighbor repulsion V ��Vc� we expect a
CDW with a wave vector QCDW=4kF. Here, kF=
n /2 is the
Fermi wave number. At quarter band-filling, n=1/2, we have
kF=
 /4, which corresponds to a half-filled lower Peierls
band.

The order parameter for the 4kF-CDW phase is defined by

� = lim
L→�

��L� , �4�

FIG. 1. Band structure for noninteracting electrons in a dimer-
ized chain.
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��L� = � 1

r + 2 �
l=�L−r�/2

�L+r�/2+1

�− 1�l�n̂l	� . �5�

In �5� the summation over the lattice sites l is restricted to a
region r around the central site of the chain in order to re-
duce the edge effects. We set r=2 for a systematic extrapo-
lation to the thermodynamic limit. Of course, the extrapo-
lated results should be independent of the choice of the range
r. On finite lattices and for open-end boundary conditions,
the Friedel oscillations from the edges result in a finite value
for ��L�, and a well-controlled finite-size extrapolation is
mandatory.

For the calculation of the Tomonaga-Luttinger parameter
K� we use a method that we proposed recently.28 The
Tomonaga-Luttinger parameter K� determines the long-range
decay of the density-density correlation function in the me-
tallic Tomonaga-Luttinger liquid ground state. It is defined
by the ground-state expectation value

CNN�r� =
1

L
�
l=1

L

�n̂l+rn̂l	 − �n̂l+r	�n̂l	 . �6�

Using conformal field theory it can be shown29,30 that the
asymptotic behavior for 1�r�L is given by

CNN�r� 
 −
K�

�
r�2 +
A cos�2kFr�

r1+K�
ln−3/2�r� + . . . , �7�

where A is a constant. In previous approaches,31–34 K� was
extracted from the Fourier transformation of CNN�r� but in a
real-space DMRG approach the accuracy of the correlation
function becomes increasingly worse as the distance r in-
creases. In Ref. 28 we calculated the density-density corre-
lation function directly in Fourier space. We address

N�q� =
2

L
�n̂�q�n̂�− q�	 , �8�

where n̂�q� is given by

n�q� = �
l,odd

�

ei�q/2��l+1/2−rc��ĉl�
† ĉl� + ĉl+1�

† ĉl+1�� . �9�

Here, rc= �L+1� /2 denotes the central position of the chain.
The derivative of N�q� at q=0 directly gives the Tomonaga-
Luttinger parameter. In practice, we obtain it from

K� = lim
L→�

K��L� ,

K��L� =
L

4
N�4


L
� . �10�

For a precise calculation of K� it is important to target not
only the ground state �0	 but also the state ��q	
= n̂�−q� ��0	 in the DMRG procedure; see Ref. 28 for further
details.

The Tomonaga-Luttinger parameter is well defined only
for the metallic Tomonaga-Luttinger liquid. Later we shall
investigate K� for insulators which are infinitesimally doped
away from their commensurate doping nc. In these cases we
give

K��n → nc
±� = lim

L→�
K��n = nc ±

2

L
� . �11�

This approach is very successful for the single-band Hubbard
model, as demonstrated in Ref. 28.

C. Effective models

For not too small dimerizations, t2 / t1�0.9, and around
quarter filling, we can map the dimerized extended Hubbard
model to an effective single-band extended Hubbard
model.13 The upper Peierls band can be integrated out and
we are left with a Hubbard chain with L /2 dimer sites ld with
effective parameters,

Ĥeff = teff�
ld,�

�ĉld+1�
† ĉld� + H.c.� + Ueff�

ld

n̂ld↑n̂ld↓

+ Veff�
ld

�n̂ld
− 1��n̂ld+1 − 1� , �12�

teff =
t1t2

2�t1
2 + t2

2
, �13�

Ueff = 2t1 −
��U − V�2 + 16t1

2 − �U + V�
2

, �14�

Veff =
V

4
. �15�

The band filling is neff=2n so that kF,eff=
n and vF,eff
= t2sin�
n�. Note that Ueff / teff can be large even when U / t1 is
small, e.g., Ueff / teff=8.8 for U= t1, V=0, and t2 / t1=0.1.

For V�Vc the quarter-filled dimerized extended Hubbard
model describes a Mott-Hubbard insulator with gapless spin
excitations. In this parameter region, the spin degrees of free-
dom of the effective single-band Hubbard model �12� can be
described by an effective Heisenberg model,

ĤHeis,eff = Jeff�
ld

Ŝld
· Ŝld+1, �16�

where Ŝld
is the spin operator for a dimer located at position

ld. Up to second order in t2 /Ueff, we have

Jeff�V� =
4t2

2

8t1 + 2U + V − 2��U − V�2 + 16t1
2

. �17�

III. RESULTS

A. Dimerized Hubbard model

First, we consider the dimerized Hubbard model, i.e., we
set V=0 in �1�.
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1. Tomonaga-Luttinger parameter

In order to demonstrate the accuracy of our method, we
address the Tomonaga-Luttinger parameter at small interac-
tions, U�W, as a function of the dimerization in the metallic
regime, n=0.4. To lowest order in the couplings, g1=g2
=g4=U /2, the field-theoretical “g-ology” approach
predicts35,36

K� =� 2
vF

2
vF + U
�18�

where the Fermi velocity vF is given by

vF =
t1t2sin kF

�t1
2 + t2

2 + 2t1t2cos�kF�
. �19�

This result can be systematically improved with the func-
tional renormalization group method.37

In Fig. 2, we compare the Tomonaga-Luttinger parameter
as calculated from the DMRG approach, Eq. �10�, to the
g-ology prediction �18�. We plot K� as a function of U / t1 for
various dimerization strengths t2 / t1 at band filling n=0.4.
The system is metallic for all interaction strengths. For all
dimerizations, K� decreases monotonically with increasing
Coulomb interaction and finally approaches K��U→ � �
=1/2, as expected from the nondimerized Hubbard model.
For small dimerization, t2 / t1�0.5, the DMRG results agree
very well with those from the g-ology approach for all U
�W. For small U / t1, K� decreases weakly and monotoni-
cally with t2 / t1. This can be understood from the correspond-
ing decrease of the bandwidth W=2�t1+ t2� with a corre-
sponding reduction of the Fermi velocity.

When the dimerization is large, t2 / t1�0.5, and the Hub-
bard interaction is large, U�W /2, the results from g-ology
substantially deviate from the numerically exact DMRG re-
sults. The Tomonaga-Luttinger parameter K� decreases rap-
idly with decreasing t2 / t1, and the g-ology predictions

quickly violate the constraint K��1/2. Apparently, higher-
order corrections in U /W beyond the one-loop calculations
needed to be considered.

As our next application, we investigate the Tomonaga-
Luttinger parameter as a function of the band filling and the
interaction strength. In Fig. 3, we show K� from the DMRG
method as a function of n for various interaction strengths
U / t1 and dimerizations: �a� t2 / t1=0.9, �b� t2 / t1=0.5, and �c�
t2 / t1=0.1. For comparison we also plot the exact results for
K� from the Bethe ansatz for the one-dimensional single-
band Hubbard model with the same bandwidth t= �t1+ t2� /2.

When the dimerization is small, t2 / t1=0.9, we again find a
good general agreement between the results for the dimer-
ized Hubbard model and the single-band Hubbard model
with the same total bandwidth. An exception is the narrow
range around quarter band-filling, n=1/2. At quarter filling,
the lower Peierls band is half filled and the umklapp scatter-
ing becomes a �marginally� relevant perturbation which turns
the metallic phase into a Mott-Hubbard insulator where K� is
not well defined, and we give the value for infinitesimal dop-
ing see Eq. �11��. As expected from field theory,36,38 and
confirmed numerically, we have

FIG. 2. Tomonaga-Luttinger parameter K� from the DMRG ap-
proach �symbols� in comparison with the predictions from the
g-ology method �solid lines�, as a function of U / t1 for t2 / t1

=1,0.9,0.5,0.3, 0.1 �from top to bottom� at n=0.4 for the dimer-
ized Hubbard model.

FIG. 3. Tomonaga-Luttinger parameter K� as a function of the
band filling n for various dimerizations: t2 / t1=0.9, �b� t2 / t1=0.5and
�c� t2 / t1=0.1. In each figure, U / t1=1,2 ,6 from top to bottom. Open
circles denote the DMRG results in the dimerized Hubbard model,
and dotted lines are guides for eyes. Solid lines give the exact result
for the single-band Hubbard model with hopping integral t= �t1

+ t2� /2.
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K��n =
1

2

±� =
1

2
�20�

for the density-driven Mott transition for all interaction
strengths. This follows from the mapping of the quarter-filled
dimerized Hubbard model to the effective single-band Hub-
bard model at half band-filling. Therefore, K� strongly
changes as a function of density in the vicinity of quarter
filling even for small dimerizations. The effect becomes
more prominent with increasing dimerization strengths see
Fig. 3�b��.

When the dimerization is large, t2 / t1=0.1, the single-band
Hubbard model does not provide a good starting point for the
analysis anymore. Instead, for small t2 / t1 we rather consider
the effective single-band Hubbard model �12� for V=0. Be-
cause of the strong effective on-site interaction Ueff / teff, the
umklapp scattering strength becomes very large. For in-
stance, the effective couplings at t2 / t1=0.1 are estimated
from Eq. �14� as Ueff / teff=8.8, 15.3, 27.9 for V=0 and
U / t1=1 ,2 ,6, respectively. Therefore, the values for K� are
rather small for all U / t1�1. Moreover, the effective single-
band Hubbard model always gives the correct result K��n
=1/2±�=1/2 because the quarter-filled dimerized Hubbard
model maps onto the half-filled single-band Hubbard model
which describes a Mott-Hubbard insulator for all interaction
strengths.

As seen in Fig. 4, the quantitative agreement for K� from
the dimerized Hubbard model and the effective single-band
Hubbard model is quite good for all U / t1 at t2 / t1=0.1. Note
that the effective Hubbard model displays its particle-hole
symmetry around n=1/2 which the dimerized Hubbard
model obeys only for t2 / t1→0 or U / t1→�.

2. Spin excitations

As our second quantity of interest we study the spin de-
grees of freedom at and around some commensurate band
fillings. At half filling, n=1, the dimerized Hubbard model is
a band-Mott insulator for all U / t1�0, and we expect a finite
gap for spin excitations for all U / t1. For small interaction

strengths, the spin gap is of the order of the Peierls gap,
�s�U / t1→0�=�P=2�t1− t2�. For large interactions, the spin
degrees of freedom of the dimerized Hubbard model can be
described by the one-dimensional Peierls-Heisenberg model
so that the spin gap to lowest order in t1 /U becomes

�s�t1/U → 0� �
4t1

2

U
� t1

2 − t2
2

t1
2 + t2

2�2/3

, �21�

in accordance with the results for the corresponding Peierls-
Heisenberg model.39 Equation �21� is applicable for U / t1
�4. In the inset of Fig. 5 we show two examples for the
finite-size scaling of the spin gap �3�, �t2 / t1=0.5,U / t1=10�
and �t2 / t1=0.9,U / t1=5�. The dependence of the gap on the
system size is quite small because in the ground state indi-
vidual spin singlets are formed on the dimers so that the
gapped spin excitations are rather localized in space.

It is more interesting to study the doping dependence of
the spin gap. In Fig. 5 we plot �s�L� as a function of system
size for �t2 / t1=0.5,U / t1=10� and for �t2 / t1=0.9,U / t1=5�
for several band fillings. As seen from the figure, the spin
gap vanishes for all electron densities. In particular, at half
band-filling it disappears as soon as the system is doped with
an infinitesimal amount of holes. This can be understood in
terms of the spin excitations of a half-filled system with two
holes. Let us assume that the two holes are confined to a
dimer. Then, a spin excitations would remain the same local
excitation as in the perfectly half-filled system which costs
the finite energy �21�. However, the holes are actually delo-
calized over the system because the breaking of two spin

FIG. 4. Tomonaga-Luttinger parameter K� from the DMRG ap-
proach for large dimerization, t2 / t1=0.1, in comparison with the
analytical result for the effective single-band Hubbard model. Re-
call that the band filling n of the dimerized Hubbard model corre-
sponds to a filling 2n for the effective single-band Hubbard model.

FIG. 5. Extrapolation of the spin gap �s�L� of the dimerized
Hubbard model. Solid symbols represent the results for weak
dimerization �t2 / t1=0.9, U / t1=5� at infinitesimal doping of the
band-Mott insulator �n=1, triangles� and at small doping �n=0.95,
circles�. Open symbols give the results for intermediate dimeriza-
tion �t2 / t1=0.5, U / t1=10� at infinitesimal doping of the band-Mott
insulator �n=1, triangles�, at the electron densities n=0.95 �circles�,
n=0.8 �squares�, and at infinitesimal doping of the Mott-Hubbard
insulator at quarter filling �n=0.5, lower triangles�. Inset: Extrapo-
lation of the spin gap of the band-Mott insulator at half band-filling
for �t2 / t1=0.9, U / t1=5� �solid diamonds� and for �t2 / t1=0.5, U / t1

=10� �open diamonds�.
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dimers cost twice �s but the gain in kinetic energy is ap-
proximately

Eit � 2�t1 − t2� . �22�

Eit is always larger than 2�s. The mobile holes leave behind
at least two broken spin dimers whose spin excitation energy
vanishes in the thermodynamic limit.

Apparently, the dimerized Hubbard behaves differently
from the two-leg Hubbard ladder at half band-filling where a
spin-singlet pair is formed on each rung. The spin gap in the
ladder system remains finite for finite hole doping. There,the
spin-singlet pairs themselves are mobile so that in the ground
state an additional pair of holes is actually confined to a rung
because the gain in kinetic energy due to the hole motion is
smaller than the combined loss in the pairing energy and the
kinetic energy of the spin dimers.

Finally, we investigate the spin gap for the quarter-filled
dimerized Hubbard model at infinitesimal doping. In Fig. 5
we plot the size dependence of the spin gap for the infini-
tesimally doped Mott-Hubbard insulator at quarter filling for
�t2 / t1=0.5,U / t1=10�. The extrapolated values are zero for
all dimerization and interaction strengths. Therefore, the
spin-gap liquid, suggested in the one-dimensional dimerized
t-J model,40 is not realized in the dimerized Hubbard model.

B. Dimerized extended Hubbard model

Now we turn to the case V�0 in �1�. We focus on the
region around quarter filling where the nearest-neighbor in-
teraction can lead to a CDW phase. This is known for the
extended Hubbard model whose ground-state phase diagram
was studied in detail recently.14,28

1. Charge order

Previous studies23,41,42 suggested that the presence of a
dimerization suppresses the CDW phase. Therefore, we in-
vestigate the dependence of the critical coupling Vc for the
onset of the CDW. To this end we calculate the CDW order
parameter � from �5� as a function of the dimerization
strength. For V=0 we have �=0 whereas, for large V, the
CDW order parameter approaches its classical value, ��V
→ � �=0.5.

In Fig. 6 we show the order parameter ��V� as a function
of V / t1 for dimerizations t2 / t1=1 ,0.9,0.5,0.1 for fixed
U / t1=10 at quarter band-filling. In the absence of a Peierls
modulation, t2 / t1=1, i.e., in the extended single-band Hub-
bard model, ��V� is finite above Vc / t1�2.65, in agreement
with previous work.14,28,43 Apparently, the dimerization en-
hances the charge fluctuations on each dimer, and, conse-
quently, the tendency toward charge order is reduced.

In the presence of a dimerization, the critical value for the
onset of the CDW increases with increasing dimerization.
Moreover, ��V , t2 / t1�1� rises up sharply above Vc�t2 / t1�
even when t2 / t1 is close to unity. We speculate that the tran-
sition remains continuous for all finite t2 / t1 but the slope is
infinite for all t2 / t1�0. In the inset of Fig. 6 we show the
critical value Vc / t1 as a function of the dimerization strength
t2 / t1. We find that Vc / t1 changes rapidly for small t2 / t1 and

quickly saturates at its classical value for t2 / t1=0. The value
Vc�t2 / t1=0�=4t1 is readily explained by considering an iso-
lated dimer. In the isolated-dimer limit the energies of the
Mott-Hubbard insulator and the CDW insulator are

E0
MH/L = − t1 + Veff = − t1 + V/4, �23�

E0
CDW/L = 0, �24�

so that the criterion for the �discontinuous� transition is
E0

MH�Vc�=E0
CDW�Vc� which readily gives Vc / t1=4.

2. Tomonaga-Luttinger parameter

In the absence of a dimerization, the Tomonaga-Luttinger
parameter decreases as a function of V / t for fixed U / t�4
and reaches K�=0.25 at the critical coupling. When the
CDW insulator is infinitesimally doped the system metalizes
and K�

CDW=1/8.28,38,44

For a finite dimerization, the quarter-filled system is a
Mott-Hubbard insulator for small V / t1 and finite U / t1. At
infinitesimal doping we find K�

MH�V�Vc�=1/2 below the
transition, independent of V. This is readily understood from
the fact that the effective model is the extended single-band
Hubbard model at half band-filling for which the field-
theoretical arguments for a density-driven Mott transition
still apply. A qualitatively and quantitatively different behav-
ior emerges from the transition to the CDW insulator at Vc.
The Tomonaga-Luttinger parameter drops from K�=1/2 in
the infinitesimally doped Mott-Hubbard insulator to K�

�1/8, as we shall discuss in more detail now.
The dimerization has two prominent effects on K�. First, it

increases the strength of the umklapp scattering which makes
K� smaller. Second, the dimerization suppresses the CDW
instability which tends to make K� larger. These effects are
most apparent around quarter filling where the two tenden-
cies compete with each other close to the CDW instability.

FIG. 6. CDW order parameter � extrapolated to the thermody-
namic limit L→� for t2 / t1=1, 0.9, 0.5, and 0.1 with fixing U / t1

=10 at quarter filling. Lines are guides to the eyes. Inset: Estimated
critical interaction strength Vc / t1 for the CDW transition as a func-
tion of t2 / t1.
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Both effects increase upon decreasing t2 / t1. The first effect
continues to develop progressively and leads to Ueff / teff
→� as t2 / t1→0. As shown in Sec. III B 1, the second effect
develops fast as a function of the dimerization and quickly
saturates. Therefore, we expect that the first effect, a reduc-
tion of K� upon dimerization, is more prominent for quarter
filling and in the vicinity of the transition to the CDW phase.

The reduction of K� with dimerization can actually be
inferred from the g-ology approach where the Tomonaga-
Luttinger parameter near quarter filling is given by

K� �� 2
vF − V

2
vF + U + 5V
�25�

with vF= t1t2 /�t1
2+ t2

2. The formula shows that K� decreases
monotonically as a function of V and of t2 / t1. Naturally,
g-ology cannot cover large dimerizations or the transition
region where the increase of K��V� upon dimerization be-
comes apparent.

In Fig. 7 we present the DMRG results for K� as a func-
tion of V / t1 at a hole doping and an electron doping of 5%,
n=0.5±0.025, for U / t1=6 and various dimerizations. The
numerically exact DMRG results confirm the general expec-
tations as expressed in the g-ology formula �25�. The
Tomonaga-Luttinger parameter decreases monotonically
with V / t1 for all dimerizations and, in general, it decreases as
a function of t2 / t1 for fixed V / t1. The fact that K� is almost
independent of t2 / t1 for fixed 1�V / t1�2 can be attributed
to the above-mentioned competition between the umklapp
scattering and the charge ordering. For certain parameter re-
gions, a change in the dimerization strength has almost no
net effect on K� because a change in the strength of the

umklapp scattering is compensated by a change in the mo-
bility of the charge carriers. For the same parameter set
�V / t1 , t2 / t1�, K� is generally somewhat smaller for the hole-
doped case than for the electron-doped case but there is no
difference in the qualitative behavior. This was to be ex-
pected because the system is particle-hole symmetric around
quarter filling to lowest order in t2 / t1. From now on we shall
focus on the case of hole doping.

The Tomonaga-Luttinger parameter K��V� changes most
rapidly in the region 2�V / t1�4 where the quarter-filled
system undergoes the charge-ordering transition. For V / t1
�4, we can interpret the system as a doped CDW insulator.
In this region, we find that the dependence of K� on the
nearest-neighbor interaction V / t1 is much weaker. This can
be understood from the Taylor expansion of K� for a slightly
doped CDW insulator. Above the transition point �V�Vc�
we generally expect28 that for �=1/2−n�1 we have

K��t2,U,V,1/2 − �� = K�
CDW�t2,V� +

�

h�t2,U,V�
+ . . . ,

�26�

where t1 is used as the energy unit. The prefactor h�t2 ,U ,V�
diverges exponentially at the critical interaction strength Vc
but it rapidly tends to a constant for large V.

For infinitesimal doping, the Tomonaga-Luttinger param-
eter of the CDW insulator K�

CDW�t2 / t1 ,V / t1� also displays a
smooth behavior as a function of V / t1 and t2 / t1. In Fig. 8 we
show K�

CDW�t2 / t1 ,V / t1� for U=� and various dimerizations.
As for the case of a finite doping we see that the dimerization
tends to reduce the Tomonaga-Luttinger parameter. In the
CDW phase this tendency is somewhat compensated by the
influence of the nearest-neighbor Coulomb interaction
which, for large interactions and for small doping of the
CDW state, delocalizes the holes over the system and there-
fore increases the charge fluctuations which determine K� via
Eq. �7�.

FIG. 7. Tomonaga-Luttinger parameter K� in the dimerized ex-
tended Hubbard model as a function of the nearest-neighbor Cou-
lomb interaction V / t1 for U / t1=6 and various dimerizations: t2 / t1

=1 �dashed line�, 0.9 �filled circles�, 0.7 �open triangles�, 0.5
�crosses�, 0.3 �filled triangles�, and 0.1 �open squares�. The band
filling is �a� n=0.475 and �b� n=0.525.

FIG. 8. Tomonaga-Luttinger parameter for the infinitesimally
doped CDW insulator K�

CDW as a function of V / t1 for t2 / t1=0.9,
0.5, and 0.1 at U / t1=�. The solid line corresponds to K�

CDW=1/8
when the dimerization is absent �t1= t2�, and the dotted lines are
guides for the eyes.
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The most important observation is the magnitude of the
Tomonaga-Luttinger parameter for the doped insulators. For
infinitesimal doping we find K�=1/8 in the absence of
dimerization and even K��1/8 in the presence of a dimer-
ization. These small numbers persist for finite doping, as
seen in Fig. 7. Therefore, depending on the choice of the
dimerization and the nearest-neighbor Coulomb interaction,
one can easily find parameter regions where 0.1�K��0.3
can be realized for slightly doped quarter-filled chains.

Figure 9 summarizes our findings for the Tomonaga-
Luttinger parameter in a schematic phase diagram for the
slightly doped quarter-filled dimerized extended Hubbard
model. The Mott-Hubbard insulator �CDW insulator� can be
characterized as 2kF spin-density-wave �SDW� �4kF-CDW�
states at quarter filling. Hence, the 2kF-SDW and 4kF-CDW
correlations are dominant for slightly doped Mott-Hubbard
and CDW insulators, respectively, and their correlation func-
tions decay algebraically with the asymptotic behavior
C2kF−SDW�r�
r−1−K� for Mott-Hubbard insulators and
C4kF−CDW�r�
r−4K� for CDW insulators. Thus, the value K�

=1/3 discriminates the two types of �doped� insulators at
finite doping. For an infinitesimally doped insulator we cor-
rectly find K��V=Vdc�=1/3 for Vdc=Vc but Vdc becomes ac-
tually smaller upon doping, as seen in Fig. 9.

C. Comparison with experiment

Finally, we compare our theoretical result with experi-
ments on �TMTTF�2X. The electron transfer matrix
elements45 are estimated to be �t1 , t2�= �137 meV,93 meV�
for X=PF6, �t1 , t2�= �140 meV,100 meV� for X=ClO4, and
�t1 , t2�= �133 meV,119 meV� for X=Br, i.e., t2 / t1

=0.68,0.71,0.89 for X=PF6,ClO4,Br, respectively. From
the comparison with the optical gap46,47 the Coulomb param-
eters are estimated to be U / t1�7.0 and V / t1�2.8 for

�TMTTF�2PF6. A comparison with Figs. 7 and 9 shows that
this parameter set leads to K��0.25, in agreement with ex-
perimental estimates for the Tomonaga-Luttinger parameter
from the temperature dependence of the resistivity.6,48 In
view of the CDW state observed below T�100 K,49–51 the
nearest-neighbor interaction could be even larger than V / t1
=2.8, which would further reduce K�.

Unfortunately, such values for the nearest-neighbor inter-
action V / t1 appear to contradict the results for the
effective exchange interaction as deduced from the high-
temperature data from the electron-spin-resonance �ESR�
measurements,52 Jexp=420,430,500 K for the anions X
=PF6,ClO4,Br, respectively. In the presence of the dimeriza-
tion and at quarter band-filling we can start from the effec-
tive extended single-band Hubbard model �12� and the spin
degrees of freedom can be described in terms of the effective
Heisenberg Hamiltonian �16�. For U / t1=7.0, the bare Hub-
bard model, V=0 in �17�, gives Jeff�V=0�=499,564,841 K.
The good agreement of the experimental and theoretical data
for V=0 implies that the nearest-neighbor interaction ought
to be rather small. In particular, the value V=2.8t1 for
�TMTTF�2PF6, leads to Jeff�V=2.8t1�=222 K, a factor of 2
smaller than the experimental estimate. Additionally, with a
small V to adjust Jexp, the resulting theoretical prediction for
K��0.5 from Fig. 7 is not compatible with the experimental
estimate, 0.2�K��0.3.

In order to reconcile this discrepancy we note that, in the
ESR measurements, the curves are fitted to provide a good
agreement with the Eggert-Affleck-Takahashi model53 for
the spin susceptibility of the S=1/2 antiferromagnetic
Heisenberg chain at elevated temperatures. However, sub-
stantial deviations occur for small temperatures, T�100 K.
They could be the result of a dimensional crossover54 and the
transition to the CDW phase. We are tempted to attribute the
deviations to an effectively larger nearest-neighbor interac-
tion at low temperatures. Recall that our electronic model is
purely one dimensional, and neither covers the influence of
phonons55,56 nor does it give an account on the screening of
the electron-electron interaction which may change drasti-
cally in the vicinity of the transition to the CDW state.
Therefore, temperature may have a quite substantial influ-
ence on the value of the effective V parameter in our model
so that Eq. �17� cannot be applied with the values for V / t1 at
T=0 to explain the susceptibility data for T�100 K. In fact,
in the CDW phase, the effective exchange interaction is
given by Jeff

CDW/ t1�4t2
4 / �2UV2� which results in Jeff

CDW

=14 K if we use the parameters for �TMTTF�2PF6. If the
spin susceptibility could be measured in the �one-
dimensional� CDW phase, the exchange interaction should
be an order of magnitude smaller than in the high-
temperature phase.

In �TMTSF�2PF6, the hopping amplitudes are estimated as
�t1=252 meV, t2=209 meV� and the effective Coulomb in-
teractions are found to be weaker, U / t1
5. Again, a weak
nearest-neighbor Coulomb interaction, V1�0.5t1, would ac-
count for an exchange interaction Jeff=1.2�103 K which is
compatible with the high-temperature experimental observa-
tion Jexp�1.4�103 K.

There are other routes to explain the differences between
experiments and Luttinger liquid predictions. For example,

FIG. 9. Schematic phase diagram of the dimerized extended
Hubbard model around quarter filling as a function of n and V.
Variations of K� are displayed by contour lines. Darker �brighter�
color denotes smaller �larger� values of K�.
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the interchain coupling is finite, so that materials are not
truly one dimensional as anticipated in our theoretical de-
scription. Moreover, it is difficult to extract reliable values
for K� from experiments on slightly doped insulators or to
determine the doping level precisely.

IV. SUMMARY

Using the DMRG method, we provided numerically exact
results for the spin excitations, the CDW order parameter,
and the Tomonaga-Luttinger parameter of the one-
dimensional dimerized extended Hubbard model at and near
commensurate fillings.

In the presence of a dimerization we confirm numerically
that the gap for the spin excitation is finite at half band-
filling. However, the gap immediately disappears when the
system is doped infinitesimally because there is no mecha-
nism that confines the holes to a single dimer. This result is
qualitatively consistent with a rapid suppression of the spin
gap with Zn doping in the spin-Peierls Heisenberg system
CuGeO3,57 irrespective of the difficulty in metalizing this
material.58

For the Tomonaga-Luttinger parameter the effects of the
dimerization are weak in the absence of the nearest-neighbor
Coulomb interaction V and away from quarter filling. At and
near quarter filling, the lower Peierls band is essentially half
filled and the dimerized Hubbard model at filling n=1/2±�
can be understood qualitatively and even semiquantitatively
in terms of an effective single-band Hubbard model at elec-
tron density 2n. From the result of the corresponding Hub-
bard model at half band-filling it immediately follows that
K�=1/2 holds for the dimerized Hubbard model at infinitesi-
mally doping away from quarter filling. Therefore, the
Tomonaga-Luttinger parameter for the weakly doped quarter
filled system sensitively depends on the strength of the
dimerization. In general, the dimerization tends to reduce K�

gradually because the effective scattering processes within
the Peierls bands increase with the size of the Peierls gap.

In the presence of the nearest-neighbor Coulomb interac-
tion, the case of quarter filling also deserves special attention
because the Mott-Hubbard insulator goes over to a CDW
insulator with a finite spin gap at a critical interaction
strength Vc. The dimerization opposes the formation of the
CDW phase, for example, the critical nearest-neighbor inter-
action shifts from Vc / t1�2.65 in the absence of dimerization
to Vc / t1=4 in the dimer limit.

The suppression of the charge order at quarter filling by
the dimerization is reflected in a tendency to stabilize the
metallic state by the dimerization away from quarter band-
filling. However, the increase of the electron-electron scatter-
ing by the nearest-neighbor Coulomb interaction overcomes
that tendency and results in a net reduction of K� as a func-
tion of the dimerization and the nearest-neighbor interaction
�see Fig. 7�. As a consequence, fairly small values, K�

�0.25, can be obtained for a moderate 5% doping of the
quarter-filled dimerized extended Hubbard model at moder-
ate Coulomb couplings, U / t1=6, V / t1=3.

It is difficult to reconcile all experimental data for the
Bechgaard salts with our findings for the dimerized extended
Hubbard model in one dimension. In order to find small val-
ues for the Tomonaga-Luttinger parameter, the Coulomb in-
teractions must be large enough to reach the region of a
�doped� CDW insulator which is not easily reconciled with
the high-temperature data for the exchange interaction. We
suspect that the one-dimensional dimerized extended Hub-
bard model is still too simplistic to describe the physics of
the Bechgaard salts adequately.
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