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Electron-phonon coupling and spin-charge separation in one-dimensional Mott insulators
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We examine the single-particle excitation spectrum in the one-dimensional Hubbard-Holstein model at
half-filling by performing a dynamical density matrix renormalization group calculation. The spin-charge
separation is robust against the electron-phonon (EP) coupling, although both spinon and holon branches are
affected by phonons. We find that this robustness is in sharp contrast to a rather strong influence of the EP
coupling on quasiparticle properties in two dimensions. We discuss the implication of the results of recent
angle-resolved photoemission spectroscopy measurements on SrCuO,.
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In one-dimensional (ID) systems, the electron-phonon
(EP) coupling represents one of the fundamental open prob-
lems. A well-known phenomenon is the Peierls instability.
The instability significantly softens the phonon frequency in
1D, leading to charge-ordered states. Since the order is sup-
pressed by the electron correlation, it is believed that the
coupling does not play an important role in Mott insulators.
However, in the doped Mott insulators, the EP coupling in-
fluences doped carriers propagating with charge fluctuation.
Due to involved spin degrees of freedom, one now faces a
problem different from the conventional polaron one. Fur-
thermore, the electron correlation breaks an electron into col-
lective modes representing spin and charge degrees of free-
dom, called spinons and holons, respective:ly.1 Thus, the EP
coupling may influence the spin-charge separation. In par-
ticular, a deeper understanding of the interdependence be-
tween the EP coupling and the spin-charge separation will be
a guide for control of the internal degrees of freedom in real
materials. Nevertheless, up to now, the spin-charge separa-
tion is the only key ingredient that provides nontrivial 1D
physics. In this Rapid Communication, we provide insight
into the interplay of the EP coupling and the spin-charge
separation.

The EP coupling has been studied in 2D insulating cu-
prates. Angle-resolved photoemission spectroscopy (ARPES)
experiments have revealed that the EP coupling leads to van-
ishing quasiparticle spectral weight.>> Since the quasiparti-
cle is composed of spin and charge degrees of freedom, a
comparison of our calculations with the 2D system will pro-
vide additional information on the influence of the EP cou-
pling on the spin degrees of freedom.

We examine the single-particle excitation spectrum in the
1D Hubbard-Holstein (HH) model at half-filling. In the ex-
isting literature, there is only limited information on this
spectrum, because the treatment of the electron correlation
and the infinite number of photonic degrees of freedom on an
equal footing represents a challenging problem.®!! In order
to overcome this difficulty, we perform a large-scale dynami-
cal density matrix renormalization group (DDMRG) calcula-
tion.

The calculation reveals that both spinon and holon singu-
larities are smeared out. Particularly, in the strong-coupling
regime, the phonon-charge (Holstein) coupling strongly af-
fects the spinon as well as the holon branch. Nevertheless,
we find that the spin-charge separation is robust against the
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EP coupling, because the DDMRG results are well repro-
duced by performing a summation of the spectra for a spin-
less carrier dressed with phonons with different momenta.
While the EP coupling does not affect the spin-charge sepa-
ration in 1D, its effect on the spin degrees of freedom of the
quasiparticle in 2D is much more pronounced.>!%12 We dis-
cuss the implication of the results of recent ARPES measure-
ments on SrCuQO,.

Let us introduce the Hamiltonian relevant for the insulat-
ing cuprates. The microscopic model includes Cu 3d,2_,> and
O 2p orbitals with lattice distortion. The highest occupied
state is the Zhang-Rice singlet. We map the singlet and un-
occupied 3d states onto the single-band Hubbard model. The
distortion modulates the hopping integral of an electron be-
tween neighboring Cu and O orbitals. Due to the modulation,
the diagonal (Holstein) electron-phonon coupling emerges in
the single-band model, which is dominant in comparison
with the off-diagonal (Peierls) coupling.'®!* Then, the
Hamiltonian is defined by
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where CZU (¢; ) is the creation (annihilation) operator for an
electron with spin o at site i, blT (b;) is the creation (annihi-
lation) operator for an Einstein phonon at site i, n,=n,;
+n;), ni,{,:c:f’gc,-,(,, t is the hopping integral, U is the on-site
Coulomb repulsion, w, is the phonon frequency, and g is the
EP coupling constant. We take U to be U=8¢, which is an
appropriate value for the cuprates.
We examine the single-particle excitation spectrum at
zero temperature defined by
0>, (2)

where ¢ ; is the momentum representation of the electron
operator ¢; ;, |0) denotes the ground state with energy E,, and
v is a small positive number, which is taken to be y=0.1¢ in
the present calculation.

Here, A(k,w) is calculated by the finite-system DDMRG
algorithm.'>~2! The system size L is taken to be 20 lattice
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(b) g=0.5t

FIG. 1. A(k,w) for the 1D Holstein-Hubbard model at half-
filling. The momentum is taken from 7/21 to 117/21.

sites. The DMRG bases are truncated up to m=400 states
from the density matrix for a mixed state of the ground state
|0), the final state after the one-electron-removal process Ci
|0), and two correction vectors (Eg—w—H+iy)"'c;; |0) for
w=w|,w, and w,—w;=27. It is technically useful to note
that convergent results are obtained when A(k,w) and
A(k,w+27) are smoothly connected for a given m.

In order to maintain numerical precision and reduce
boundary effects, an open boundary condition is taken with
potentials —n; at the edges. In such a system, the momentum
k is defined by k=nw/(L+1) with n=1,2,...,L. The mo-
mentum _representation of ¢;; is given by ¢
=2/(L+1)Z; sin(kl)c; ;."%%° It is noted that the spectrum for
L=20 presented here is similar to that for L=120 without the
edge potential.?’

In the DMRG calculation, phononic degrees of freedom at
each site are truncated up to M=2" and then exactly trans-
formed into a set of N hard-core bosons.?? The bosonic and
electronic degrees of freedom are treated as different “sites.”
Here, the maximum number of N which we take is 4 and the
superblock is composed of (1+N)L=100 sites. This transfor-
mation enables us to calculate the spectra for large values of
g. However, the highest-order boson is renormalized at first
in some processes, which worsens the numerical precision.
Thus, we set up superblocks so that the final sweep process
keeps the precision.

Figure 1 shows A(k,w) with and without the electron-
phonon coupling g. The phonon frequency is taken to be
wn=0.5t>y=0.1¢ in order to see the effect of the phonon
clearly. While its value relevant for the cuprates is wy= v,
we have confirmed that our conclusion does not change for
o as low as wy=0.2¢. The origin of the energy is located at
the center of the Mott gap. In Fig. 1(a), two branches dis-
perse, merging toward k— /2. These energy positions are
w/t=-3.13 and —4.90 at k=/21, which is the minimum
momentum in the calculation. The branch located in the low-
(high-) binding-energy side is deduced to be the spinon (ho-
lon) branch. Here, fine structures inside the branches come
from a finite-size effect. It is noted that the bandwidth of the
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FIG. 2. (a) A(k—0,w) for various w, values. For wy,#0, g is
taken to be 0.57. (b) A(k—0, ) with wy=0.5¢ for various g values.
For (a) and (b), the spectra with g # 0 are shifted so that the energy
of the spinon branch is taken to be equal.

holon branch from k=m/21 to k=107/21 depends on the
open boundary condition and U. In Fig. 1(b), we find that the
holon branch broadens due to the EP couping, while the
spinon branch remains sharp. We also identify a “peak-dip-
hump” structure at the high-binding-energy side of the
spinon branch. The dip disperses like the spinon branch. As
shown in Fig. 2(a), the energy of the dip (hump) position
decreases with increasing w,. The energy difference between
the dip (hump) and the spinon branch is estimated to be w,,
which means that the peak-dip-hump structure emerges due
to the EP coupling. Therefore, the shape of the peak-dip-
hump structure provides information on the phonon fre-
quency.

As g increases beyond 0.5t while keeping w;=0.5¢, the
spinon branch starts to broaden.” In Fig. 2(b), we show A(k
—0,w) for various g values. The weight of the spinon
branch decreases linearly as a function of g for g= w,. For
g=t, the holon branch is completely smeared out. The peak-
dip-hump structure observed in Fig. 1(b) develops into mul-
tiple peaks positioned at w/r=-3.13, -3.61 to —-3.13-w,
and —4.09 to —-3.13-2w,, respectively. Furthermore, a slight
enhancement of the low-binding energy side of the spinon
branch is seen. The energy difference between the enhance-
ment and the band top (k=7/2) for g=0 is estimated to be
. Therefore, the three main peaks and the enhancement are
also due to the EP coupling.

As mentioned in the previous two paragraphs, the follow-
ing phonon effects appear on A(k,w): (i) a peak-dip-hump
structure, (ii) a broad holon branch, (iii) a decrease of the
spectral weight of the spinon branch, and (iv) an enhance-
ment of the low-binding-energy side of the spinon branch. In
particular, the characteristic energy scale of (i) and (iv) is .
In light of the spin-charge separation, they can be interpreted
as follows.

First, we consider the origins of (i) and (ii) shown in Fig.
1(b) for g=0.5r=w,. Let us start with the dispersion in the
Hubbard model as illustrated in Fig. 3(a). According to the
Bethe ansatz solution, the dispersion is constructed by a su-
perposition of a set of holon dispersions forming a cosine
band with width 4¢.2% The superposition is a consequence of
the spin-charge separation, because each of the holon disper-
sions is characterized by one spinon momentum. Therefore,
an effective model of A(k,w), Ak,w), is constructed by
putting the spectral weight for a spinless fermion, A,(p, &)
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FIG. 3. (a) Shadded area: schematic view of the dispersion in a
1D Mott insulator, dashed (solid) line: one holon dispersion for g
=0 (g #0). The dotted line is a guide to the eye. (b) Ay k=0, w),
dashed (solid) line: g=0 (g=wy=0.5¢). Here, the broadening v is
assumed. (c) A,(p—m,e) for the 1D Holstein model—i.e. a model
for a spinless carrier with Einstein phonons (g=wy=0.57). The
dashed line represents a cosine band with width 4z.

=8(e—2t cos p), on each of the holon dispersions. Since the
top of the consine band is running along the spinon disper-
sion g,(q+m/2)=—(m]/2)|sin(g+m/2)| for —m/2<q<m/2,
Ak, w) is defined by

/2

Aglbw)= D Ah(k—q,w+2t+sx<q+§)), 3)

q=—/2

apart from a constant energy shift. A dashed line in Fig. 3(b)
shows A k=0, w). The singularity of the spinon branch ap-
pears at w=—mJ/2~-2mt*/U=-0.785¢ and in the flat part
of the spinon dispersion near k=0. The line shape is consis-
tent with the DDMRG data in Fig. 1(a) except for the singu-
larity of the holon branch. The singularity of the holon
branch is recovered from the phase string effect.”* The con-
sistency indicates that Eq. (3) is appropriate for the spectral
weight in spin-charge-separated systems.

Let us introduce the EP coupling and take g to be 0.5z.
Due to the spin-charge separation, each of the holons couples
with phonons independently. Namely, A,(p,e) is given by
the spectra for a spinless carrier dressed with Einstein
phonons. Figure 3(c) shows A,(p—,€), which splits into
low-lying peaks and an incoherent part.>>=28 The split occurs
at the anticrossing point & ~ 1.5¢ shifted from the top of the
band (p=m) by w,. At £ ~ 1.5¢, we find a tiny spectral weight
with a flat dispersion coming from the phonon branch. In
Fig. 3(a), the split of one holon dispersion is illustrated.
A(k=0,w) is then given by the solid line in Fig. 3(b). A
peak-dip-hump structure appears. The spectral weight lost by
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FIG. 4. (a) Shadded area: schematic view of the dispersion in a
ID Mott insulator, dashed (solid) line: one holon dispersion for g
=0 (g #0). The dotted line is a guide to the eye. (b) A(k— 0, w) for
g=t and wy=0.51.

the dip is transfered to the high-energy region. The spinon
branch, the dip, and the broad holon branch originate from
the low-lying peak, the anticrossing, and the incoherent part
of A,(p,e), respectively. These features obtained by Eq. (3)
are consistent with the DDMRG data, and thus the spin-
charge separation is robust.

Next, we consider the origin of (iii) shown in Fig. 2(b) for
&= w,. As mentioned in the previous paragraph, the spinon
branch can be expressed by the superposition of the low-
lying peak in Fig. 3(c). It has been shown that the spectral
weight of the low-lying peak decreases with increasing
2.2728 Therefore, the weight of the spinon branch decreases
with increasing g.

Finally, the origin of (iv) is considered. In Fig. 4, we see
that the small enhancement of the spectral weight on the
low-binding-energy side comes from the phonon branch.
Even for the coupling g=¢> w,, the spectral weight of the
phonon branch is very weak at k~ 0.2>-28 This is the origin
of the tiny weight seen in the DDMRG data. We should
stress that the tiny weight is seen under the condition wy
<J/2.

All of our interpretations for (i)—(iv) show the robustness
of the spin-charge separation against the EP coupling in the
ID HH model. The robustness is in contrast to the rather
strong influence of the EP coupling on the spin degrees of
freedom of the quasiparticle in 2D. In order to illustrate the
difference, we introduce a dimensionless parameter A\
= g%/ wyW with the noninteracting bandwidth W. There exists
a characteristic X value—e.g., A".? For A <\", the lowest-
energy excitation is only weakly dressed with phonons. As A
approaches \°, the excitation rapidly loses its spectral
weight, and then the weight flows into the phonon branches.
In the 1D Holstein model, A is estimated to be A~ 1.3%31 In
the 1D HH model, the spinon branch loses its weight for
N ~1 (g"~1.41) as estimated from Fig. 2(b).” This is be-
cause the spinon branch can be expressed by superposition of
the spectra for the low-energy excitation of the Holstein
model. In 2D, on the other hand, \* is close to 0.2 in the
t-J Holstein model with J=0.37, while \*>0.6 in the
Holstein model.>'%!2 This means that the antiferromagnetic
(AF) correlation facilitates the formation of the lattice
polaron.?>* As J increases, the energy gain originating in
the AF correlation leads to the suppression of the coherent
hole motion which in turn leads to the formation of the lat-
tice polaron.
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Finally, let us discuss the ARPES data for a 1D Mott
insulator SrCuO, in light of the DDMRG results. In this
compound, high-energy ARPES experiments have been per-
formed, where the spinon and holon branches were
observed.®® Near the I' point, the intensity of the holon
branch is smaller than that of the spinon branch. In addition,
these branches do not exhibit singularities predicted by the
Hubbard model.?* In Fig. 2(b), we show the DDMRG data
for A=0.25 (g=0.707¢ and wy=0.5¢) that are appropriate for
1D cuprates.'* The DDMRG data are consistent with the
ARPES data except for the missing dip. The dip may be
washed away either by the phonon dispersion or smeared out
due to finite-temperature effects.

In summary, we have examined the single-particle excita-
tion spectrum in the 1D HH model at half-filling by perform-
ing a DDMRG calculation. The following are characteristic
features in the spectrum: (i) a dip at the high-binding energy
side of the spinon branch, (ii) broad holon branch, (iii) de-
crease of the spectral weight of the spinon branch, and (iv)
slight enhancement of the weight at the low-binding-energy
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side of the spinon branch. These results were well repro-
duced by performing a superposition of the spectra for a
spinless carrier dressed with phonons. This means that the
spin-charge separation is robust against the electron-phonon
coupling. The spin degrees of freedom are not affected by the
relatively strong EP coupling in 1D, while, in contrast, the
AF correlation enhances the effect of the EP coupling in 2D.
The ARPES data for SrCuO, were consistent with our
DDMRG data.

Recently, it has come to our attention that the effect of the
EP coupling on the single-particle excitation spectrum in 1D
was studied in Ref. 11.

We thank P. Prelovsek for discussions and for giving us a
copy of his work prior to publication. Helpful comments of
J. Bon¢a on the manuscript are also acknowledged. This
work was supported by the NAREGI Nanoscience Project
and Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science and Technology of
Japan and CREST.

*Present address: Department of Physics, Tohoku University,
Sendai  980-8578, Japan. Electronic address: matsueda
@cmpt.phys.tohoku.ac.jp

Present address: Yukawa Institute for Theoretical Physics, Kyoto
University, Kyoto 606-8502, Japan.

IC. Kim, A. Y. Matsuura, Z. X. Shen, N. Motoyama, H. Eisaki, S.
Uchida, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 77,
4054 (1996); C. Kim, Z. X. Shen, N. Motoyama, H. Eisaki, S.
Uchida, T. Tohyama, and S. Maekawa, Phys. Rev. B 56, 15589
(1997).

2 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75,
473 (2003).

3K. M. Shen, E. Ronning, D. H. Lu, W. S. Lee, N. J. C. Ingle, W.
Meevasana, F. Baumberger, A. Damascelli, N. P. Armitage, L. L.
Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X.
Shen, Phys. Rev. Lett. 93, 267002 (2004).

40. Rosch, O. Gunnarsson, X. J. Zhou, T. Yoshida, T. Sasagawa,
A. Fujimori, Z. Hussain, Z.-X. Shen, and S. Uchida, Phys. Rev.
Lett. 95, 227002 (2005).

SA. S. Mishchenko and N. Nagaosa, Phys. Rev. Lett. 93, 036402
(2004).

6K. Tsutsui, T. Tohyama, and S. Maekawa, Physica C 392-396,
199 (2003); J. Low Temp. Phys. 131, 257 (2003).

M. Capone, M. Grilli, and W. Stephan, Eur. Phys. J. B 11, 551
(1999).

8M. Hohenadler, M. Aichhorn, and W. von der Linden, Phys. Rev.
B 71, 014302 (2005).

9H. Fehske, G. Wellein, G. Hager, A. WeiBe, and A. R. Bishop,
Phys. Rev. B 69, 165115 (2004).

10B. Biuml, G. Wellein, and H. Fehske, Phys. Rev. B 58, 3663
(1998).

'W.-Q. Ning, H. Zhao, C.-Q. Wu, and H.-Q. Lin, Phys. Rev. Lett.
96, 156402 (2006).

2P Preloviek, R. Zeyher, and P. Horsch, Phys. Rev. Lett. 96,
086402 (2006).

3G. Khalliulin and P. Horsch, Physica C 282-287, 1751 (1997); P.
Horsch and G. Khaliullin, Physica B 359-361, 620 (2005); P.
Horsch, G. Khaliullin, and V. Oudovenko, Physica C 341-348,

117 (2000).

140, Rosch and O. Gunnarsson, Phys. Rev. Lett. 92, 146403
(2004); Phys. Rev. B 70, 224518 (2004).

155, R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48,
10345 (1993).

16K . A. Hallberg, Phys. Rev. B 52, R9827 (1995).

7T. D. Kiihner and S. R. White, Phys. Rev. B 60, 335 (1999).

I8E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).

19H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett. 92,
256401 (2004).

20H. Matsueda, N. Bulut, T. Tohyama, and S. Maekawa, Phys. Rev.
B 72, 075136 (2005).

2IN. Shibata, J. Phys. A 36, R381 (2003).

22E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376 (1998).

23 A. Parola and S. Sorella, Phys. Rev. B 45, R13156 (1992); S.
Sorella and A. Parola, J. Phys.: Condens. Matter 4, 3589 (1992).

24H. Suzuura and N. Nagaosa, Phys. Rev. B 56, 3548 (1997).

25C. Zhang, E. Jeckelmann, and S. R. White, Phys. Rev. B 60,
14092 (1999).

26M. Hohenadler, M. Aichhorn, and W. von der Linden, Phys. Rev.
B 68, 184304 (2003).

278, Sykora, A. Hiibsch, K. W. Becker, G. Wellein, and H. Fehske,
Phys. Rev. B 71, 045112 (2005).

28H. Zhao, C.-Q. Wu, and H.-Q. Lin, Phys. Rev. B 71, 115201
(2005).

V. V. Kabanov and O. Yu. Mashtakov, Phys. Rev. B 47, 6060
(1993).

307, Bonéa, S. A. Trugman, and 1. Batisti¢, Phys. Rev. B 60, 1633
(1999).

31G. Wellein and H. Fehske, Phys. Rev. B 56, 4513 (1997).

32E. Cappelluti and S. Ciuchi, Phys. Rev. B 66, 165102 (2002).

3G. Wellein, H. Roder, and H. Fehske, Phys. Rev. B 53, 9666
(1996).

3 A. Ramgak, P. Horsch, and P. Fulde, Phys. Rev. B 46, R14305
(1992).

3B. J. Kim, H. Koh, E. Rotenberg, S.-J. Oh, H. Eisaki, N.
Motoyama, S. Uchida, T. Tohyama, S. Maekawa, Z.-X. Shen,
and C. Kim, Nat. Phys. 2, 397 (2006).

241103-4



