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Rabi oscillations are observed in the optically induced time-resolved Faraday rotation from a strong-
coupling microcavity. They reveal the dynamics of the excitonic part of the polariton state, including the spin
related information. The oscillations of the same period are observed at both circular and linear pumping,
suggesting the splitting of the ground polariton state into a linearly polarized doublet.
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Any two-level quantum system can show quantum beats
if a linear combination of its eigenstates is coherently ex-
cited. Rabi oscillations in microcavities1 represent quantum
beats in a mixed exciton-photon system. In the strong cou-
pling regime,2 the exciton-polariton eigenstates are split by
an energy dependent on the exciton oscillator strength and
detuning between exciton and cavity modes.3 At zero detun-
ing, this splitting is referred to as the vacuum field Rabi
splitting. When excited by a short laser pulse, the polariton
system is initially in a purely photonic state �C�, so that both
the upper polariton branch �U�= 1

�2
��X�+ �C�� and lower po-

lariton branch �L�= 1
�2

��X�− �C�� are coherently excited, �X�
being the pure exciton state. As time goes by, the system
evolves according to 1

�2
��U�ei�Ut− �L�ei�Lt�, so that at t

= �
�U−�L

it passes to the purely excitonic state. Afterwards it
becomes photonic again etc., with �L, �U being frequencies
of lower and upper polariton modes. The Rabi oscillations
persist until the phase correlation between upper and lower
polariton branches is lost. In other words, their decay time is
governed by the coherence lifetime in the system, so that a
high quality factor is prerequisite to observe Rabi oscilla-
tions. The oscillations can be detected most easily by mea-
surement of the photonic component of the cavity polariton
state by the time-resolved reflection.1,4,5 The dynamics of the
excitonic component of the polariton state can be measured
experimentally by the Kerr rotation technique.6 Detection of
the Rabi oscillations by this technique is a nontrivial task, as
the decoherence of the ensemble of excitons created in the
system is quite fast: excitons efficiently scatter with acoustic
phonons and with each other, which reduces the coherence.7

Here we report an experimental observation of the oscil-
lations of the excitonic component of the polariton doublet in
a microcavity. We were able to reveal the dynamics of the
excitonic part of the polariton state using the time-resolved
Faraday rotation technique. This is a two beams technique
where two optical pulses, separated by a time delay �t, are

sent to the sample. The first pulse �pump� creates a popula-
tion of polarized excitons. The second pulse �probe� is lin-
early polarized. After transmission, its polarization plane is
rotated by an angle proportional to the total exciton spin
projection onto the light propagation direction. In the ab-
sence of an external magnetic field, this projection usually
decays exponentially because of spin depolarization and ra-
diative recombination of excitons. We shall see now that in
microcavities instead of the monotonous decay, the Faraday
rotation angle shows extremely pronounced oscillations,
which are caused by the beats between excitonic and photo-
nic components of the polariton state. It turns out that by use
of Rabi oscillations at zero magnetic field the magnetization
in a semiconductor can be efficiently controlled on a pico-
second scale! The effect we observe has a different nature
from recently reported Rabi oscillations in a two-level sys-
tem based on coupled electron spins in double quantum dots8

which do not involve light-matter coupling.
We study a high quality � GaAs microcavity containing a

single InGaAs quantum well �QW� and surrounded by two
AlAs/Al0.1Ga0.9As Bragg mirrors with 28 �22� pairs on the
substrate �air� side. The sample was wedge shaped, so that
the detuning � between photon and exciton modes can be
controlled by the displacement of the 100 �m diameter laser
spot on the surface of the sample �8.4 meV/mm�. An acro-
matic lens was used to focus pump and probe beams on the
surface, in order to avoid pulse front distortions. In the ex-
periments below we choose ��0, which yields the splitting
between the polariton modes equal to a 3.3 meV Rabi split-
ting. The corresponding transmission spectrum is shown in
Fig. 1, inset. Both pump and probe pulses are incident at
small oblique angles opposite to each other, about +2 �−2�
degrees with respect to the surface normal. The pump/probe
intensity ratio is equal to 15, the pump beam intensity is set
to 3.5 mW. The probe pulse is linearly polarized along the x
axis �an in-plane axis�. Its rotation after transmission through
the sample as a function of the pump-probe delay is obtained
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for each pump polarization from the set of the three indepen-
dent measurements. Namely, a linear polarizer is placed after
the sample, and the intensity of the transmitted light for the
three different orientations of the polarizer is measured using
a monochromator at the energy of the low polariton branch
EL=1.4774 eV. To get rid of the polarization effects on the
monochromator diffraction efficiency, a 5 m multimode op-
tical fibre is used to depolarize the light prior to detection.
Note also that both linear and pump induced rotation of the
probe polarization are detected in this configuration.

Figure 1�a� shows the time-resolved Faraday rotation
measured for different polarizations of the pump pulse: �+

and �− circular polarizations and X-linear polarization. All
the spectra show pronounced oscillations with the period of
about 1.25 ps, which corresponds to the energy splitting of
about 3.3 meV, i.e. the value of Rabi splitting in our system.
Without doubt, the observed oscillations result from the Rabi
oscillations. This confirms that our microcavity is indeed in
the strong coupling regime at the pumping intensity we use.
We can also note that the Faraday effect in microcavities is
about 1000 times stronger than in conventional quantum
well structures due to accumulation of the polarization rota-
tion angle during multiple round trips of light inside the cav-
ity. The dramatic amplification of Faraday and Kerr effects in
microcavities has been predicted in Ref. 9.

The other important feature of the Faraday rotation in-
duced by the microcavity is the setup of the pump-induced
rotation at negative pump-probe delays much longer than the
duration of the pulse �150 fs�. This is characteristic for mi-
crocavities, where the polaritons excited by the probe pulse
live for some time in the cavity before escape, giving contri-
bution to the Faraday rotation signal. If during their lifetime
the circularly polarized polaritons are created by the pump
pulse, the Faraday rotation can be induced.

Surprisingly, the Faraday rotation is nonzero at long nega-
tive time delays between pump and probe. This signal does
not depend on the pump polarization and intensity and per-
sists on the level of 6°–7° at very long positive and negative
delays, i.e. in the absence of the pump effect. A strong
Faraday-rotation signal can also be seen at linear pumping.
The oscillations at linear pumping have the same period as
the beats at circular pumping, but slightly different phase.
The curves in Figure 1 showing the rotation angles measured
for the two different circular polarizations of the pump are
only slightly asymmetrical with respect to the value of signal
in the absence of the pump. We show here that these effects
are caused by the small splitting of the ground polariton state
into a linearly polarized doublet.

The dynamics of polarized polaritons created by pump or
probe pulses can be described using the generalized Liou-
ville equations for the polariton density matrices at the pump
and probe states 	�0� and 	�1�, respectively:

i

�	�0�

�t
= �H0,	�0�� − L	�0� + Ppump�t� , �1�

i

�	�1�

�t
= �H0 + Hex�	�0��,	�1�� − L	�1� + Pprobe�t� , �2�

where

H0 = 	
Ex 0

1

2
VR 0

0 Ex 0
1

2
VR

1

2
VR 0 Eph �

0
1

2
VR �* Eph


 �3�

is the linear Hamiltonian of the QW microcavity written in
the basis of the two circularly polarized exciton and two
circularly polarized photon states, EX is the heavy hole exci-
ton energy, Eph is the photon energy, and VR is the Rabi
splitting. ��� is the effective splitting of the ground state of
the lower exciton-polariton branch.The lowest energy polar-
iton eigenstate is assumed to be polarized along x� axis in-
clined by an angle � with respect to the x axis, so that �
= ���ei� �see Fig. 2�d��. The linear modes splitting is com-
monly observed in II-VI semiconductor based
microcavities10 and recently has also been observed for a
similar microcavity sample.11 Our preliminary experiments
on this sample suggest �=0.2 meV. Possible origins of this
splitting have been analyzed in Ref. 10 with the conclusion
that most probably it is due to the optical birefringence in the
Bragg mirrors. Note also that the splitting resulting from
long-range exchange interaction of polaritons localized by
structural disorder potential was calculated in Ref. 12 and is
too small to account for the observed polarization rotation.
The nonlinear part of the Hamiltonian Hex�	� in Eq. �2� de-
scribes the blue shift of the exciton energies due to the
exciton-exciton interactions:

FIG. 1. �Color online� Faraday rotation of the probe pulse mea-
sured �a� and calculated �b� at the energy of low polariton state as a
function of the pump-probe delay for �+, �−, and linearly �X� po-
larized pump pulse. The probe pulse is X polarized. The inset shows
the transmission spectrum at zero detuning.
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Hex�	� = 	
	11 0 0 0

0 	22 0 0

0 0 0 0

0 0 0 0

 . �4�

Here,  can be estimated as �
6EBaB

2

S �5�10−8 meV, where
EB is an exciton binding energy, aB is a two-dimensional
�2D� exciton Bohr radius, S is the laser spot area.13,14 An-
other source of nonlinearity in the system could be the de-
pendence of the coupling constant VR on the exciton concen-
tration. Such a dependence comes from the exciton oscillator
strength reduction due to the phase space filling. It was
shown theoretically that this nonlinearity may give the con-
tribution of the same order of magnitude as the exciton-
exciton interaction.13,14 Therefore, we have checked numeri-
cally introducing the corresponding terms in the Hamiltonian
�4�, that the phase space filling nolinearity results in the os-
cillation in Kerr rotation with much lower contrast than that
induced by the exciton blue shift. In addition, from Ref. 15
follows that the phase space filling effects should play a mi-
nor role with respect to the Coulomb interaction effects in
our experimental conditions. Thus these terms are neglected
in the calculations below.

The operators L̂ and P̂pump,probe account for the polariton
relaxation and generation, respectively. The dissipation of
the elements of the density matrix due to the radiative decay
and decoherence processes is described by Lindblad terms:

L̂	 = i
	
	11/�ex 	12/�ex 	13/� 	14/�

	21/�ex 	22/�ex 	23/� 	24/�

	31/� 	32/� 	33/�ph 	34/�ph

	41/� 	42/� 	43/�ph 	44/�ph


 , �5�

where �ex and �ph are exciton and photon lifetimes, respec-
tively, and 1

� = 1
�ex

+ 1
�ph

. Here we assume that the loss of coher-
ence is due to the finite polariton lifetime only. The excita-
tion of polaritons in the system is described by terms:

Ppump�t� = i
	
0 0 0 0

0 0 0 0

0 0 fpump�t� 0

0 0 0 0

 , �6�

for the circularly polarized pump,

Pprobe�t� = i
	
0 0 0 0

0 0 0 0

0 0 fprobe�t�/2 fprobe�t�/2
0 0 fprobe�t�/2 fprobe�t�/2


 �7�

for the linear polarized probe, where fpump�t�
=Npump�p exp�−�p

2t2�, fprobe�t�=Nprobe�p exp�−�p
2�t−�t�2�,

Npump�probe� is proportional to the intensity of the pump
�probe� pulse, �t is the time delay between the two pulses,
1 /�p is the pulse duration. If the pump is linearly polarized,
Ppump�t� is given by Eq. �7� where fprobe should be substi-
tuted by fpump.

In Eqs. �1� and �2�, we take into account the nonlinear
effect of the intense pump pulse on the weak probe pulse and
neglect for simplicity all other nonlinearities �self-effects of
the pump- and probe-probe effect on the pump state�.

The angle of Faraday rotation is dependent on the ratio of
the in-plane components of the pseudospin16 of the photonic
part of the cavity modes:

���t� =
1

2
arctan

Sy��t�
Sx��t�

, �8�

where

Sx��t� = Re�
−�

+�

	�1�
34�t�dt� ,

Sy��t� = Im�
−�

+�

	�1�
34�t�dt� . �9�

Equations �8� and �9� describe the spectrally integrated opti-
cal response of the system. If the signal is detected only at
the energy of one of the polariton branches, it is convenient
to rewrite the density matrix of the system in the basis of
spin-up and spin-down polarized upper and lower polariton
states. If the signal is detected at the low-polariton branch
energy, the matrix element of interest writes

	34� = �+�−	12 + �+�−	34 − �−�+	14 − �+�−	32. �10�

The coefficients �+, �−, �+, �− are elements of the nor-
malized eigenvectors of the 2�2 Hamiltonian matrices:

FIG. 2. �Color online� Pseudospin dynamics schemes for �+ �a�,
�− �b�, and linearly �c�, �d� polarized pump pulse. The probe pseu-
dospin is rotated around the vector sum of the in-plane field � and
the effective field proportional to the Z component of the pump
pseudospin. The pump pseudospin also precesses about the field �
�shown only for linear polarization in �c��, and gains the z compo-
nent which influences the probe pseudospin rotation �d��.
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�EX
± VR

VR Eph
� . �11�

In the case of nonzero detuning they are given by

�±

=
VR

�2VR
2 +

1

2
�Eph − EX

±�2 + �Eph − EX
±���Eph − EX

±

2
�2

+ VR
2

,

�12�

�± = �Eph − EX
±

2
+��Eph − EX

±

2
�2

+ VR
2��±

VR
. �13�

The time dependence of the Faraday rotation signal for the
low polariton branch is always given by Eqs. �8� and �9�,
where one has to substitute 	34 by 	34� .

In the numerical calculation we have used the following
set of parameters: EX=Eph=1.4774 eV, VR=3.3 meV,
Npump=15Nprobe=109, =5.5�10−8 meV, �ex=100 ps, �ph
=2 ps, ���=0.15 meV, �=−18°. Note, that here only � and
�ph are fitting parameters, since all the others are known from
cw experiments and �ex has very little effect on the signal
decay time. Figure 1�b� shows the calculated time-resolved
Faraday rotation for three experimental configurations. One
can see a good agreement between theory and experiment.
However, one can see that oscillations in the case of the
linearly polarized excitation are more pronounced in the ex-
periment than in the simulations, and the phase shift of all
the curves with respect to zero pump-probe delay could not
be described by the model. Additionally, under circularly po-
larized excitation, a slowly decaying Faraday rotation at
positive times is observed. It is probably due to spin polar-
ized exciton population created by the pump pulse and local-
ized in the QW, which is not accounted for by the model.

Nevertheless, the most important features, namely, Rabi os-
cillations, asymmetry between the spectra taken at �+ and �−

pump polarizations, oscillations at linear pumping, and their
phase shift from the oscillations at circular pumping, the ro-
tation of probe pulse in the absence of the pump are repro-
duced by the model. Qualitatively, the complex polarization
dynamics of exciton polaritons in our experiment can be un-
derstood in terms of the probe pseudospin precession about
the effective field created by the pump pulse along the z axis
and the in-plane effective field � �see Fig. 2�. The first kind
of precession is a manifestation of the optically induced Far-
aday rotation. If only this effect would be present, the spectra
at �+ and �− pump would be symmetric and no probe polar-
ization rotation at linear pump would be observed. Due to the
in-plane field �, both pump and probe pseudospins experi-
ence an additional rotation with a period much longer than
the Rabi oscillation period. This field breaks the symmetry of
�+ and �− pump experiments. In the case of linear pump, it
leads to the buildup of the z component of the pump pseu-
dospin, which causes the in-plane rotation of the probe pseu-
dospin. In the absence of the pump, the effective in-plane
field induces the linear birefringence, which is responsible
for the experimentally observed 6°–7° rotation signal at very
long positive and negative delays between pump and probe
pulses.

In conclusion, the spin beats due to Rabi oscillations have
been observed in microcavities. The spin is transferred from
excitons to photons and vice versa with the frequency given
by the Rabi splitting of exciton-polariton modes. Our experi-
ment has demonstrated the possibility of the optical control
of the magnetization in a semiconductor on a time scale
shorter than the exciton radiative lifetime.
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