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We study the electron transport properties of a monoatomic graphite layer �graphene� with different types of
disorder. We show that the transport properties of the system depend strongly on the character of disorder.
Away from half filling, the concentration dependence of conductivity is linear in the case of strong scatterers,
in line with recent experimental observations, and logarithmic for weak scatterers. At half filling the conduc-
tivity is of the order of e2 /h if the randomness preserves one of the chiral symmetries of the clean Hamiltonian,
whereas for generic disorder the conductivity is strongly affected by localization effects.
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I. INTRODUCTION

Recently, Novoselov et al. have succeeded in the fabrica-
tion of monolayer graphite �graphene� samples.1 Subsequent
transport measurements2–6 have shown that graphene is a
conductor with remarkable electronic properties. These ex-
perimental discoveries have triggered an outbreak of theoret-
ical activity; see, in particular, Refs. 7–40. Charge carriers in
graphene have a relativistic �Dirac� spectrum,41,42 which
makes the transport properties of this material highly inter-
esting from the point of view of both fundamental physics
and potential applications. It is widely believed that
graphene-based devices may be of outstanding importance
for future nanoelectronics.

This work has been motivated by the following two ex-
perimental observations.2,3 First, it was found that the
graphene conductivity is linear in the concentration of carri-
ers �counted from half filling� with a high accuracy. Second,
it was found that at half filling the conductivity �per spin
direction and per valley� is close to e2 /h and does not show
any definite temperature dependence in a broad temperature
range. The aim of this paper is to analyze what one should
expect for conductivity from the theoretical point of view
and whether these theoretical predictions may be compatible
with experimental findings. We will see that, in view of the
unconventional character of the graphene spectrum, the the-
oretical results depend crucially on the nature of disorder.

The structure of the paper is as follows. In Sec. II we
introduce the model describing the electronic properties of
graphene with various types of disorder. In Sec. III we ana-
lyze the dependence of conductivity on the electron concen-
tration away from the half-filling point. We consider the two
limits of weak and strong scatterers and construct the corre-
sponding “phase diagram.” Section IV is devoted to the con-
ductivity at half filling under the assumption that the disorder
preserves one of the chiral symmetries of the Dirac Hamil-
tonian. Our findings are summarized in Sec. V. Some tech-
nical details are presented in two appendixes.

II. THE MODEL

A. Clean graphene

The carbon atoms of graphene are arranged in a honey-
comb lattice �see Fig. 1�a�� with period a=2.46 Å. Each car-

bon atom of intrinsic graphene has one valence electron
forming � bonds to three neighbors. The electronic spectrum
of graphene is well described by the tight-binding model41

taking into account the nearest-neighbor hopping. The first
Brillouin zone for this system has the form of a hexagon �see
Fig. 1�b�� with the distance k0=2h /3a from the center to the
apex. The honeycomb lattice contains two sites per elemen-
tary cell. This permits grouping all the atoms into two sub-
lattices A and B. The nearest neighbors of an atom from
sublattice A belong to sublattice B and vice versa. The sym-
metry group of the honeycomb lattice contains an element
swapping the two sublattices. Hence, for each value of the
quasimomentum k within the Brillouin zone, two states exist
with energies ±E�k�. These two spectrum branches are de-
generate at isolated points in the corners of the Brillouin
zone, E�k0�=0. With one electron per site the system is ex-
actly in the half-filling state when the nodal points of the
spectrum lie at the Fermi level. Among six apices of the
hexagonal Brillouin zone only two are nonequivalent. They
are referred to as K and K�. The electrons with momentum
close to these two points, and hence with low energy, are
relevant in studying the physics of the system for electron
concentrations not too far from half filling.

The tight-binding Hamiltonian is a 4�4 matrix operating
in the AB space of the two sublattices and in the K–K� space
of the valleys. Therefore we introduce the four-component
wave function

FIG. 1. �a� Honeycomb lattice of the carbon atoms of graphene.
Solid and open circles denote the atoms of A and B sublattices,
respectively. �b� The first Brillouin zone of graphene. The nodal
points of the spectrum are located in the corners of the zone. The
two nonequivalent nodal points are denoted as K and K�.

PHYSICAL REVIEW B 74, 235443 �2006�

1098-0121/2006/74�23�/235443�20� ©2006 The American Physical Society235443-1

http://dx.doi.org/10.1103/PhysRevB.74.235443


� = ��AK,�BK,�BK�,�AK��
T. �1�

In this representation the Hamiltonian has the form �hereafter
we assume �=1�

H = v0�3� · k . �2�

Here �3 is the third Pauli matrix in the K-K� space and �
= ��1 ,�2� is the two-dimensional vector of Pauli matrices in
the AB space. The Fermi velocity in graphene is v0
�108 cm/s. In fact, the form of the Hamiltonian �2� is uni-
versal and does not rely on the tight-binding approximation.
The degeneracy of the spectrum in K and K� points is pro-
vided by the two-dimensional representation of the honey-
comb lattice symmetry group while the expression �2� is the
first-order k expansion near these points. As k is increased
the higher-order nonuniversal terms of this expansion come
into play. For our purposes, it will be sufficient to introduce
the high-energy cutoff 	 and to assume the spectrum to be
linear up to �k � =	 /v0. Indeed, all divergent momentum in-
tegrals appearing below have logarithmic character; thus, de-
tails of the high-energy regularization are irrelevant. The
Green function for the Hamiltonian �2� of clean graphene
reads

G0
R�A��
,k� =


 + v0�3� · k

�
 ± i0�2 − v0
2k2 . �3�

B. Potential disorder

We incorporate now disorder in the model. Let us con-
sider first the impurities modifying the potential on nearby
lattice sites. A detailed description due to McCann and
Fal’ko7 contains ten real parameters for the potential of a
single impurity. In the present paper we will use the simpli-
fied model introduced by Shon and Ando in Ref. 43, which
retains the essential physics of the problem. This model
treats impurities in the framework of the same tight-binding
approximation as was used for the pure system. An impurity
is placed at a site of the lattice and has a potential U�r�. We
use the two discrete Fourier transforms of this function with
respect to the two sublattices.

Uq =
	3a2

2 

r

U�r�e−iq·r, �4�

Uq� =
	3a2

2 

r

U�r − m�e−iq·r. �5�

The summation runs over all elementary cells of the honey-
comb lattice, and the vector m points from the A sublattice
site to the B sublattice site of the same elementary cell �see
Fig. 1�a��. The quantity Uq is the scattering amplitude for
electrons of the same sublattice where the impurity resides,
while Uq� is the scattering amplitude for electrons of the other
sublattice.

Assuming Uq and Uq� are slow functions of the momen-
tum q, we keep only two values of these amplitudes for
intravalley, U0 and U0�, and intervalley, Uk0

and Uk0
� , scatter-

ing. The hexagonal symmetry of the honeycomb lattice
makes the amplitude Uk0

� vanish while the three other ampli-
tudes are real. Thus we are left with the three parameters of
an impurity potential. It is straightforward to put them in a
matrix in the four-dimensional representation �1�. If the im-
purity site belongs to sublattice A and to the elementary cell
ri, the scattering matrix takes the form

Vq
A�ri� =�

U0 0 0 Uk0
e−2ik0·ri

0 U0� 0 0

0 0 U0� 0

Uk0
e2ik0·ri 0 0 U0

�e−iq·ri. �6�

For the impurity located in the sublattice B, we have

Vq
B�ri� =�

U0� 0 0 0

0 U0 Uk0
e−2ik0·ri 0

0 Uk0
e2ik0·ri U0 0

0 0 0 U0�
�e−iq·ri. �7�

If the potential disorder is weak and obeys a Gaussian
distribution, the only relevant quantity is the autocorrelation
function of the second order 
Vq � V−q�. We denote the im-
purity concentration by nimp and obtain after averaging with
respect to positions of the impurities


Vq � V−q� =
nimp

2

Vq

A�ri� � V−q
A �ri� + Vq

B�ri� � V−q
B �ri��

= 2�v0
2��0�0�0 � �0�0 + �z�3�3 � �3�3

+

�

4
��1�1 � �1�1 + �1�2 � �1�2 + �2�1

� �2�1 + �2�2 � �2�2�� . �8�

Here we introduce the three dimensionless parameters

�0 =
nimp

8�v0
2 �U0 + U0��

2, �9a�

�z =
nimp

8�v0
2 �U0 − U0��

2, �9b�


� =
nimp

4�v0
2Uk0

2 . �9c�

While the notations in Eqs. �9� may seem strange at this
stage, they will be explained later when we consider random-
ness of a broader class. To further simplify the calculations,
we will concentrate on the two limiting cases of short- and
long-range potential disorder.43

The short-range impurity scatters electrons in the same
sublattice only. It is equivalent to a potential shift at a par-
ticular lattice site. The amplitudes are U0=Uk0

=U /2 and
U0�=0. Thus we are left with a single parameter U. The pa-
rameters, Eqs. �9�, obey the relation �0=�z=
� /2.
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The long-range impurity scatters electrons in both sublat-
tices equally but only within one valley. The scattering
length is large in comparison with the lattice constant but is
still smaller than the Fermi wavelength. The amplitudes are
U0=U0�=U and Uk0

=0. We have again the single parameter
U as in the case of short-range disorder. Among the param-
eters �9� only �0 is not zero in this case.

It is worth emphasizing that throughout the paper we con-
sider a macroscopically homogeneous system �i.e., assume
that the disorder range is small compared to the transport
mean free path�. Slow spatial variations of the chemical po-
tential might be important �especially in the vicinity of the
Dirac point� in realistic structures, depending on technologi-
cal details. In any case, the analysis of the transport in a
macroscopically homogeneous system—which is the subject
of the present work—should be done first, in order to find the
microscopic conductivity. This result can serve as a starting
point for the study of the macroscopically inhomogeneous
systems.

C. Generic disorder and chiral symmetries

Let us turn now to the analysis of the symmetries of the
clean graphene Hamiltonian �2�. First, the system is obvi-
ously uniform and isotropic. Any disorder considered in this
paper preserves these symmetries on average, so we do not
pay much attention to them here. Second, due to the two
valley structure of the electron spectrum, the whole SU�2�
symmetry group exists in an isospin space of the valleys. The
generators of this group are26

�x = �3�1, �y = �3�2, �z = �0�3. �10�

These three operators commute with the Hamiltonian and
anticommute with each other. There are other three matrices
�x,y,z introduced in Ref. 26:

�x = �1�3, �y = �2�3, �z = �3�0. �11�

These operators generate an additional SU�2� group of a
pseudospin. They do not commute with the Hamiltonian �2�;
however, any of these matrices commute with any of �x,y,z.

Third, the time inversion operation �we denote it T0� in
the representation �1� reads

T0: A � �1�1AT�1�1. �12a�

The Hamiltonian �2� is invariant under time inversion �note
that the momentum operator changes sign under transposi-
tion�. Combining the T0 operation with any of �x,y,z from Eq.
�10� we produce three additional symmetry operations

Tx: A � �2�0AT�2�0, �12b�

Ty: A � �2�3AT�2�3, �12c�

Tz: A � �1�2AT�1�2. �12d�

Finally, there is one more—namely, chiral—symmetry C0
and its three counterparts generated by simultaneous appli-
cation of C0 and �x,y,z:

C0: A � − �3�0A�3�0, �13a�

Cx: A � − �0�1A�0�1, �13b�

Cy: A � − �0�2A�0�2, �13c�

Cz: A � − �3�3A�3�3. �13d�

The chiral symmetry C0 can be viewed as the basic chiral
symmetry of the Hamiltonian �2�. Indeed, C0 is distinguished
by the fact that it is directly produced by the Hamiltonian �2�
as i�3�0=v0

−2��H /�kx���H /�ky�, while other chiral symme-
tries require a rotation in the isospin space.

Generally, the chiral symmetry implies that the Hamil-
tonian takes block-off-diagonal form under a proper unitary
transformation. A generic disorder preserving Cz symmetry
can have only off-diagonal matrix elements in the AB space
of sublattices. Some specific examples of chiral symmetry
are �i� bond disorder due to distortions of the lattice �Cz
symmetry�, �ii� random magnetic field �all four symmetries
C0,x,y,z�, �iii� dislocations, which are equivalent to a random
non-Abelian gauge field14,44 �C0�, and �iv� infinitely strong
short-range on-site impurities �Cz�. In the latter case an elec-
tron cannot occupy the impurity site, implying that all the
bonds adjacent to the impurity are effectively cut. Any po-
tential disorder other than the described extreme case vio-
lates all chiral symmetries. The symmetry is also broken by a
nonzero chemical potential. Thus the impact of the chiral
character of disorder will be particularly important at the
degeneracy point 
=0. In Sec. IV we consider various ef-
fects of chiral symmetry on the density of states and conduc-
tivity of graphene.

The average isotropy of the disordered graphene implies
that �x and �y symmetries of the Hamiltonian are present or
absent simultaneously. Below we combine them into a single
notation �� and proceed in the same way with T� and C�.
In Table I we list all possible matrix structures of the disorder
�in the representation defined by Eq. �1�� along with their
symmetries. There are nine different structures altogether.26

Those five of them that do not violate time inversion sym-
metry coincide46 with ones considered by Aleiner and
Efetov.32 We also give the notations of Ref. 45, where the
disordered Dirac Hamiltonian obeying Cz chiral symmetry
was considered.

III. CONDUCTIVITY FAR FROM THE DEGENERACY
POINT

In this section, we will study the concentration depen-
dence of the conductivity far from half filling, when the size
of Fermi circles around K and K� points is large in compari-
son with the inverse mean free path. The dimensionless
Drude conductivity �measured in units of e2 /h� is then
large,43 so that, at realistic temperatures, one can neglect as a
first approximation the quantum corrections related to local-
ization. As a starting point, we will employ the self-
consistent T-matrix approximation47 �SCTMA�, which takes
into account all orders of scattering at an impurity. It will
allow us to study the whole “phase diagram” including the
limits of weak �Born� and strong �unitary� scatterers and the
crossover between them. We will discuss the status of the
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SCTMA in Sec. III B, where we will show that while it is not
quantitatively justified in the Born regime, it yields a quali-
tatively correct behavior of the conductivity far from the de-
generacy point.

A. Self-consistent T-matrix approximation

1. Potential disorder

Let us first consider the disorder induced by randomly
located impurities which create the potential given by Eqs.
�6� and �7�. The sum of all scattering orders determines the
complete impurity’s T matrix, as represented graphically in
Fig. 2. Averaging the T matrix with respect to the position of
the impurity, we find


T�
�� =
1

4
� 2U0�

1 − U0�g
��+ U0 + Uk0

1 − �U0 + Uk0
�g

+
U0 − Uk0

1 − �U0 − Uk0
�g� ,

�14�

with g being the integral of the Green function,

g�
� =� d2k

�2��2G�
,k� . �15�

This quantity has trivial matrix structure due to the angular
integration. The electron’s self-energy is determined by the
average value of the T matrix, Eq. �14�:

��
� = nimp
T�
�� , �16�

where nimp is the concentration of impurities.
Inserting Eq. �16� into the bare Green function �3�,

G�
,k� =

 − ��
� + v0�3�k

�
 − ��
��2 − v0
2k2 , �17�

and calculating the momentum integral in Eq. �15�, we get

g�
� = −

 − ��
�

4�v0
2 ln

− 	2

�
 − ��
��2 . �18�

The logarithmic divergence is cut at the momentum 	 /v0.
The sign of the imaginary part of g�
�, and hence of the
self-energy, is determined by the type of Green function �ad-
vanced or retarded� we are considering.

Equations �14�, �16�, and �18� form a closed set that self-
consistently determines the self-energy ��
�. These equa-
tions take into account all the diagrams with nonintersecting
impurity lines. In the two extreme cases of short- and long-
range potential impurities the self-consistency equation re-
duces to the form

��
� = �
nimpU

1 − Ug�
�
, long range,

nimpU

4�1 − Ug�
��
, short range.

�19�

Once these equations are solved, one can find the density
of states and the conductivity of the system. The density of
states �per one spin component� is

TABLE I. The symmetries of various disorders in graphene. The first five rows of the table contain disorders preserving time-inversion
symmetry. They were considered in Ref. 32. The next four rows are occupied by disorders violating time-inversion symmetry. We present the
matrix structure of the disorder in two forms: by matrices �i� j and by matrices �i� j as in Ref. 26. The notations we use for the amplitudes
of the disorder in Gaussian limit are listed in the third column; a rigorous definition of these parameters can be found in Appendix A. The
letters �, 
, and � correspond to �0, �x,y, and �z components of the disorder Hamiltonian, respectively, while the subscripts 0, �, and z
indicate the structure in the � space. In the fourth and fifth columns we give alternative notations from Refs. 32 and 45. Our notations are
close to those of Ref. 32; the only difference is in the case of a fully diagonal potential: our parameter �0 corresponds to �0 from Ref. 32,
while we use �0 for the disorder �0�3 discriminating the two valleys.

Disorder structure Disorder strength Hamiltonian symmetries

�i� j �i� j This paper Ref. 32 Ref. 45 �� �z T0 T� Tz C0 C� Cz

�0�0 �0�0 �0 �0 /2�v2 + + + + + − − −

��1,2���1,2� ��x,y���x,y� 
� 2
� /�v2 − − + − − + − −

�1,2�0 �x,y�z �� �� /�v2 gA − + + − + + − +

�0�1,2 �z�x,y 
z 
z /�v2 	2gm − − + − − − − +

�3�3 �z�z �z �z /2�v2 − + + − + − + −

�3�1,2 �0�x,y 
0
	2g� − − − − + − − +

�0�3 �0�z �0 − + − + − − + −

�1,2�3 �x,y�0 �� gA� + + − − − + + +

�3�0 �z�0 �z + + − − − − − −

FIG. 2. Graphical representation of the T matrix describing the
electron scattering off an impurity.
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��
� = −
1

�
Im Tr� d2k

�2��2GR�
,k� = −
4

�
Im gR�
� .

�20�

The conductivity at zero frequency and wave vector is given
by the Kubo formula

��
�
� =
2

�
� d2�r − r��

� Tr
j�Im GR�
;r,r��j
 Im GR�
;r�,r�� .

�21�

Due to the linear dependence of the Hamiltonian on k, the
current operator is independent of the momentum,

j = e
�H

�k
= ev0�3� . �22�

This results in the absence of the diamagnetic term in the
expression for conductivity.

Equation �21� includes averages of the type 
jGRjGA�
along with 
jGRjGR� and 
jGAjGA�. The first one is large in
the metallic regime when the energy 
 is far from the degen-
eracy point, while the two others give a contribution of the
order of conductance quantum e2 /h. Therefore we will ne-
glect those two in this section.

As discussed above, we will use the Drude approximation
for the conductivity, neglecting weak localization correc-
tions. Graphically, this is equivalent to the summation of the
diagrams shown in Fig. 3. Due to the vector nature of the
current operator in the vertex, only the diagonal parts of the
Green functions contribute to the result. We introduce the
notation

�RA�
� =� d2k

�2��2 diagGR�
,k�diagGA�
,k� . �23�

The sum of the ladder diagrams in Fig. 3 gives the correction
to the current vertex. We will use a special notation V for this
vertex correction factor. In the limit of the short-range poten-
tial disorder, we have V=1. In the opposite long-range case,
the summation of ladder diagrams yields

V =
1

1 −
nimpU

2

�1 − Ug�2
�RA

. �24�

The resulting Drude conductivity has the form

��
� =
4

�
e2v0

2V�RA. �25�

In the following sections we will solve the self-consistency
equations and find the density of states and the conductivity
in various limits. We will also analyze the corrections to the

SCTMA coming from diagrams with intersecting disorder
lines.

2. Generic Gaussian disorder

In the case of generic weak disorder, one can use a more
general equation for the self-energy taking into account all
possible disorder amplitudes �listed in Table I� in the frame-
work of the Born approximation,

��
� = 2�v0
2�g�
� . �26�

Here � is the total strength of the disorder—-i.e., the sum of
all amplitudes from Table I,

� = �0 + 
0 + �0 + �� + 
� + �� + �z + 
z + �z. �27�

This quantity is relevant for thermodynamic properties of the
system with Gaussian disorder. The vertex correction is
given by

V =
1

1 − 4�v0
2�� − �tr��RA , �28�

where

�tr =
1

2
��0 + 
0 + �0� + �� + 
� + �� +

3

2
��z + 
z + �z� .

�29�

As will be seen below �Eq. �37��, �tr governs the transport
properties of the Gaussian-disordered system.

Using Eqs. �9�, �27�, and �29�, we get for weak long-range
and short-range potential disorder considered above in Sec.
III A 1

� = 2�tr =
nimpU

2

2�v0
2 , long range, �30�

� = �tr =
nimpU

2

8�v0
2 , short range. �31�

B. Born limit: Weak scatterers

1. Self-consistent Born approximation

The simplest situation is the Born limit of weak scatter-
ing. Only the lowest scattering order is relevant in this case.
This yields the self-consistent Born approximation
�SCBA�,43,56,57 Eq. �26�. In this limit, we deal with a generic
weak disorder described by all nine parameters listed in
Table I. The results for the special case of potential disorder
are easily restored from the general results with the help of
Eqs. �9�.

The SCBA equation has the form

��
� = −
�

2
�
 − ��
��ln

− 	2

�
 − ��
��2 . �32�

This equation was studied numerically by Shon and Ando in
Ref. 43; we treat it below by analytical means.

Weak disorder introduces an exponentially small energy
scale

FIG. 3. Diagrams for the Drude conductivity including the ver-
tex correction.
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�0 = 	e−1/�. �33�

At large energies 
��0, we solve Eq. �32� by iterations,
while at low energies the solution is found in the form of a
series in powers of 
. The resulting self energy is61 �upper
sign, retarded; lower sign, advanced�

��
�

= ��i�0 −



�
, �
� � �0,

− �
 ln
	

�
�
�

i���
�
2

�1 + 2� ln
	

�
�� , �
� � �0.�
�34�

Substituting Eq. �34� into Eq. �20�, we get the density of
states

�SCBA�
� =
2�Im��
��
�2v0

2�

= �
2�0

�2v0
2�

, 
� �0,

�
�
�v0

2�1 + 2� ln
	

�
�� , 
� �0.� �35�

At high energies the found density of states is close to its
value in clean graphene, �0�
�= �
 � /�v0

2.
To evaluate the SCBA conductivity, we first find the po-

larization operator �23�,

�RA�
� =
1

4�v0
2�





 − Re ��
�
. �36�

With the help of Eqs. �25� and �24� we find the general
expression for the SCBA conductivity:

�SCBA�
� =
e2

�2� 


�tr
 − � Re ��
�
+ 1� . �37�

Here the first term comes from the retarded-advanced �RA�
sector whereas the second term �unity� is the contribution of
RR and AA correlators. At high energies �
��0� the SCBA
conductivity is governed by the RA term and takes the form

�SCBA�
� �
e2

�2�tr
�1 −

�2

�tr
ln
	

�
�� . �38�

The found conductivity shows a logarithmic energy depen-
dence above an exponentially small energy scale. At half
filling 
��0, the SCBA yields �SCBA=2e2 /�2�. This value
of conductivity includes contributions of the form 
jGRjGR�
and 
jGAjGA�, which were discarded at 
��0. A conductiv-
ity value of the order of e2 /h does not make much sense in
the present context, in view of the localization effects. We
will return to this issue in Sec. IV.

2. Logarithmic corrections and renormalization group

The leading term in the Drude conductivity �37� is pro-
portional to �tr

−1 and is independent of energy. The SCBA

gives also a logarithmic correction, which is small at large
energies. There exist, however, other contributions of the
same order that are not included in the SCBA calculation;
see Fig. 4. An efficient tool for resummation of the logarith-
mic contributions in all orders is the renormalization group
�RG�. For the case of two-dimensional �2D� Dirac fermions
subjected to various types of disorder it was developed by
Dotsenko and Dotsenko62 for the random bond Ising model,
by Ludwig et al.63 in the context of the quantum Hall effect,
and by Nersesyan et al.64 and Bocquet et al.65 in application
to dirty superconductors with unconventional pairing �see
also the review by Altland et al.66�, as well as by Guruswamy
et al.45 for a model with chiral disorder �Cz in our notation�.
Very recently, Aleiner and Efetov32 returned to such a RG in
the context of disordered graphene. The renormalization of
the conductivity gives rise to its dependence on energy �or,
equivalently, on the electronic concentration; see below�.

Let us briefly analyze the leading logarithmic corrections
and the RG results and compare them to the SCBA in the
simplest case of diagonal disorder with the only parameter
�=2�tr=�0 �see Table I�. The diagrams of Fig. 4 give loga-
rithmic corrections proportional to �0ln�	 / �
 � � and missed
by the SCBA:

�� =
2e2

�2�0
� �+ 2�0ln�	/�
�� �a� ,

− 2�0ln�	/�
�� �b� .
�39�

A contribution from diagram �c�, which is potentially of the
same order, vanishes after the angular integration. Since the
two contributions in Eq. �39� cancel each other, the SCBA
turns out to give the leading logarithmic correction even with
a correct numerical coefficient,

��
� =
2e2

�2�0
�1 − 2�0ln

	

�
�
+ ¯ � . �40�

This coincidence in the numerical coefficient seems to be
accidental, however. If one takes into account disorder am-
plitudes other than �0, the numerical coefficient in front of
the leading logarithmic correction in SCBA �Eq. �38�� be-
comes in general different from the correct one �given by
RG�.

With lowering energy, consideration of the first-order
logarithmic correction �40� becomes insufficient. As have
been already mentioned, all logarithmic corrections to the
density of states and conductivity can be summed up with
the help of the RG.32,45,62–66 Below we briefly present the
results in the simplest case of long-range Gaussian disorder.
For short-range disorder, the consideration is similar but five
running couplings �first five in Table I� should be taken into
account. As found in Ref. 32, this does not affect qualita-
tively the behavior of the conductivity.

FIG. 4. Diagrams yielding logarithmic corrections to the con-
ductivity not included in the SCBA.
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After the disorder averaging, the action for electrons in
graphene with long-range disorder reads �for a generic dis-
order the action is given in Appendix A�

S��� =� d2r�i�̄�
 + iv0�3� · �− i0��� + �v0
2�0��̄��2� .

�41�

The vector superfield � contains 4�2�2=16 components:
the four-dimensional structure of the one-particle Hamil-
tonian is complemented by the advanced-retarded �AR� and
the supersymmetric �boson-fermion� structures. The latter
serves to perform the disorder averaging; alternatively, one
can use the replica trick. Further, � is the third Pauli matrix

in the AR space and the conjugated field is �̄=�+�. Under
renormalization, the energy and the disorder strength become
running couplings, 
̃=
�L� and �̃0=�0�L�, where L is the
running ultraviolet cutoff length �measured in units of v0 /	�.
As usual, after elimination of large momenta, the real-space
coordinates are rescaled to maintain the ultraviolet cutoff
v0 /	. The coefficient v0 of the kinetic term is kept fixed by
the field renormalization �absent in the one-loop order con-
sidered below�. The relevant one-loop diagrams are shown in
Fig. 5 �the first two diagrams renormalizing �0—namely, �b�
and �c�—cancel exactly if the disorder is long-range�; the
resulting RG equations read

d�̃0

d ln L
= 2�̃0

2, �42�

d
̃

d ln L
= �1 + �̃0�
̃ . �43�

Note that these equations are different from those for the
random mass problem62,63,65 only by a sign in Eq. �42�. The
RG equation �42� for the random scalar potential problem
can be found, e.g., in Ref. 64.

Solving these differential equations, we get

�̃0 =
�0

1 − 2�0ln L
, �44�


̃ =

L

	1 − 2�0ln L
. �45�

The renormalization proceeds until the renormalized energy

̃ reaches the value of the cutoff 	. Using this condition, we
find the value of L at which the RG stops,

L =
	

�
�
	1 − 2�0ln

	

�
�
. �46�

The density of states � scales as 
−1L2—i.e., �̃
̃L−2=�
.
Thus, according to Eq. �45�, its renormalized value �̃ is

�̃ = �L	1 − 2�0ln L . �47�

At the end point of the RG we have �̃=	 /�v0
2. Extracting �

from Eq. �47� and substituting L from Eq. �46�, we find the
density of states

��
� =
�
�
�v0

2�1 − 2�0ln
	

�
��−1

. �48�

Further, the conductivity is determined67 by the renormal-
ized dimensionless strength of the disorder �̃0,

��
� =
2e2

�2�̃0

=
2e2

�2�0
�1 − 2�0ln

	

�
�� , �49�

in agreement with Ref. 32.
We see that the result of the SCBA, Sec. III B 1, agrees

qualitatively with the fully controllable �RG� solution: the
conductivity decreases logarithmically up to an exponen-
tially small scale. The SCBA fails, however, to give a correct
numerical coefficient in the exponent of Eq. �33�; the correct
low-energy scale � is

� = 	e−1/2�0. �50�

Below this new energy scale, the density of states saturates at
a finite value and the Drude conductivity �with localization
effects discarded� is of the order of e2 /h. Both these impor-
tant features are correctly reproduced by the SCBA.

In the experiment, one changes the chemical potential �
by varying the gate voltage Vg. The electron concentration ne
is proportional to Vg, ene=CVg, where C is the correspond-
ing capacitance per unit area. Therefore, the experimentally
measured dependence ��Vg� is essentially ��ne�, up to a
simple rescaling. To compare the theory with the experiment,
we find the density

ne��� = 2�
0

�

d
��
� �
����
�v0

2

1

1 − 2�0ln �	/����
. �51�

Combining this with Eq. �49�, we get

��ne� =
2e2

�2�0
�1 − �0ln

	2

v0
2�ne�

� . �52�

We see that the dependence of conductivity on electron
density is only logarithmic, which should be contrasted with
a much stronger, approximately linear, dependence observed
in the experiments.2,3 As we will see in Sec. III C, such a
strong dependence does arise theoretically in the limit of
strong scatterers.

One can use a more general RG approach in the case of
generic Gaussian disorder when all nine parameters from
Table I are nonzero. In doing so, one has to calculate the
diagrams from Fig. 5 with all possible matrices at the verti-
ces of impurity lines. The full set of one-loop perturbative
RG equations can be found in Appendix A.

FIG. 5. One-loop RG diagrams responsible for the renormaliza-
tion of �a� the energy and �b�, �c�, �d� the disorder couplings.
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3. Weak localization correction

We note that the conductivity calculated above is not the
total conductivity far from the degeneracy point. There are
also weak localization corrections to the conductivity, which
are small for strong enough dephasing or for small enough
systems. As shown in Ref. 26, it is convenient to decompose
the retarded-advanced Cooperons in the singlet-triplet repre-
sentation in both � and � channels. Then only singlets with
respect to � matter. The general expression for the weak
localization correction valid for arbitrary disorder then reads

��WL = −
e2

�2 ln�LIR

l
��c0 − 2c� − cz� , �53�

where l is the electron mean free path determined by the
renormalized disorder and density of states, and LIR is the
infrared cutoff set by either the system size or the dephasing
length. In Eq. �53�, one has to put ci=1 if disorder preserves
the time-reversal �TR� invariance Ti and ci=0 �meaning that
the corresponding Cooperon modes are gapful� otherwise
�see Table I�. For a combination of several disorder types,
only those Cooperon modes remain gapless that correspond
to the TR symmetries preserved simultaneously by all disor-
der matrices involved. In particular, for the diagonal disorder
�0 all ci=1 which yields antilocalization, whereas, e.g., for
the combination of �� and �z disorders we have c0=cz=1
and c�=0, leading to the absence of the one-loop correction.
On the other hand, for the combination of, e.g., 
z and �z
disorders, c0=1, cz=c�=0, and we get localization. Note that
the weak localization correction is universal and depends
only on the symmetry of the Hamiltonian.68

C. Unitary limit

In Sec. III B we have analyzed the behavior of the density
of states and the conductivity in the case when impurities are
weak, so that the disorder can be considered as Gaussian. �In
terms of the action, Eq. �41�, this amounted to keeping, after

the ensemble averaging, only the ��̄��2 term and neglecting
all higher-order couplings.� In this subsection, we will con-
sider the opposite case, when the electron is strongly scat-
tered by an impurity and one has to deal with the complete T
matrix �14�. The analysis of the location of the “phase
boundary” between the domains of weak and strong scatter-
ers in the space of microscopic parameters of the problem is
postponed to Sec. III D.

We proceed by first analyzing the results in the framework
of the SCTMA, Sec. III A, and then discuss its accuracy and
limitations. Like in the weak scatterer limit, the SCTMA can
be simplified in the limit of strong scatterers. Specifically, at
large U we neglect unity in comparison with Ug�
� in the
denominator of Eq. �19� and obtain the self-consistency
equation

��
� =
�	2

�
 − ��
��ln
− 	2

�
 − ��
��2

. �54�

The parameter � is the dimensionless concentration of impu-
rities defined as

� =
�nimpv0

2

	2 � �1, short range,

4, long range.
�55�

The scattering amplitude U does not enter Eq. �54�. This
means that the impurities are effectively considered infinitely
strong, the limit that we will term the self-consistent unitary
approximation �SCUA�. For this type of impurities, the weak
disorder assumption means that their concentration is small,
��1.

The characteristic energy scale in the unitary limit is set
by the value of � at zero energy: ��
=0�=� i��, which we
find to be

�� � 		 �

ln�1/��
. �56�

In contrast to its Born-limit counterpart �, which is exponen-
tially small for ��1, the energy scale �� depends on the
disorder strength � in the power-law fashion. As we see be-
low, this is intimately connected with a qualitatively different
dependence of conductivity on the Fermi energy.

Further analysis of Eq. �54� can be performed in a way
analogous to our treatment of the Born limit, Eq. �32�. We
get �see Ref. 61 concerning the crossover between high- and
low-energy regimes�

��
� = ��i�� +
�	2 − 2��

2

2��	2 − ��
2�

 , 
� ��,

�	2

2

� 1

ln�	/�
��
�

i� sgn 


2 ln2�	/�
��� , 
� ��.�
�57�

Here upper �lower� signs correspond to the retarded �ad-
vanced� self-energy.

Using Eq. �57� and the relation between the Green func-
tion and the self-energy in the unitary limit, g=
−�	2 /4�v0

2�, we get for the density of states, Eq. �20�,

�SCUA�
� =
�	2

�2v0
2 �Im �−1�
�� = �

�	2

�2v0
2��

, 
� ��,

�
�
�v0

2 , 
� ��.

�58�

The density of states is constant at small energy and shows a
linear dependence characteristic for clean graphene at high
energies. To find the disorder correction to this result, one
has to use a more precise value of the self-energy than that
given by Eq. �57�. After two iterations of Eq. �54�, the linear-
in-� contribution to the density of states is obtained �see
details in Appendix B�,

�SCUA
�1� �
� =

�
�
�v0

2 �1 − �U�
�� . �59�

Here the parameter �U has the meaning of the inverse dimen-
sionless conductance �see Eq. �63� below�,
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�U�
� =
�	2

2
2ln2�	/�
��
�

nimp�

2

ln2�	/�
��
. �60�

It is of the order of the squared ratio of the electron wave-
length �
 at energy 
 to the distance between impurities, up
to a logarithmic factor. The condition 
��� ensures that the
relative correction is small.

To find the correction to the density of states of the second
order in �, one has to go beyond the self-consistent approxi-
mation. The diagrams with intersecting impurity lines be-
come important in this case as we have already seen it in the
Born limit �Sec. III B 2�. A rigorous calculation taking into
account all second-order diagrams is given in Appendix B.
The result is

��2��
� =
�
�
�v0

2�1 − �U�
� − 2�U
2 �
�ln

	

�
�
ln ln

	

�
�� .

�61�

In order to calculate the conductivity, we find the polar-
ization operator, Eq. �23�,

�RA�
� =
1

4�v0
2

�	2

2���
��2

 − 2 Re ��
�

 − Re ��
�

. �62�

Substituting it into Eq. �25�, we obtain, for the conductivity
at not too low energy, 
���,

�SCUA�
� =
4e2
2

�2�	2 ln2 	

�
�
. �63�

Equation �63� is written for the case of long-range disorder;
if the disorder is short range, the vertex correction is absent
and the resulting conductivity is twice smaller.

What about the multiple scattering of electrons on com-
plexes of two or more impurities �described by mutually “en-
tangled” T matrices, Appendix B� that are not included in the
SCUA? We remind the reader that in the Born limit of weak
impurities �Sec. III B 2�, similar multiple-scattering pro-
cesses contribute to the dominant �logarithmic� energy de-
pendence of the conductivity, Eq. �49�. In the unitary limit,
however, the dominant energy dependence of the conductiv-
ity ��
��1/�U��� comes already from the 
 dependence of a
T matrix describing the scattering off a single impurity.
Therefore, the logarithmic corrections to the conductivity,
analogous to those in the Born limit �see Eq. �49��, are of
minor importance in the unitary limit.

As in the case of Born-type disorder, Sec. III B, we now
convert the energy dependence of conductivity into its de-
pendence on the electron concentration ne. We have accord-
ing to Eq. �58� �for �����

ne��� =
����
�v0

2 , �64�

so that Eq. �63� yields

��ne� =
e2

4�2

�ne�
nimp

ln2 	2

v0
2�ne�

. �65�

For the short-range disorder, the result is twice larger. In
contrast to the limit of weak �Born� scatterers, the conduc-

tivity shows a strong concentration dependence: it varies lin-
early with ne, with a logarithmic correction. This result com-
pares nicely with the experimentally obtained linear behavior
of ��ne� �or, equivalently, constant mobility�.2,3 This indi-
cates that the dominant scatterers are strong. Equation �65�
predicts a logarithmic correction to the linear behavior,
which should become more pronounced if the measurement
is extended to larger gate voltages.

One can also calculate the SCUA conductivity at 
���.
In this limit, the contributions 
jGRjGR� and 
jGAjGA�
should also be taken into account. The Drude conductivity
then appears to have exactly the same value �SCUA
=2e2 /�2� as in the SCBA, Sec. III B 1. Analogously to the
SCBA case, this result is questionable in view of the local-
ization effects neglected in the Drude formalism. It is impor-
tant to recall in this context that infinitely strong impurities
are chiral �Cz�, yielding a divergent density of states70 �cf.
Refs. 52 and 53� in this situation. We will return to the con-
ductivity at half filling for a chiral disorder in Sec. IV.

D. Phase diagram

In the preceding subsections, Secs. III B and III C, we
have studied the limits of weak �Born� and strong �unitary�
scatterers, respectively. We have found that the behavior of
the conductivity is essentially different in both limits: it de-
pends only logarithmically on energy in the Born limit and
shows a linear behavior �with a logarithmic correction� in the
unitary limit. The aim of the present subsection is to con-
struct a “phase diagram” that would predict which of these
types of behavior is expected for given characteristics of dis-
order. �Of course, we do not mean any phases in the strict
sense; there is a smooth crossover between the Born and
unitary regimes.�

The unitary limit corresponds to the neglect of unity in
comparison with Ug�
� in the denominator of Eq. �19�. In
order to see when this is justified, we use the large-energy
expression �57� for ��
� and compare Ug�
� with 1. This
yields the following energy-dependent value of the param-
eter � at the “phase boundary” between the weak scatterer
and strong scatterer regimes,

�c�
� �
�
2

	2 ln2 	

�
�
, �66�

or, equivalently, �U�
���. For ���c�
�—that is,
�U�
���—the system is in the unitary limit.

In Fig. 6 we plot the phase diagram in both 
-� and 
-�
coordinates. Remarkably, the system may pass from the Born
into the unitary limit when the energy increases while the
disorder remains fixed. In Fig. 6 �upper panel� this crossover
occurs for a broad range of impurity concentrations,
�−1exp�−1/������. At still smaller values of � the sys-
tem is in the unitary phase at all energies. It is worth stress-
ing that the unitary phase in Fig. 6 is established even for
��1, when disorder could be naively considered as weak.
The reason for this effect is as follows. The growth of the
density of states with increasing energy results in a more
efficient scattering of higher-energy electrons by an impurity,

ELECTRON TRANSPORT IN DISORDERED GRAPHENE PHYSICAL REVIEW B 74, 235443 �2006�

235443-9



thus making the scatterer effectively stronger at higher ener-
gies. With increasing � the phase boundary �66� in Fig. 6
�upper panel� moves upwards, and for ��1 the Born phase
disappears altogether.

A unitary-to-Born crossover discussed above would mani-
fest itself in a change of the behavior of the conductivity,
from a linear energy dependence at high 
 �Sec. III B� to a
logarithmic dependence at lower energies �Sec. III C�.69 Ex-
perimentally, the measured conductivity of graphene shows a
linear dependence down to the lowest-energy scale �where �
saturates at a value �e2 /h�. This indicates that the scattering
is dominated by strong impurities, which remain in the uni-
tary part of the phase diagram down to the lowest energies.

E. Charged impurities

The case of charged impurities deserves a special consid-
eration. If such impurities are located far from the graphene
layer, they are expected to be screened by the gate and will
not be different from finite-range scatterers considered
above. Let us consider, however, charged impurities located
near the graphene layer. The scattering potential of the Cou-
lomb center in 2D is V0�q�=2�e2 /�q. Taking into account

the static screening by the graphene electron gas in the ran-
dom phase approximation �RPA�, we obtain71

V�q� =
2�e2

�q + 2�e2��
�
, �67�

where � is the dielectric constant. Strictly speaking, the RPA
is not justified in graphene since the parameter rs=e2 / �v0�
is of order unity. It will be sufficient, however, to find a
parametric behavior of quantities of interest, up to numerical
coefficients of order unity.

As follows from Eq. �67�, the intervalley-scattering com-
ponent of the Coulomb potential, V�k0��2�e2 /�k0, is very
small and can be neglected, so that the Coulomb impurities
are of long-range type. As to the scattering within one valley,
it is only slightly anisotropic. Indeed, the inverse screening
length �=2�e2��
� is of the same order as the characteristic
momentum transfer, ��q�
 /v0 for rs�1. Therefore, up to
a numerical factor of order unity, we can neglect q in the
denominator of Eq. �67� �which means a neglect of the an-
isotropy of the intravalley scattering�. This brings the
screened charged impurities into the class of long-range scat-
terers considered above but with an energy-dependent ampli-
tude,

U�
� = �−1�
� �
�v0

2

�
�
. �68�

There is, however, an important difference between a
charged impurity and a long-range potential impurity. The
scattering amplitude for slow electrons, with momenta q
� �
 � /v0, is given by Eq. �68�, while the electrons with larger
momenta are scattered much less efficiently due to the lack
of screening at small distances. This can be taken into ac-
count by setting an effective high-energy cutoff 	��
�.

Finally, using Eqs. �30�, �55�, and �66� with U from Eq.
�68� and 	�
, we obtain �c��. Thus we come to the con-
clusion that, with charged impurities, the system is just at the
crossover between Born and unitary regimes. This also jus-
tifies the use of the clean density of states in Eq. �68�. In-
deed, approaching the crossover from the unitary side, the
disorder-induced corrections to ��
� are negligible; see Eq.
�59�. On the other hand, if one uses the Born expression �48�,
logarithmic corrections are absent, as long as 	�
, and the
clean value of the density of states in Eq. �68� is again jus-
tified.

The energy and density dependences of the conductivity
of graphene with Coulomb impurities are thus equivalently
given by both Born �Eqs. �49� and �52� with energy-
dependent coupling �0�nimpv0

2 /
2� and unitary �Eqs. �63�
and �65�� expressions with logarithms omitted,

��
e2
2

nimpv0
2 �

e2�ne�
nimp

. �69�

The Born approximation was used for calculating the con-
ductivity in recent works, Refs. 16 and 30 �see also Ref. 34�.
The result is consistent with Eq. �69�. A different result �con-
taining an additional logarithmic factor� was obtained in Ref.
72. We believe that the derivation in Ref. 72 is incorrect73

since it employs the quasiclassical Thomas-Fermi approxi-

FIG. 6. “Phase diagram” in the 
-� plane for a fixed � �upper
panel� and in the 
-� plane for a fixed � �lower panel�. The solid
line is the “phase boundary,” Eq. �66� or �60�, where the crossover
between the Born and the unitary regimes takes place. At low en-
ergies �dashed part� the density of states saturates, while the Drude
conductivity reaches a value �e2 /h, implying that generically the
localization effects should become strong.
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mation beyond its range of validity �at energies much larger
than �F�.

IV. CONDUCTIVITY AT THE DEGENERACY POINT:
CHIRAL DISORDER

A. Universal conductivity

1. Preliminaries

In this section we consider the conductivity of graphene at
half filling, 
=0. The Drude conductivity obtained self-
consistently in Sec. III in both Born and unitary limits has
the value �=2e2 /�2� at this point. Since this value is of the
order of conductance quantum, this is by no means the end
of the story: the localization effects become strong at half
filling. If the intervalley scattering is weak �long-range dis-
order potential�, an intermediate temperature range exists
where the conductivity correction is positive21,26,32,74 due to
the additional Berry phase � associated with the electron
pseudospin in the sublattice space. This situation belongs to
the symplectic symmetry class. With lowering temperature T,
the intervalley scattering comes into play and a crossover to
the orthogonal symmetry class occurs.26,32,33 The localization
correction becomes negative and drives the system into the
strong localization regime.32 Thus, for a generic disorder, the
conductivity at half filling should have a pronounced tem-
perature dependence and get strongly suppressed with low-
ering T. Surprisingly, this is not what is observed in the
experiment. The conductivity has been found2,3 to be close to
the value 4e2 /h, remaining T independent in a broad range of
temperatures. The aim of this section is to analyze whether
and in what situation this behavior may be expected theoreti-
cally. According to what was said above, this might only
happen, if at all, for a particular type of disorder.

The special class of disorder that we will consider in this
section is the randomness that preserves one of the chiral
symmetries �13� of the clean graphene Hamiltonian. Some
possible realizations of such type of disorder were listed in
Sec. II C. Whether the dominant disorder in graphene may be
of this kind is an open issue, which may be related to tech-
nological aspects of the sample preparation. Our aim here
will be to analyze what are consequences of the assumption
of chiral character of disorder.

A peculiar behavior of 2D systems with chiral disorder
with respect to localization effects has been demonstrated by
Gade and Wegner.75,70 They considered a random hopping
problem on a square lattice and showed that at zero energy,
where the system possesses chiral symmetry, the RG 
 func-
tion of the corresponding � model vanishes to all orders in
the inverse conductivity, implying that the conductivity is not
renormalized. This absence of the usual infrared-singular
corrections to the conductivity due to Cooperon and diffuson
loops can be attributed to the fact that the “antilocalizing”
interference corrections to the density of states cancel the
localization corrections to the diffusion coefficient. The den-
sity of states has been found45,70,77,78 to diverge as ��
�
�
−1f�
� for 
→0, where f�
� gives the subleading 
 de-
pendence and provides the convergence of the total number
of electronic states.76 At any finite 
 the chiral symmetry is

broken and localization on the scale ��
�� �f�
��−1/2 occurs.70

The states at the band center 
=0 are delocalized and the
conductivity ��
=0� takes a finite value depending on the
disorder strength. According to the classification of Refs. 66,
79, and 80, the system studied in Refs. 70 and 75 belongs to
the chiral symmetry class AIII.

While the results of Refs. 70 and 75 suggest that one may
expect a finite zero-energy conductivity in our problem, they
cannot be directly applied. Indeed, the dimensionless Drude
conductivity at 
=0 is of order unity in our case, whereas it
should be large to justify the derivation of the � model and
of the corresponding �diffusive� perturbative RG. Another
related peculiarity of the problem we are considering is the
Dirac dispersion of carriers. This will allow us to prove be-
low a statement that is still stronger than that of Gade and
Wegner: we will show that for certain types of chiral disorder
all disorder-induced contributions to conductivity cancel.

2. C0 chirality: Symmetry consideration

Let us consider the disorder which preserves the C0
chirality, H=−�3H�3. The random part of the Hamiltonian
contains the matrices �1,2�3, �1,2�1,2, and �1,2�0. According
to Table I, in the case of weak disorder, the corresponding
coupling constants are ��, 
�, and ��. While the disorder
characterized by 
� and �� preserves the time-reversal in-
variance T0, the �� disorder, being physically a random vec-
tor potential, violates the T0 symmetry.

According to Ref. 81, the random Dirac Hamiltonians
preserving the C0 chirality and violating the TR symmetry
�case 1 of Ref. 81� belong to the chiral symmetry class AIII,
while the combination of C0 chirality and T0 symmetry �case
6 of Ref. 81� drives the system into the Bogolyubov–de
Gennes symmetry class CI. In both cases, the low-energy
theory �� model� is affected by the presence of the Wess-
Zumino-Novikov-Witten term in the action.

The one-loop RG equations for C0 disorder read �see Ap-
pendix A�

���

� ln L
= 0, �70�

�
�

� ln L
= 4
���, �71�

���

� ln L
= 
�

2 . �72�

Note that Eq. �70� for �� is split from Eqs. �71� and �72�.
This set of equations is identical to Eq. �19� of Ref. 66 with
g�=��, g=2��, g�0=0, and g��=2
�. In Ref. 66, these
couplings described the scattering between the four nodal
points of the spectrum of a disordered d-wave supercon-
ductor. Our problem with only two nodes corresponds to
setting the coupling between the neighboring nodes in
d-wave superconductors to zero, g�0=0, while retaining the
forward-scattering �intranode, g� and backscattering �scatter-
ing between the opposite nodes, g��� amplitudes. This situ-
ation �non-Abelian vector potential problem� was considered
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in Ref. 64 �see also Refs. 82–84�, where the density of states
was shown to vanish in the limit 
→0 as

��
� � �
�1/7. �73�

Here 1/7=1/ �2N2−1�, where N=2 is the number of flavors
�nodes�.

In the presence of the random vector potential only ���

coupling, preserving all four chiralities simultaneously, class
AIII�, the density of states also goes to zero with decreasing
energy, but with a nonuniversal exponent63,64 which depends
on ��:

��
� � �
��1−���/�1+���. �74�

Note that in this random vector potential problem, the disor-
der strength remains nonrenormalized; see Eq. �70� �in fact,
the one-loop equations for �� and 
 are exact; see Refs. 45
and 63�. Therefore, �� does not generate the scale � and the
one-loop result for the density of states, Eq. �74�, holds in the
whole range of energies below 	.

3. C0 chirality: Conductivity at the Dirac point

We are now going to study the conductivity in the situa-
tion when disorder preserves C0 chirality. The chiral symme-
try C0 allows one to relate retarded and advanced Green
functions:

�3GR�A��
;r,r���3 = − GA�R��− 
;r,r�� . �75�

The conductivity is given by the Kubo formula �21�, which
we rewrite here in the full form

�xx =
1

�
� d2�r − r��Tr� jxGR�0,r,r��jxGA�0,r�,r�

−
1

2
jxGR�0,r,r��jxGR�0,r�,r�

−
1

2
jxGA�0,r,r��jxGA�0,r�,r�� . �76�

Now we use the identity �75� to trade all advanced Green
functions in Eq. �76� for retarded ones and thus to present the
conductivity in terms of retarded Green functions only. Fur-
ther, we exploit the following important relation between the
components of the current operator �22�:

�3jx = − jx�3 = ijy , �77�

which is a consequence of the Dirac spectrum. At this point,
our problem differs from that considered by Gade and
Wegner70,75 who dealt with a bipartite square lattice with a
nonlinear electronic spectrum.

The transformations �75� and �77� allow us to cast the
Kubo formula in the following form:

�xx = −
1

�


�=x,y

� d2�r − r��

� Tr�j�GR�0;r,r��j�GR�0;r�,r�� . �78�

At first glance, this expression is zero due to the gauge in-
variance. Indeed, the right-hand side of Eq. �78� is propor-

tional to the second derivative of the partition function
Z�A�=Tr ln GR�A� �or, equivalently, first derivative of the
current Trj�GR�A�� with respect to the constant vector po-
tential A. The gauge invariance implies that a constant vector
potential does not affect gauge-invariant quantities like the
partition function or the current, so that the derivative is
zero. This argument is, however, not fully correct, in view of
a quantum anomaly present in this problem. The elimination
of A amounts technically to a shift in the momentum space
k→k−eA, which naively does not change the momentum
integral. If we consider a formal expansion in the disorder
strength, this argument will indeed hold for all terms involv-
ing disorder but not for the zeroth-order contribution. The
momentum integral �d2kTrj�G0

R�k� is ultraviolet divergent
and the shift of variable is illegitimate. This anomaly was
first identified by Schwinger85 for �1+1�-dimensional mass-
less Dirac fermions. In the Schwinger model, the polariza-
tion operator is not affected by an arbitrary external vector
potential A�x , t� and is given by the anomalous contribution,
yielding a photon mass in the 1+1 electrodynamics.85,86 In
our analysis, the role of A�x , t� is played by the chiral disor-
der. The explicit calculation of the zeroth-order diagram �the
one with no disorder included� yields

� = −
8e2v0

2

�
� d2k

�2��2

�2

�v0
2k2 + �2�2 =

2e2

�2 �
4e2

�h
. �79�

�In the last expression we have restored the Planck constant
to follow the convention of expressing the conductivity in
units of the conductance quantum e2 /h.� Here � is an infini-
tesimal imaginary part in the denominator of the Green func-
tion; we will return to its role and physical meaning below.
Let us emphasize that our proof of Eq. �79� relies only on the
C0 symmetry of the disorder and does not assume its Gauss-
ian character. We note that the same universal value of the
conductivity in the situation when the only type of disorder
is the Abelian random vector potential ���� was previously
obtained in Ref. 63. For a non-Abelian gauge potential with
Gaussian statistics and equal couplings, ��=��=
� /2, uni-
versal conductivity was obtained in Ref. 82 by using the
mapping onto a Wess-Zumino-Novikov-Witten model.

An alternative derivation of the same result is based on
the Ward identity

− ie�r − r��GR�0;r,r�� = �GRjGR��0;r,r�� . �80�

Averaging it over disorder, plugging it into Eq. �78�, trans-
forming to the momentum space, and performing the integra-
tion by parts, we are left with the surface contribution only,

� = −
ev0

4�3 � dknTr�jGR�k�� , �81�

where the integral is taken over a large circle �k � =const
→ . For large momenta the Green function can be replaced
by its bare value, which yields again the universal conduc-
tivity
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� =
e2

�3 � dknk

k2 =
2e2

�2 �
4e2

�h
. �82�

This universal value of the conductivity is independent of the
ultraviolet cutoff in the momentum space. This signifies that
the integral in Eq. �78� is accumulated in the vicinity of the
degeneracy point, as seen explicitly in Eq. �79�. The fact that,
in a realistic system, the linearization of the spectrum ceases
to be valid at high momenta does not spoil the derivation: the
functions GR and GA are essentially equal to each other there,
so that the integrand of Eq. �76� is canceled.

It is worth emphasizing that the derivation of Eq. �82�
assumes that the ultraviolet cutoff 	 is much larger than the
disorder-induced energy scale �. �More accurately, here � is
the low-energy electron relaxation rate determined as a scale
where the dimensionless Drude conductivity is of order unity
or, equivalently, where the RG flow enters the strong cou-
pling regime.� In other words, the disorder is weak—i.e.,
��1 for Gaussian disorder. One more formulation of this
condition is that for energies comparable to the cutoff, 

�	, the Drude conductivity considered in Sec. III is large
�compared to e2 /h�. This condition, which we assume
throughout the paper, is very well fulfilled in the
experiments.2,3 Violation of this condition would imply that
the disorder is so strong that it completely destroys the Dirac
character of the spectrum. In this situation the universal
value of the conductivity �79� and �82� of the chiral-
symmetric system would not survive. The corrections to the
universal value of the conductivity are exponentially small,
���e2� /	, which implies that there are no corrections to
any order in the perturbative expansion of ��
=0� in ��1.

The above derivation of the universal conductivity re-
mains valid for the case when a magnetic field of an arbitrary
strength is applied: the vector potential A� couples to the
current—i.e., to the matrices �3��, �=x ,y—thus preserving
the chiral symmetry. In this context, it is worth mentioning
the result of Hikami, Shirai, and Wegner87 who found that
the longitudinal conductance in the center of the lowest Lan-
dau level of chiral-disordered 2D electron gas is equal ex-
actly to �=2e2 /�2� in the limit of a very strong magnetic
field, when the Landau level mixing can be neglected. Their
finding can be considered as a B→ limit of our general
result. Indeed, in this limit the kinetic energy is frozen, so
that the difference between the electron dispersion on the
square lattice �considered in Ref. 87� and the graphene lattice
becomes immaterial.

We turn now to an important and delicate point related to
the above derivation of the universal conductivity �79�. Spe-
cifically, we have introduced an infinitesimally small imagi-
nary part of the energy, �. Physically, it has the meaning of
the electron lifetime or, alternatively, a dephasing rate, and
can be thought as modeling processes of escape of electrons
in some reservoir or some dephasing mechanism. Models
with such a uniform constant value of � were used in the
literature to imitate dephasing in quantum dots; see, e.g.,
Ref. 88.

In our calculation, � has served as an infrared regulator
for the theory. Although it has dropped from the final result,
its role is not completely innocent. Depending on the physi-

cal situation, the infrared regularization may be provided by
different quantities, which, as we are going to discuss, will
influence the value of the conductivity. Specifically, in addi-
tion to �, we can imagine the following sources of the infra-
red cutoff: �i� finite frequency, �ii� finite system size, and �iii�
interaction-induced dephasing at finite temperature. In Sec.
IV B we will analyze the frequency dependence of the con-
ductivity. As to the situations when the temperature or the
system size governs the infrared behavior, we restrict our-
selves to brief comments only, relegating a detailed analysis
to future work.

4. Cz chirality

Let us now turn to the disorder which preserves the Cz
chirality, H=−�3�3H�3�3. The random part of the Hamil-
tonian may then contain matrices �3�1,2, �1,2�3, �1,2�0, and
�0�1,2. The first two �the corresponding coupling constants
are 
0 and ��� violate the time-reversal symmetry T0; the
last two ��� and 
z� preserve it �see Table I�. Note that the
disorder characterized by �� and �� �real and imaginary
vector potentials, respectively� also preserves the chiral sym-
metry C0 considered above.

According to Ref. 81, random Dirac Hamiltonians pre-
serving the Cz chirality and violating the TR symmetry �case
2 of Ref. 81� belong to the chiral unitary symmetry class
AIII. The combination of Cz chirality and the time-reversal
invariance T0 �case 9+ of Ref. 81� corresponds the chiral
orthogonal symmetry class BDI. Finally, the combination of
Cz chirality and Tz symmetry �case 9− of Ref. 81� falls into
the chiral symplectic symmetry class CII.

The one-loop RG equations for Cz disorder read �see Ap-
pendix A�

���

� ln L
= 2
0
z, �83�

�
0

� ln L
= 2���
0 + 
z� , �84�

�
z

� ln L
= 2���
0 + 
z� , �85�

���

� ln L
= 
0

2 + 
z
2. �86�

This model was considered in Ref. 45; the RG equations
�83�–�86� agree with the set of equations �4.84� in Ref. 45
with g�=
0 /	2, gA�=��, gA=��, and gm=
z /	2. If the sys-
tem is time-reversal �T0� invariant, only the couplings 
z and
�z survive; this case was considered in Refs. 45 and 89. The
density of states in the generic Cz case diverges45,70,75–78 in
the limit 
→0; see Sec. IV A 1 �for the case of the random
vector potential, see Eq. �74��.

Let us turn to the conductivity at half filling for a generic
disorder preserving the Cz chirality. The proof of the univer-
sality of the conductivity based on gauge-invariance argu-
ments does not work now. Indeed, the Cz-chirality transfor-
mation of the Green’s function,
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�3�3GR�A��
;r,r���3�3 = − GA�R��− 
;r,r�� , �87�

generates the new vector vertices jx,y�3 instead of currents
�these new vertices can be considered as j5 currents of Dirac
fermions�. Then we are left with the GRGR-type correlators
of both jx,y and j5

x,y. The latter cannot be obtained as deriva-
tives of the partition function with respect to the constant
vector potential A. Nevertheless, for weak disorder we find
that the conductivity at half filling is still universal,

� =
4e2

�h
, �88�

up to corrections in powers of disorder strength. Recently,
this result was also obtained in Ref. 90.

To show this, we first calculate the perturbative correction
���1� to the conductivity of a pure system at the first order in
disorder strength and find that it vanishes, ���1�=0. This im-
plies that the conductivity at 
=0 does not depend on the
ultraviolet cutoff 	. Indeed, all the contributions generated
by the RG �and thus depending on the ratio 	 /�� sum up to
zero, because we can use the fully renormalized disorder as
an effective single-impurity line in ���1�=0. The second-
order perturbative calculation yields

���2� =
e2

�h
�
0 − 
z�2. �89�

We note that the combination 
0−
z is not renormalized
during the RG procedure, as follows from Eqs. �84� and �85�.
This is in agreement with the above RG argument for the
first-order correction. Thus the conductivity at the Dirac
point can be presented as a series in the parameter 
0−
z.
Next, we recall that for Cz chirality, the RG 
 function of the
Gade-Wegner � model70,75 vanishes to all orders, so that
there are no singular quantum-interference corrections to
��
=0� due to the soft modes �impurity ladders�. This
proves that the expansion of ��
=0� in powers of 
0−
z

converges. Thus for the case of weak disorder the conductiv-
ity is universal with small corrections in powers of the dis-
order strength �unlike in the case of the C0 chirality, where
the corrections are nonperturbative in the disorder strength�.

5. C� chirality and decoupled valleys

Finally, let us discuss the case of Cx,y chirality �couplings
��, �0, and �z�. Each of these chiralities taken separately is
similar to the Cz chirality. However, in an isotropic system
considered here, both Cx and Cy chiralities are expected to be
present simultaneously. This implies that the disordered
Hamiltonian anticommutes with both �1 and �2 and hence is
proportional to �3. Thus it is split into two equivalent copies.
Therefore, the symmetry of the problem is governed by the
properties of the “sub-Hamiltonians” and its chirality is in
fact fictitious. In particular, the generic case with all ��, �0,
and �z present63 corresponds to the conventional Gaussian
unitary class A �quantum Hall effect�. A single coupling �z
corresponds to the symmetry class D �random mass prob-
lem�. In all these cases the system is in a critical phase so one
can expect a finite conductivity at 
=0. For the sake of com-
pleteness we present the RG equations for the C� chirality:

���

� ln L
= 4�0�z, �90�

��0

� ln L
= 2��� + �0���0 + �z� , �91�

��z

� ln L
= 2��� − �z���0 + �z� . �92�

We are not aware of realistic examples of the disorder pre-
serving the C� chirality in the context of the transport in
disordered graphene. Therefore, we will not consider this
case in the rest of the paper.

We would like to stress, however, that the C� chirality is
in fact a particular case of a more general class of disorder
�couplings �0, ��, �z, �0, ��, �z� that does not mix the two
valleys K and K�. The conductivity is then determined by the
symmetric combinations ��+�� only, and the RG equations
have the same form �90�–�92� with a replacement ��→��

+��, �0→�0+�0, �z→�z+�z. This implies that, if at least
two of ��+�� couplings are present, the electrons in each
valley are at the quantum Hall critical point63 characterized
by a finite longitudinal conductivity �e2 /h. Note that the
Hall conductivity is absent due to the cancellation between
the two independent valleys. Thus, a universal conductivity
�e2 /h can emerge not only for a chiral disorder but also
when the randomness does not mix the two valleys. We rel-
egate a more detailed study of the latter case to a separate
publication and return to C0 and Cz chiralities below.

B. Conductivity at finite frequency

In this subsection, we analyze the frequency dependence
of the conductivity. For completeness, we also keep a small
level width � introduced above. It was crucial for the argu-
ment leading to Eq. �79� that the system be exactly at half
filling, 
=0. A nonzero frequency implies an integration over
the energy range of the width !, which breaks the chiral
symmetry. When the frequency ! is much smaller than �,
this effect is, however, negligible, the infrared regularization
is provided by �, and the universal result �79� survives. In its
turn, � plays no role when !��: it is the frequency that
serves as a dominant infrared cutoff now. In the high-
frequency limit !��, the situation simplifies again: one can
neglect the effect of disorder altogether and calculate the
conductivity by a simple Kubo formula with bare Green
functions. The result for the real part of the conductivity is
again universal but with a slightly larger value:31,63

Re ��!� �� =
2

�
�

0

! d


!
� d2k

�2��2

�Tr�jxImG0
R�
 − !,k�jxImG0

R�
,k��

= 8�e2v0
2�

0

! d


!
� d2k

�2��2 �
 − !����
 − !�2

− k2��
���
2 − k2� =
e2

4
�
�e2

2h
. �93�
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A very interesting new situation arises in the intermediate
regime ��!��. Here ! plays a twofold role, leading to
two competing effects. On the one hand, as discussed above,
the frequency drives the system away from the chiral-
symmetric point and thus restores localization. On the other
hand, the frequency cuts off the singular localization correc-
tion. Which of these effects wins? To answer this question,
one should compare ! with the level spacing in the localiza-
tion area, 	��
�, where 
�!. In order to find the scaling of
	� with energy, we consider a RG transformation that drives
the system away from the chiral fixed point. The RG stops
when the renormalized energy 
̃ reaches the macroscopic
scale 	; on such scales, the disorder becomes already strong
since the initial value of 
 was below �. In this strongly
disordered case, the value of the running ultraviolet cutoff
length Lv0 /	 �corresponding to the renormalized electron
wavelength� determines then the localization length �. As
discussed in Sec. III B 2, the density of states � scales as

−1L2. Therefore,

�


�v0/	�2 �
�̃
̃

�2 , �94�

implying for the level spacing at the length �,

	��
� �
1

��
��2�
�
� 
� ! . �95�

This result is rather general and is only based on the fact that
the operator governing the flow of the system away from
criticality couples to the energy in the action. One can of
course explicitly verify that the results of Ref. 70 for the
density of states and the localization length quoted in Sec.
IV A 1 satisfy Eq. �95�.

We conclude that the two competing effects of the fre-
quency �the localization and the infrared regularization�
“make a draw”—both of them are equally important. There-
fore, the system turns out to be, roughly speaking, halfway
between the chiral fixed point and the conventional symme-
try. This results in a new universal �frequency-independent�
value of the conductivity �!�e2 /h in the considered regime
��!��. More precisely, this value depends on the type of
chirality and the symmetry class of the system away from the
degeneracy point. In particular, the system with generic C0-
and Cz-chiral disorder with �without� TR symmetry T0 is
driven into the Wigner-Dyson orthogonal �respectively, uni-
tary� symmetry class by finite energy. On the other hand, the
system with Cz- and Tz-invariant disorder �
0 and ��� falls
into the Gaussian symplectic symmetry class away from 

=0.

The frequency dependence of the conductivity at the
Dirac point is sketched in Fig. 7. Remarkably, Re��!� is of
the order of e2 /h in the whole range of frequencies, taking
three different values: �=4e2 /�h at low frequencies
�!���, Re �=�e2 /2h at high frequencies �!���, and
Re �=�! in the intermediate range. Despite its universality
�for a given symmetry�, the value �! most likely cannot be
calculated analytically, since this would require an exact
knowledge of the full crossover between the chiral and the
normal classes.

C. Additional comments

In Secs. IV A and IV B we have analyzed the conductiv-
ity in the case when the dominant infrared regularization is
provided either by the inverse life time � or by the frequency
!. As has been mentioned above, this role may be alterna-
tively played by the interaction-induced dephasing at finite
temperature or by the finite size of the system. Leaving a
detailed analysis of these problems for the future, we only
make some comments on them in Secs. IV C 1 and IV C 2
below. Finally, in Sec. IV C 3 we briefly discuss what hap-
pens with the problem considered when we pass from the 2D
geometry to the quasi-1D one by rolling the plane into a
cylinder.

1. Temperature dependence

In the presence of interactions, the temperature T plays a
twofold role, similarly to the frequency. On the one hand, it
induces an averaging over the energy window of width �T,
thus breaking the chiral symmetry and “switching on” the
localization effects. On the other hand, the interaction at fi-
nite T generates a nonzero dephasing rate ��

−1�T� cutting off
the localization corrections. As we showed in Sec. IV B, the
level spacing 	��T� is �T, so that the result of the competi-
tion of these two effects depends on the value of T���T�. The
theory of dephasing in the present situation remains to be
developed. If the dominant mechanism of dephasing is the
electron-electron interaction, one can expect that �like in
conventional 2D systems with dimensionless conductivity
replaced by unity� ��

−1�T��T. If this is indeed true, the be-
havior of the conductivity at T"� will be qualitatively
analogous to that for the case of finite frequency, Sec. IV B.
In particular, in the experimentally relevant range ��T��
the conductivity will take a temperature-independent value
�T�e2 /h. At high temperatures T#�, the T dependence of
the conductivity will essentially reproduce its 
 dependence
for given type of disorder �Born or unitary�.

More realistically, one can think about a situation when
the disorder is predominantly chiral, but the chiral symmetry

FIG. 7. Frequency dependence of conductivity in a system with
chiral disorder at half filling. At intermediate frequency ��!��,
the conductivity acquires some universal value �! of the order of
e2 /h which is not known analytically. This value depends on the
type of chirality and the symmetry class of the system away from
the degeneracy point.
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is slightly broken,51,53 e.g., by weak potential disorder on the
energy scale ����. Then the above consideration allowing
one to expect the conductivity �T�e2 /h will be applicable in
the intermediate range ��"T"�; at still lower temperatures
T���, the chirality-breaking effects will drive the system
into the strong localization regime.

It is worth noting that the interaction may lead to other
effects �in particular, to open the gap in the spectrum and/or
to break the chiral symmetry; cf. Refs. 25 and 91� not in-
cluded in our consideration. These questions also require fur-
ther study.

2. Mesoscopic sample

Let us now consider the situation when all the potential
infrared regulators �, T, and ! are much smaller than the
level spacing in the sample. In this case, the sample will be
fully phase coherent �mesoscopic� and its size will serve as
an infrared cutoff. In such a mesoscopic situation one should
in general speak about a conductance, not conductivity. Fur-
thermore, the properties of the conductance will essentially
depend on the sample geometry. Consider a rectangular
sample Lx�Ly, with current flowing along the x axis. For an
approximately square sample Lx�Ly we expect, based on the
above results, an average conductance of order e2 /h. Indeed,
one can imagine taking first � larger than the level spacing
�so that the result of Sec. IV A applies� and then decreasing
it until it reaches the level spacing. The above statement
follows from the continuity. In view of the mesoscopic char-
acter of the sample, we also expect in this case a broad
distribution of the conductance, with a variance of the order
of �e2 /h�2. Both the average value and the conductance dis-
tribution will depend on the exact value of the aspect ratio
Lx /Ly in a nontrivial way and can hardly be calculated.

For a long sample Lx�Ly, the geometry becomes quasi-
one-dimensional and our results for the universal conductiv-
ity �e2 /h cease to be relevant �see also Sec. IV C 3�.

Finally, let us consider a case of a very broad and short
sample Ly�Lx. In this situation, the conductance will be
self-averaging, so that one can again speak about conductiv-
ity. Using again the continuity, we conclude that the conduc-
tivity in this situation will have some universal value �L
�e2 /h. Whether this value is equal to the above universal
conductivity 4e2 /�h, Eq. �79�, or the numerical coefficient is
different, requires further study. Remarkably, the same value,
Eq. �79�, has been found11,22,90 for the conductance of a clean
graphene sample in the considered geometry Ly�Lx.

3. Cylindric geometry

Let us take a C0-symmetric strip of a large transverse size
Ly and infinite in the x direction, and roll if into a cylinder,
preserving the chiral structure. Let us further assume a small
but nonzero level width �, as in Sec. IV A. If � is much
larger than the level spacing in the square Ly�Ly, the system
is effectively two dimensional and the consideration of Sec.
IV A applies. Let us consider the opposite limit. One can
then ask whether our result concerning the universal conduc-
tivity will be applicable in this quasi-1D geometry. Analyz-
ing the derivation in Sec. IV A it is not difficult to see that it

breaks down: the momentum qy is now quantized and its
shift therefore not allowed. Let us consider, however, an
Aharonov-Bohm flux $ piercing the cylinder, which
amounts to introducing the extra phase ei$/$0 in the periodic
boundary conditions �$0 is the flux quantum�. Averaging
over $, we restore the applicability of the consideration of
Sec. IV A, so that


��$ =
4e2

�h
. �96�

Therefore, depending on the value of the Aharonov-Bohm
flux, the conductivity can be either larger or smaller than this
universal value, which is restored after the averaging. A simi-
lar strong dependence of conductance of a clean graphene
strip on the boundary conditions was found in Refs. 11 and
22. Our observation of the Aharonov-Bohm flux dependence
of the conductivity seems also to be related to the known
results on transport properties of disordered wires with chiral
symmetry: namely, their dependence on the parity of the
number of channels and the staggering in the hopping matrix
elements.92

V. CONCLUSIONS

To summarize, we have studied the electron transport
properties of a disordered graphene layer. We have shown
that the nature of disorder is of crucial importance for the
behavior of the conductivity. Specifically, it is important �i�
whether the individual scatterers are strong or weak and �ii�
what the symmetry of the disorder is within the classification
of Table I. Our key results are as follows.

�i� Away from half filling, the concentration dependence of
conductivity is linear �with logarithmic corrections� for
strong scatterers �unitary limit�, Eq. �65�, while it is only
logarithmic in the case of weak scatterers �Gaussian disor-
der�, Eq. �52�. We have constructed a “phase diagram,” Fig.
6, showing which of these types of behavior should be ex-
pected for given microscopic parameters of the disorder. We
have shown that the physically important case of charged
impurities corresponds to the Gaussian-unitary “phase
boundary.” The linear behavior of the conductivity that we
have found for the case of strong scatterers agrees with the
experimental findings,2,3 demonstrating that this kind of dis-
order is dominant in experimentally studied structures.

�ii� At half filling, the conductivity is generically strongly
affected by localization effects. However, this is not so for
certain special types of disorder symmetry. In particular, we
have analyzed in detail the situation when the randomness
preserves one of the chiral symmetries of the clean Hamil-
tonian. We have shown that for this case �“chiral disorder”�
the conductivity at the Dirac point is of the order of e2 /h.
The exact value of the conductivity still depends on the na-
ture of the infrared cutoff, which may depend on the physical
setup. We have considered the situation when this cutoff is
provided by the level width � or by the frequency !; in the
first case, the conductivity takes a universal value 4e2 /�h
�see Eqs. �79� and �88��, while in the second case it shows a
more complex behavior, Fig. 7.
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Whether the chiral disorder may indeed dominate in ex-
perimentally relevant structures, explaining the observed
value of conductivity �e2 /h remains an open question. Al-
ternatively, a value of conductivity �e2 /h at the Dirac point
can emerge if the dominant disorder does not scatter elec-
trons between the two valleys �see Sec. IV A 5�; work in this
direction is currently in progress. Further research directions
extending our results include, in particular, mesoscopic trans-
port in a phase-coherent disordered sample and effects of
interaction and of macroscopic inhomogeneities.
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APPENDIX A: ONE-LOOP RG EQUATIONS

The full action containing all possible disorder structures
from Table I reads

S��� =� d2r�i�̄�
 + iv0�3� � − i0��� + �v0
2��0��̄�0�0��2

+
��

2
���̄�1�3��2 + ��̄�2�3��2� + �z��̄�3�0��2

+

0

2
���̄�3�1��2 + ��̄�3�2��2� +


�

4
���̄�1�1��2

+ ��̄�1�2��2 + ��̄�2�1��2 + ��̄�2�2��2�

+

z

2
���̄�0�1��2 + ��̄�0�2��2� + �0��̄�0�3��2

+
��

2
���̄�1�0��2 + ��̄�2�0��2� + �z��̄�3�3��2�� .

�A1�

A complete set of one-loop perturbative RG equations can
be obtained by considering the diagrams of Fig. 5. An impu-
rity line in those diagrams represents a sum of all types of
disorder with the proper amplitude and corresponding matri-
ces at the vertices. The RG equations for nine disorder am-
plitudes �diagrams �b�, �c�, and �d� in Fig. 5� have the form

d�0

d ln L
= 2�0��0 + 
0 + �0 + �� + 
� + �� + �z + 
z + �z�

+ 2���z + 
�
z + 2���z, �A2a�

d��

d ln L
= 2�2�0�z + 
0
z + 2�0�z� , �A2b�

d�z

d ln L
= − 2�z��0 + 
0 + �0 − �� − 
� − �� + �z + 
z + �z�

+ 2�0�� + 
0
� + 2�0��, �A2c�

d
0

d ln L
= 2�
0��0 − �0 + �� + �z − �z� + ��
z + �z
�

+ 
��0� , �A2d�

d
�

d ln L
= 4��0
z + �z
0 + 
0�0 + 
��� + 
z�z� ,

�A2e�

d
z

d ln L
= 2�− 
z��0 − �0 − �� + �z − �z� + �0
� + ��
0

+ 
��z� , �A2f�

d�0

d ln L
= 2�0��0 − 
0 + �0 + �� − 
� + �� + �z − 
z + �z�

+ 2���z + 2�z�� + 
0
�, �A2g�

d��

d ln L
= 4�0�z + 4�z�0 + 
0

2 + 
�
2 + 
z

2, �A2h�

d�z

d ln L
= − 2�z��0 − �� + �z − 
0 + 
� − 
z + �0 − �� + �z�

+ 2�0�� + 2���0 + 
�
z. �A2i�

The RG equation for the energy �diagram �a� in Fig. 5� reads

d


d ln L
= 
�1 + �0 + 
0 + �0 + �� + 
� + �� + �z + 
z + �z� .

�A2j�

For brevity, in this appendix we omit tildes which distinguish
running parameters from their initial values in the main text.

In various particular cases, when only some subset of dis-
order structures is present, these equations reduce to the cor-
responding form known in the literature. The cases of
C0-chiral ���, 
�, ��� and Cz-chiral ���, 
0, 
z, ��� disor-
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der are considered in Sec. IV A. If the disorder is propor-
tional to the �3 matrix ���, �0, �z�, the Hamiltonian de-
couples into two 2�2 blocks, which have the structure of
the model with random mass ��z�, scalar��0�, and vector
���� potentials analyzed in Ref. 63. The RG equations for
the random mass problem were also given in Refs. 62 and
65, for the random potential in Ref. 64.

If the system possesses a time-reversal invariance �T0�,
only the couplings �0, 
�, 
z, ��, and �z survive, which is
the case considered in Ref. 32. Taking into account the dif-
ference between our RG scheme and that of Ref. 32 �where
the velocity is renormalized whereas the energy is not�, we
have checked that the RG equations of Ref. 32 are repro-
duced from the complete set �A2� if a number of assump-
tions concerning the hierarchy of the disorder couplings
��0�	�0 �2
z−
�� ,	�0 �2�z−����
z ,
� ,�z ,��� �2
z

−
� � , �2�z−�� � � are made.

APPENDIX B: IMPURITY-INDUCED CORRECTIONS TO
THE DENSITY OF STATES IN THE UNITARY

LIMIT

In this appendix we calculate the density of states in the
presence of infinitely strong impurities �unitary limit� up to
the second order in their concentration nimp. The contribution
of the first order in nimp is determined by the diagram �Fig.
8�a�� containing a single T matrix93

���1��
� = −
4

�
Im

�	2

2�
 ln�	/�
�� + i��
�/2� � d2k

�2��2

�

2 + v0

2k2

��
 + i0�2 − v0
2k2�2 = −

�	2

2�v0
2�
�ln2�	/�
��

.

�B1�

This result corresponds to Eq. �59�. Obviously, the first-order
contribution to the density of states is correctly taken into
account by the self-consistent unitary approximation.

The problem becomes more complicated when one looks
for the second-order contribution. The calculations are
greatly simplified in the coordinate representation and for
Matsubara energies. The Green function and the T matrix
have the form

G0�i�,r� = −
i�

2�v0
2�K0� �rv0

� + �3�r̂K1� �rv0
�� , �B2�

T�i�� =
2�v0

2

ib� ln�	/��
, b = �1, long range,

4, short range.
�B3�

The T matrix has different values in the limits of long- and
short-range potential disorder. Equation �B2� for the Green
function applies for not too short distances. One has to cut
the real-space integrals at r�v0 /	.

We are going to express the density of states in terms of
the partition function per unit area. The contribution to this
quantity of the second order in � is given by the diagrams in
Fig. 8�b�,

Z2�i�� = nimp
2 Tr


m=1

 
T2m

2m
� d2r�G�r�G�− r��m

= − 2nimp
2 � d2r ln�1 − � T�

2�v0
2�2

��K1
2� �r

v0
� − K0

2� �r
v0
��� . �B4�

The correction to the density of states can be represented
in the form

���2��
� = −
1

�
Im� dZ2

d�i��
�

i�→
+i0
= 8v0

2nimp
2

�Im� i

�3 � dz zK1
2�z�

b2ln2�	/�� + K1
2�z� − K0

2�z��i�→
+i0

.

�B5�

For L=b ln�	 /���1 we split the integral over z into two
parts and observe that it is dominated by the domain z
#1/L:

�
0

 dz zK1
2�z�

L2 + K1
2�z� − K0

2�z�
� �

0

1/L
dz z +

1

L2�
1/L

 

dz zK1
2�z�

�
ln L
L2 . �B6�

Substituting this in Eq. �B5� and performing the analytical
continuation, we finally arrive at

��2�
� = 8v0
2nimp

2 Im� i

�3

ln ln�	/��
b2ln2�	/���i�→
+i0

= −
8�v0

2nimp
2

b2�
�3
ln ln�	/�
��
ln3�	/�
��

= − 2��
��U
2 �
�ln

	

�
�
ln ln

	

�
�
, �B7�

where �U�
� is determined by Eq. �60�.

FIG. 8. Diagrams for �a� the first-order correction to the density
of states and �b� the second-order correction to the partition
function.
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