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We investigate thermodynamic and mechanical properties of silicon nanostructures at finite temperature.
Thermodynamic properties for finite-temperature solid systems under isothermal conditions are characterized
by the Helmholtz free energy density. The static part of the Helmholtz free energy is obtained directly from the
interatomic potential, while the vibrational part is calculated by using the theory of local phonon density of
states �LPDOS�. The LPDOS is calculated efficiently from the on-site phonon Green’s function by using a
recursion technique based on a continued fraction representation. The Cauchy-Born hypothesis is employed to
compute the mechanical properties. By considering ideal Si�001�, �2�1� reconstructed Si�001�, and
monolayer-hydrogen-passivated �2�1� reconstructed Si�001� surfaces of a silicon nanowire, we calculate the
local phonon structure and local thermodynamic and mechanical properties at finite temperature and observe
that the surface effects on the local thermal and mechanical properties are localized to within one or two atomic
layers of the silicon nanowire.
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I. INTRODUCTION

In recent years, silicon nanostructures have attracted con-
siderable attention due to their potential applications in na-
noelectromechanical, nanoelectronic, and optoelectronic
devices.1–3 The calculation of thermodynamic and mechani-
cal properties of silicon nanostructures plays an important
role in developing the physical theories and computational
design tools that describe the motion and operation of silicon
nanodevices.4 First-principles quantum mechanical methods
are generally most accurate for predicting the material prop-
erties. Ab initio local density functional techniques have been
used to determine the thermodynamic properties of silicon.5

However, due to the complexity of these methods and the
need for large computational resources, ab initio calculations
are limited to very small systems. Empirical and semiempir-
ical interatomic potentials6,7 have been developed to provide
a simpler and yet a reasonably accurate description of mate-
rials. Classical molecular dynamics �MD� and Monte Carlo
�MC� simulation are two popular methods that are based on
interatomic potentials. In these methods, the phonon density
of states can be calculated by the Fourier transform of the
velocity-autocorrelation function.8 Once the phonon struc-
tures are known, the thermodynamic properties can be easily
computed. Despite their popularity, computational cost is
still an inherent drawback with the MD and the MC methods.
In addition, in these methods, it is also difficult to calculate
the mechanical properties, where the derivatives of the ther-
modynamic properties with respect to the deformation pa-
rameters are needed, due to the stochastic behavior of the
atom velocities. Another class of methods rely on the theory
of quantum-mechanical lattice dynamics and these methods
are an attractive alternative for computational analysis of ma-
terial properties. The key step in the lattice dynamics ap-
proach is the quasiharmonic approximation of the inter-
atomic potential.9 For a system of N atoms with a given
interatomic potential, Helmholtz free energy and other ther-

modynamic properties can be computed by diagonalizing a
3N�3N force constant matrix.9 Alternative approaches such
as the local quasiharmonic method10 �LQHM� and the quasi-
harmonic approximation in the reciprocal space9 �QHMK�
have also been proposed. As a simplification of the quasihar-
monic approximation, the LQHM reduces the 3N�3N ei-
genvalue problem to N 3�3 eigenvalue problems. The
LQHM, however, neglects the coupling between the vibra-
tions of different atoms and this can result in errors.11,12 The
QHMK relies on a periodic boundary condition and can be
accurate and efficient for bulk silicon structures. However,
the use of periodic boundary conditions can be inaccurate for
nanostructures �with a finite number of atoms along a par-
ticular direction� and this can result in errors for confined
silicon nanostructures.

In this paper, a quasiharmonic approximation with phonon
Green’s function �QHMG� approach—where the quasihar-
monic approximation is combined with the local phonon
density of states �LPDOS�—is developed to compute the lo-
cal phonon structures,13–15 and thermodynamic and mechani-
cal properties of silicon nanostructures. The LPDOS is effi-
ciently calculated from the phonon Green’s function �GF� by
using a recursion method. The mechanical properties are cal-
culated by using the Cauchy-Born rule16 within the quasicon-
tinuum framework.17 We show that the QHMG approach can
be an accurate and an efficient way to determine the local
thermal and mechanical properties of nanostructures at finite
temperature.

The rest of the paper is organized as follows: in Sec. II,
the theory of lattice dynamics, LPDOS, phonon GF, recur-
sion method, local thermodynamic properties, and local me-
chanical properties are introduced; in Sec. III, different sili-
con surface models and the empirical interatomic potential
models are introduced; in Sec. IV, we compute the phonon
structures, thermal properties, and mechanical properties of
silicon nanowires; and conclusions are given in Sec. V.

PHYSICAL REVIEW B 74, 235441 �2006�

1098-0121/2006/74�23�/235441�9� ©2006 The American Physical Society235441-1

http://dx.doi.org/10.1103/PhysRevB.74.235441


II. THEORY

A. Lattice dynamics

The most commonly used method to compute the thermo-
dynamic properties of crystals is the lattice dynamics theory
based on the quasiharmonic approximation.18 Considering an
N-atom system, the total potential energy is first expanded
using a Taylor’s series expansion. In a quasiharmonic ap-
proximation, the higher-order ��2� terms are neglected and
the total potential energy can thus be written in a quadratic
form,

U�x�= U�x0�+
1

2 �
�,�=1

N

�
j,k=1

3 ��2U�x�
�x�j�x�k

�
x=x0

�x�j − x�j
0 ��x�k − x�k

0 � ,

�1�

where x denotes the instantaneous position of all the atoms
in the system, i.e., x= �x1 ,x2 , . . . ,xN�, x0 denotes the equilib-
rium position of all the atoms in the system, i.e., x0

= �x1
0 ,x2

0 , . . . ,xN
0 �, x� and x�

0 are the instantaneous and equi-
librium position vectors of atom �, �=1,2 , . . . ,N, respec-
tively, x�j and x�k are the components of the position vectors
x� and x� along the jth and kth directions, respectively, and
x�j

0 and x�k
0 are the components of the position vectors x�

0 and
x�

0 along the jth and kth directions, respectively. The ele-
ments of the 3N�3N force constant matrix �, are defined as

�3�−3+j,3�−3+k = � �2U�x�
�x�j�x�k

�
x=x0

, �2�

�,� = 1,2, . . . ,N, j,k = 1,2,3.

Furthermore, a mass-weighted force constant matrix can be
defined by

�̂3�−3+j,3�−3+k =
1

�M�M�

�3�−3+j,3�−3+k, �3�

�,� = 1,2, . . . ,N, j,k = 1,2,3,

where M� and M� are the masses of atoms � and �, respec-
tively. In the theory of lattice dynamics, the phonon frequen-
cies can be calculated from the eigenvalues of the mass-
weighted force constant matrix, i.e., �l=�	�l�, l
=1,2 , . . . ,3N, where �l is the lth phonon frequency, and 	�l�

is the lth eigenvalue of �̂. Once the phonon frequencies are
known, the Helmholtz free energy, A, for an N-atom system
is given by16

A = U�x0� + kBT�
l=1

3N

ln�2 sinh	 
�l

2kBT

� , �4�

where the first term U�x0� on the right-hand side is the static
potential energy, the second term is the vibrational energy, kB
is the Boltzmann constant, T is the temperature, and 
 is the
reduced Planck’s constant.

B. LPDOS and local thermodynamic properties

The Helmholtz free energy A computed by Eq. �4�, is a
global property of the system. To compute the local thermo-

dynamic properties of a system, a useful and an important
quantity is the LPDOS,9,19 which is defined as

n��,x�� = �
j=1

3

�
l=1

3N

��� − �l���l�x�j��2, � = 1,2, . . . ,N ,

�5�

where �l�x�j� is the element of the eigenvector correspond-
ing to �l at position x�j, and � is the phonon frequency.
Using the definition of LPDOS, the Helmholtz free energy A
in Eq. �4� can be rewritten as9

A� = U� + kBT

0

�max

ln	2 sinh

�

2kBT

n��,x��d� , �6�

where A� and U� are the Helmholtz free energy and the static
potential energy of atom �, respectively, and �max is the
maximum phonon frequency. The total Helmholtz free en-
ergy A=��=1

N A�. Other thermodynamic quantities can be eas-
ily derived once the Helmholtz free energy is known.20 For
example, the local internal energy of atom � is given by
E�=A�−T��A� /�T�, the local heat capacity of an atom � is
given by Cv�=−T��2A� /�T2�, and the local entropy of an
atom � is given by S�= �E�−A�� /T.

C. Phonon GF and the recursion method

The calculation of LPDOS by Eq. �5� requires that all the
phonon frequencies �l, l=1,2 , . . . ,3N, are known. The cal-
culation of all the phonon frequencies of the system can be
quite expensive. An alternative approach is to calculate the
LPDOS by using the phonon GF. In this section, the LPDOS
is first related to the phonon GF.21 Then an efficient numeri-
cal scheme, the recursion method,13–15 is used to calculate
the phonon GF and LPDOS.

The general intersite phonon GF is given by21

G�j,�k��2� = ���2I − �̂�−1�3�−3+j,3�−3+k = �
l=1

3N
�l�x�j��l

†�x�k�
�2 − �l

2 ,

�7�

�,� = 1,2, . . . ,N, j,k = 1,2,3,

where the combination �j denotes the row index 3�−3+ j,
and the combination �k denotes the column index 3�−3+k
of the 3N�3N matrix G��2�, � is the frequency, I is the
identity matrix, and �l

†�x�k� is the complex conjugate of
�l�x�k�. When �=�l, the phonon GF in Eq. �7� is defined by
a limiting procedure,21 i.e.,

lim

→0+

G�j,�k��2 + i
� = lim

→0+

�
l=1

3N
�l�x�j��l

†�x�k�
�2 − �l

2 + i

. �8�

By using the identities for the � function,

���2 − �l
2� = −

1

�
lim


→0+
Im

1

�2 − �l
2 + i


, �9�
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���2 − �l
2� =

1

2�
��� − �l� , �10�

the diagonal entries of the phonon GF matrix G��2� can be
written as

2�	−
1

�
lim


→0+
Im G�j,�j��2 + i
�
 = �

l=1

3N

��� − �l���l�x�j��2.

�11�

By comparing Eqs. �5� and �11�, the LPDOS for an atom �
can be calculated from the on-site phonon GFs �on-site pho-
non GFs refer to the diagonal entries of the 3N�3N phonon
GF matrix G��2�� by21

n��,x�� = 2�	−
1

�
lim


→0+
Im �

j=1

3

G�j,�j��2 + i
�
 , �12�

where Im � j=1
3 G�j,�j represents the imaginary part of the

summation of the on-site phonon GFs for atom �.
To compute the LPDOS by using Eq. �12�, only the diag-

onal entries of the phonon GF matrix are needed. The direct

matrix inversion in Eq. �7� �i.e., G��2�= ��2I−�̂�−1� to com-
pute the diagonal entries of G��2� is numerically very ex-

pensive. If the mass-weighted force constant matrix �̂ is
diagonal, the diagonal entries of the phonon GF matrix can
be easily obtained. However, the process of diagonalizing the
mass-weighted force constant matrix is also computationally

expensive when the dimension of �̂ is large. As an alterna-
tive method, if the mass-weighted force constant matrix can
be transformed into a tridiagonal form, then the diagonal
entries of the phonon GF can be easily obtained. Note that, if

the mass-weighted force constant matrix �̂ is symmetric, the
tridiagonalized force constant matrix �TD obtained by using
orthogonal transformation matrices, will also be symmetric.
Expressing �TD as

�TD = �
a1 b2

b2 a2 b3

� � �

b3N−1 a3N−1 b3N

b3N a3N

� , �13�

the modified GF matrix using �TD is given by

G̃�Z� = �ZI − �TD�−1, �14�

where Z=�2+ i
. By using the symmetric and tridiagonal

properties of �TD, the entries of G̃�Z� can be represented as
continued fractions.22 For example, the first diagonal entry of

G̃�Z� is given by

G̃11�Z� =
1

Z − a1 −
b2

2

Z − a2 −
b3

2

�

b3N
2

Z − a3N

. �15�

Denoting L to be the orthogonal transformation matrix used

to construct �TD, the relation between G�Z� and G̃�Z� is
given by

G�Z� = LG̃�Z�LT. �16�

The calculation of all the diagonal and the off-diagonal ele-
ments of the tridiagonalized force constant matrix �TD can
still be expensive, i.e., O�N2� computational cost.23 The con-
vergence property of the coefficients al, l=1, . . . ,3N, and bl,
l=2, . . . ,3N, allows that one can compute the first n-level
coefficients �n being far less than 3N� and approximate all
the high order coefficients as a� and b�. Based on this ap-
proximation, the continued fraction in Eq. �15� is calculated
exactly up to n levels and the rest of the continued fraction is
approximated by an infinite level continued fraction, i.e.,

G̃11�Z� can be rewritten as

G̃11�Z� =
1

Z − a1 −
b2

2

Z − a2 −
b3

2

�

bn
2

Z − an − bn+1
2 t�Z�

, �17�

where t�Z� is defined as the square root terminator �SRT�
function24 and is given by

t�Z� =
1

b�

���Z� − i�1 − �2�Z�� , �18�

i is the complex number, and ��Z�= �Z−a�� /2b�. The termi-
nating coefficients a� and b� need to be computed appropri-
ately as the higher order coefficients represent less local and
more distant structural information. Although the higher-
order coefficients can be predicted by an extrapolation
technique,25 in our work, we choose a� and b� by averaging
over the first n levels, i.e., a�= �1/n��l=1

n al, b�

= �1/n��l=2
n+1bl.

The tridiagonalization of the mass-weighted force con-
stant matrix can be realized by using the Lanczos
algorithm.26 In the numerical scheme, for a given atom index
� and a direction index j �i.e., to compute G�j,�j�, the starting
Lanczos state is set as

�1 = �. . . ,0,1,0, . . . �T �19�

where the only nonzero entry is located in the �3�−3+ j�th
position. We also set b1=0, �0=0, and we can compute a1 as

a1=�1
T�̂�1. The Lanczos recursion relation for the mass-
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weighted force constant matrix �̂ applied to a sequence of
vectors,

�̃l+1 = ��̂ − alI��l − bl�l−1, l = 1,2, . . . ,n − 1, �20�

generates the recursion coefficients �RCs�, al+1= �̃l+1
T �̂�̃l+1,

bl+1=��̃l+1
T �̃l+1, and the set of normalized vectors �l+1

= �̃l+1 /bl+1, l=1,2 , . . . ,n−1. From the Lanczos algorithm,
the orthogonal transformation matrix L is computed as L
= ��1�2¯�n¯ �. Because of the construction of �1, it is
easy to show that

G�j,�j�Z� = G̃11�Z� . �21�

The above process can be repeated to compute all the diag-
onal entries of G, i.e., for a given starting Lanczos state �1,
the first n levels of the RCs al, l=1, . . . ,n, and bl, l
=2, . . . ,n, are first calculated by the Lanczos algorithm.
Then, a�, b�, and the SRT function t�Z� are computed. The

first diagonal entry of the modified GF matrix, G̃11�Z�, can
be calculated by Eq. �17�, which is identical to the desired
diagonal entry of the original phonon GF matrix, G�j,�j�Z�.
Since only the first n �which is far less than N and does not
depend on N� recursion levels are calculated, the recursion
technique is an O�N� method.

D. Local mechanical properties

Using the local Helmholtz free energy defined in Eq. �6�,
the local constitutive relation for mechanical analysis of
nanostructures is given by

Sij�x�� = �WA
�/�Eij, i, j = 1,2,3, �22�

where Sij�x�� is the second Piola-Kirchhoff stress tensor at
position x�, WA

� is the Helmholtz free energy density of atom
� which is defined by WA

�=A� /��, �� is the volume of atom
� in the initial configuration, and E is the Green-Lagrange
strain tensor. The elastic constants for each atom position are
given by20

Cijkl�x�� =
�2WA

�

�Eij�Ekl
−

�2WA
�

�Eij��m
	 �2WA

�

��m��n

−1 �2WA

�

��n�Ekl
,

�23�

i, j,k,l,m,n = 1,2,3,

where Cijkl�x�� is the elastic constant tensor for atom �, and
� are the additional inner displacements for a complex crystal
structure such as diamond silicon. Due to the cubic symme-
try of unstrained silicon, the pairs ij and kl in Cijkl can be
replaced by a single index p in the Voigt notation: ij=11
→p=1, ij=22→p=2, and ij=12 or ij=21→p=4. Thus the
three independent elastic constants for unstrained silicon
with cubic symmetry are C11, C12, and C44. The derivatives
of the Helmholtz free energy density with respect to the de-
formation parameters �i.e., E and �� are given by

�WA
�

�v
=

1

��
� �U�

�v

+ kBT

0

�max

ln	2 sinh

�

2kBT

 �n��,x��

�v
d�� ,

�24�

where v can be replaced by E or �. The derivatives of the
LPDOS can be obtained from the derivatives of the GF,

�n��,x��
�v

= 2�	−
1

�
lim


→0+
Im �

j=1

3
�G�j,�j��2 + i
�

�v 
 .

�25�

In the recursion technique, since the GF is expressed as a
continued fraction and only the RCs al and bl are a function
of the deformation parameters, explicit expressions for the
derivatives of the GF can be easily derived by using the
chain rule. The calculation of these derivatives is presented
in the Appendix.

III. SILICON SURFACE MODELS

In this work, we refer to ideal surfaces as the Si�001�
surfaces �with dangling bonds�. In addition to ideal surfaces
we also consider reconstructed and hydrogen passivated re-
constructed surfaces. The reconstruction of the Si�001� sur-
faces has previously been systematically examined using
both classical potentials and ab initio calculations, and most
calculations agree on the essentials of the Si�001� �2�1�
reconstruction with the dimer bond along the �110�
direction.27–29 The periodicity of �2�1� is explained by the
time average of the thermal flipflop motion of asymmetric
dimmers on the Si�001� surfaces.30,31 Moreover, for a hydro-
gen passivation of one monolayer, the surface retains a
�2�1� reconstruction with hydrogen atoms terminating the
dangling bonds of silicon. The ideal Si�001� surfaces, the
�2�1�-reconstructed Si�001� surfaces, and the monolayer-
hydrogen-passivated �2�1�-reconstructed Si�001� surfaces
are studied in this work. These three configurations of the
silicon surfaces are shown in Fig. 1. For both bulk silicon
and the Si�001� surfaces, the Tersoff interatomic potential
model7 is used to approximate the Si-Si covalent bond inter-
actions. For Si-H interactions, the empirical interatomic po-
tential proposed in Ref. 34 is adopted in this work, since this
extended version of the Tersoff potential has been tested suc-
cessfully for its accuracy in decribing the Si-H system in
solid form.35,36 Note that the Tersoff potential gives a Si-Si
dimer bond length of 2.37 Å. When a monolayer of hydro-
gen atoms are added on the �2�1� reconstructed Si�001�
surfaces, the Si-Si dimer bond length increases to 2.43 Å, as
shown in Fig. 1. For the real Si�001� surfaces, there exist
steps, which belong to a generic defect class, line
defects.32,33 In this paper, we do not consider the existance of
the steps on the silicon surfaces, and neglect the effect of the
steps on the phonon structures, thermodynamic and mechani-
cal properties of silicon nanowires.
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IV. RESULTS AND DISCUSSION

A. LPDOS of bulk silicon and nanoscale silicon structures

In the quasiharmonic approximation, the elements of the

mass-weighted force constant matrix �̂ are a function of the
lattice constant a, the strain tensor E, and the inner displace-
ment �. Therefore, the LPDOS n�� ,x�� and the Helmholtz
free energy are also a function of a, E, and �. For a given
temperature T, the lattice constant a is first determined on the
unstrained bulk silicon crystal by minimizing the Helmholtz
free energy, i.e., by solving the equation ��A /�a�T=0. The
expression for the derivative of the Helmholtz free energy
with respect to lattice constant a can be easily obtained from
Eqs. �24� and �25� and the expressions given in the Appendix
�by replacing v with a in the expressions in the Appendix�.
For the calculation of the mass-weighted force constant ma-
trix, we use the analytical expressions, i.e., the second de-
rivatives of the Tersoff potential for Si-Si interactions and
Tersoff-type potential for Si-H interactions with respect to
the atomic displacements. The analytical expressions for the
derivatives of the Tersoff potential are given in Ref. 12. The
expressions for the derivatives of the Tersoff-type potential
for Si-H interactions are derived by following the same steps
and are not provided here for the sake of brevity.

Figure 2 shows the computed lattice constant as a func-
tion of temperature by using the quasiharmonic phonon GF
approach with different recursion levels �QHMG-n, where n
represents the recursion level�. The results from QHMK,
LQHM, and MD simulations are also included in the figure

for comparison. Once the lattice constant a at the given tem-
perature is computed, all the phonon structures can be easily
obtained. For bulk silicon at 300 K, Fig. 3 shows a compari-
son of LPDOS between QHMK and QHMG-n by using Ter-
soff interatomic potential. Note that the LPDOS for the
LQHM model is a �-function located at �=11 THz. From
the results on lattice constant and LPDOS for bulk silicon,
we find that the calculation with 20 recursion levels results in
a very good approximation.

Next, we calculate the LPDOS for a silicon nanowire con-
sisting of 100�5�5 unit cells, as shown in Fig. 4. We adopt
three surface configurations as discussed in Sec. III to end
the nanowire. For the preparation of the silicon nanowire
with different surface configurations, we first generate the
silicon diamond structure by using the lattice constant of the
Tersoff silicon, which is 5.432 Å. Then the
�2�1�-reconstructed surfaces and the hydrogen-terminated
surfaces are formed by using the parameters given in Refs.
34 and 36. Then we use MD simulations to relax the struc-
ture �no external loads applied� and obtain the equilibrium
geometry of the nanowire. For the nanowire with ideal sur-
faces, the interested atom positions are exactly as shown in
Fig. 4, and the surface atoms �1 and 12� have only two
bonds. For the nanowire with �2�1�-reconstructed surfaces,
the positions of atoms 1 and 12 are slightly different, and
atoms 1 and 12 have three bonds where the new bonds are
generated from the surface reconstruction. For the nanowire
with �2�1�-reconstructed surfaces with hydrogen passiva-
tion, the positions of atoms 1 and 12 are also slightly differ-
ent and atoms 1 and 12 have four bonds. Figure 5 gives the

FIG. 1. The different silicon surfaces. �a� The ideal Si�001� sur-
face, �b� the Si�001� surface with a �2�1� reconstruction, and �c�
the �2�1�-reconstructed Si�001� surface with monolayer-hydrogen
passivation.

FIG. 2. �Color online� The lattice constant for Tersoff silicon at
different temperatures. Results from QHMG-n are compared with
those from QHMK, LQHM, and molecular dynamics �MD� simu-
lations �MD data are from Ref. 39�.

FIG. 3. �Color online� LPDOS for bulk Tersoff silicon: compari-
son between QHMK and QHMG-n at 300 K. Note that the LPDOS
from LQHM is a � function located at �=11 THz.
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LPDOS for different atom positions in the nanowire �see Fig.
4 for the locations of the atoms� at 300 K. From Fig. 5�a�, we
find that, for the surface atoms, the acoustic phonons have
lower frequencies. This is because the atoms on the surface
have fewer bonds �compared to bulk� and this leads to the
softening of the phonon frequency. Moreover, from Fig. 5�a�,
we find that the acoustic phonons are shifted to the right
�toward higher frequencies� for reconstructed surfaces. The
reason is that the surface reconstruction and hydrogen passi-
vation generate more bonds for the surface atoms. However,
for the reconstructed surfaces with hydrogen passivation,
even though the surface silicon atoms also have four bonds
�the same number as for bulk silicon atoms�, their LPDOS
are still quite different from the LPDOS of bulk silicon at-
oms. This is because Si-H interactions are weaker than the
Si-Si interactions. A new peak is observed at about 57 THz
for the surface silicon atom in the nanowire with hydrogen
passivation on the surfaces as shown in Fig. 5�a�. This high
frequency is due to the Si-H bond stretching vibrations �e.g.,
the stretching vibrational frequency for SiH molecule is
61 THz �Ref. 34��. From Figs. 5�b� and 5�c�, we observe that
for the atom positions inside the surface, the LPDOS are
quite similar to that of the bulk. The highest peak �at about
57 THz� disappears for both atoms 2 and 5. The phonons in
the range of 15–18 THz are shifted toward higher frequen-
cies for atom 2, due to the effect of the Si-H bond on the
surface. This effect, however, is not seen for atom 5, where
the LPDOS is almost the same as that of the bulk, for all
three silicon nanowires.

B. Local thermal properties

After the LPDOSs are calculated, the Helmholtz free en-
ergy can be obtained from Eq. �6�. All other thermodynamic

properties can then be obtained easily. Figure 6 shows the
local thermodynamic properties �Helmholtz free energy, in-
ternal energy, vibrational energy, kinetic energy, entropy, and
heat capacity� as a function of the atom positions.

From Figs. 6�a� and 6�b�, we find that the free energy and
the internal energy for surface atoms are higher than those
for interior atoms, for silicon nanowires with ideal Si�001�
surfaces and with �2�1� surface reconstructions. For the
silicon nanowire with �2�1� surface reconstruction and hy-
drogen passivation, the free energy and internal energy for
the surface silicon atoms are lower than those for the interior
atoms. This is because the static energy is the dominant con-
tribution to the Helmholtz free energy and internal energy,
and the presence of hydrogen atoms on the
�2�1�-reconstructed Si�001� surfaces lowers the static po-
tential energy as the bond energy for Si-H is lower than the
Si-Si bond energy �e.g., the bond energy for SiH molecule is
−3.1 eV, which is lower than the bond energy for Si2 mol-
ecule, −2.66 eV �Ref. 34��.

Figures 6�c� and 6�d� indicate that the vibrational energy
and the kinetic energy of the surface atoms for silicon nano-
wire with ideal Si�001� surfaces are lower than those for the
interior atoms. The decrease in the vibrational and kinetic
energies of the surface atoms when compared to the interior

FIG. 4. �Color online� The silicon nanowire �100�5�5 unit
cells�. The atoms of interest �atoms 1 to 12� are shown. For the
nanowire with ideal surfaces, the atom positions are exactly as
shown in the figure. For the nanowire with �2�1�-reconstructed
surfaces and �2�1�-reconstructed surfaces with hydrogen passiva-
tion, the positions of atoms 1 and 12 are slightly different.

FIG. 5. �Color online� The LPDOS calculated by QHMG-20 for
different atom positions in the silicon nanowire shown in Fig. 4
with ideal surface �circles with dashed line�, �2�1� reconstruction
�triangles with dashed line�, and �2�1� reconstruction with hydro-
gen passivation �plus with dashed line� at 300 K. The QHMK result
for bulk silicon �solid line� is also given for comparison.

Z. TANG AND N. R. ALURU PHYSICAL REVIEW B 74, 235441 �2006�

235441-6



atoms is due to the phonon softness on the surface, as de-
scribed in Sec. IV A. Since the vibrational energy and the
kinetic energy are a measure of the vibrational movement in
the system, low-frequency phonons result in a lower vibra-
tional energy and kinetic energy for the surface atoms. More-
over, by comparing the results for all the three surfaces in
Figs. 6�c� and 6�d�, we find that the surface reconstruction
first increases the vibrational and kinetic energy, and the in-
troduction of hydrogen atoms on the reconstructed surface
further increases the vibrational and the kinetic energies. The
reason is, as described in Sec. IV A, due to the surface re-
construction and hydrogen passivation, new Si-Si and Si-H
bonds are formed, and the low-frequency phonons are shifted
toward higher frequencies. Since the high-frequency
phonons have higher energy, the shift of the low-frequency
phonons results in the increase of the vibrational and kinetic
energies for the atoms near the surfaces.

Figure 6�e� shows that the entropy of the surface atoms is
higher compared to the interior atoms. This is because the
entropy is a measure of the disorder of the system, and the
surface atoms increase the disorder of the system. Since the
surface reconstruction forms new Si-Si bonds on the sur-
faces, the disorder of the system is decreased and the entropy
is thus decreased. The introduction of hydrogen atoms on the
reconstructed surfaces forms new Si-H bonds and the disor-
der of the system is further decreased. Therefore, the silicon
nanowire with �2�1� surface reconstruction and hydrogen
passivation has the lowest entropy for those atom positions
near the surfaces, as shown in Fig. 6�e�. From Fig. 6�f�, we
find that the heat capacity of the surface atoms is also higher
compared to the interior atoms for the silicon nanowire with

ideal Si�001� surfaces, and the surface reconstruction and
hydrogen passivation decrease the heat capacities.

C. Mechanical properties

The local elastic properties for the different atom posi-
tions in the silicon nanowire are calculated by Eq. �23�. Fig-
ure 7 shows the variation of the elastic properties with atom
positions at room temperature �T=300 K� for the silicon
nanowire with ideal Si�001� surfaces. We find that the elastic
constants for the atoms near the surface are smaller than
those farther way from the surface. The variation of the elas-
tic constants for interior atoms is small ��C11�0.5%,
�C12�0.7%, and �C44�0.3%�. Thus, the effect of the sur-
face on the elastic constants of the interior atoms is negli-
gible. The calculation of the elastic constants for the surface
atoms �i.e., atoms 1 and 12� is a nontrivial task as the
Cauchy-Born rule is not applicable for the surface atoms. To
investigate the surface effect on the elastic properties, we
calculate the average elastic constants for a silicon nanowire
with a length of 44 nm and various square cross-sectional
areas. The averaged elastic constants are calculated by dif-
ferentiating the total Helmholtz free energy with respect to E
and �. Figure 8�a� shows the elastic constants as a function of
the nanowire cross-sectional area at T=300 K. Note that the
cubic symmetry of the bulk silicon crystal lattice breaks
down due to the finite size along the �010� direction and this
results in C1111�C2222, as shown in Fig. 8�a�. The Young’s
modulus along the �100� direction can be obtained by
E�100�=C1111−2C1122

2 / �C2222+C1122�. Figure 8�b� shows the
Young’s modulus along the �100� direction as a function of
the nanowire cross-sectional area at T=300 K. For compari-
son, the Young’s modulus from stretch tests with MD simu-
lations at constant temperature4 is also shown in Fig. 8�b�.
From these results we can conclude that, when the cross-
sectional area is larger than 10�15 nm2, the Young’s modu-
lus of the silicon nanowire is same as that of the bulk silicon.
For the silicon nanowire with ideal Si�001� surfaces, the de-
formation of the atoms in the surface region can be approxi-
mated as homogeneous and the calculation of the averaged
elastic constant is possible. However, for the silicon nano-
wires with surface reconstruction and hydrogen passivation,
surface region has a curvature. The use of the standard
Cauchy-Born rule for atoms in the curved surfaces can be
inaccurate. Recently the standard Cauchy-Born rule has been
extended for nanostructures with curvatures e.g. carbon
nanotubes.37,38 The application of the extended Cauchy-Born
rule for surface reconstructions in silicon is not a trivial task
and we leave this topic for future work.

V. CONCLUSIONS

In conclusion, we have investigated the local thermody-
namic and mechanical properties of silicon nanostructures
using local phonon GF method and have established the con-
stitutive relation which plays a key role in finite temperature
multiscale analysis of nanostructures. For silicon nanowires
with ideal Si�001� surfaces, with �2�1� surface reconstruc-
tion, and with surface reconstruction and hydrogen passiva-

FIG. 6. �Color online� Variation of thermodynamic properties
��a� Helmholtz free energy, �b� internal energy, �c� vibrational en-
ergy, �d� kinetic energy, �e� entropy, �f� heat capacity� with different
atom positions �denoted by the distance from the rear surface, d�
computed by QHMG-20 for the silicon nanowire shown in Fig. 4
with three surface configurations: ideal surface �circles with solid
line�, �2�1� reconstruction �triangles with solid line�, and �2�1�
reconstruction with hydrogen passivation �stars with solid line�. T
=300 K.
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tion, we calculate the phonon structures and local thermal
properties. For the silicon nanowire with ideal surfaces, the
local elastic constants and the averaged elastic properties are
computed and the averaged elastic constants are compared
with molecular dynamics simulation results. The calculations
on the local thermal and mechanical properties show that the
surface effects for silicon nanostructures are quite localized.
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APPENDIX: CALCULATION OF THE DERIVATIVES OF
THE PHONON GF IN A RECURSION SCHEME

Consider the calculation of the diagonal entries of the
phonon GF given by Eqs. �14� and �21�. Following the stan-
dard procedure of matrix inversion, Eq. �21� can be rewritten
as

G�j,�j�Z� = G̃11 =
D1

D0
=

1

D̃0

, �A1�

where D0 is the determinant of ZI−�TD, D1 is the determi-
nant of ZI−�1

TD, and �1
TD is a submatrix formed by omitting

the first row and the first column of the tridiagonal matrix
�TD. By using the Laplace expansion for the first row of
ZI−�TD, we have

D0 = �Z − a1�D1 − b2
2D2, �A2�

where D2 is the determinant of ZI−�2
TD, and �2

TD is a sub-
matrix formed by omitting the first row and the first column
of the tridiagonal matrix �1

TD. Generalizing the above equa-
tion, we have

Dl = �Z − al+1�Dl+1 − bl+2
2 Dl+2, l = 0,1, . . . ,n − 1.

�A3�

By defining D̃l=Dl /Dl+1, Eq. �A3� can be rewritten as

D̃l = �Z − al+1� − bl+2
2 /D̃l+1, l = 0,1, . . . ,n − 1. �A4�

For the SRT terminator, we have

D̃n =
1

t�Z�
. �A5�

Thus, from Eq. �A1� the first derivatives of the phonon GF
with respect to any deformation parameter v can be written
as

�G�j,�j�Z�
�v

= −
1

D̃0
2

�D̃0

�v
, �A6�

and this can be calculated by using a recursion scheme as

�D̃l

�v
= −

�al+1

�v
−

2bl+2

D̃l+1

�bl+2

�v
+

bl+2
2

D̃l+1
2

�D̃l+1

�v
, l = 0,1, . . . ,n − 1,

�A7�

�D̃n

�v
= −

1

t2�Z�
�t�Z�
�v

, �A8�

�t�Z�
�v

= −
t�Z�
b�

�b�

�v
+

1

b�
	1 +

i��Z�
�1 − �2�Z�


 ���Z�
�v

,

�A9�

���Z�
�v

= −
1

b�
	1

2

�a�

�v
+ ��Z�

�b�

�v

 . �A10�

To calculate the derivatives of the RCs which are needed
in Eqs. �A7�–�A10�, consider the Lanczos algorithm, which
is given by Eq. �20� and its related equations, and this results
in the following equations:

��̃l+1

�v
= 	 ��̂

�v
−

�al

�v
I
�l + ��̂ − alI�

��l

�v
−

�bl

�v
�l−1 − bl

��l−1

�v
,

�A11�

FIG. 7. �Color online� Variation of elastic constants �in Mbars�
with different atom positions �denoted by the distance from the rear
surface, d� for the silicon nanowire with ideal surfaces shown in
Fig. 4. T=300 K.

FIG. 8. �Color online� �a� Variation of elastic constants �in
Mbars� with cross-sectional area for the silicon nanowire with ideal
surfaces. �b� Variation of Young’s modulus �in Mbars� along �100�
direction with cross-sectional area. The length of the silicon nano-
wire �with ideal surfaces� is chosen as 44 nm, which is large enough
to eliminate the surface effect in the length direction. T=300 K.
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�al+1

�v
= 2

��̃l+1
T

�v
�̂�̃l+1 + �̃l+1

T ��̂

�v
�̃l+1, �A12�

�bl+1

�v
=

1

bl+1

��̃l+1
T

�v
�̃l+1, �A13�

��l+1

�v
= −

1

bl+1
2

�bl+1

�v
�̃l+1 +

1

bl+1

��̃l+1

�v
, �A14�

�a�

�v
=

1

n
�
l=1

n
�al

�v
, �A15�

�b�

�v
=

1

n
�
l=2

n+1
�bl

�v
. �A16�

The second derivatives can be derived in the same manner
and these are not given here for the sake of brevity.
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