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Unlike regular electron spin, the pseudospin degeneracy of Fermi points in graphene does not couple directly
to magnetic field. Therefore graphene provides a natural vehicle to observe the integral and fractional quantum
Hall physics in an elusive limit analogous to zero Zeeman splitting in GaAs systems. This limit can exhibit new
integral plateaus arising from interactions, large pseudoskyrmions, fractional sequences, even/odd numerator
effects, composite-fermion pseudoskyrmions, and a pseudospin-singlet composite-fermion Fermi sea. It is
stressed that the Dirac nature of the B=0 spectrum, which induces qualitative changes in the overall spectrum,
has no bearing on the fractional quantum Hall effect in the n=0 Landau level of graphene. The second Landau
level of graphene is predicted to show more robust fractional quantum Hall effect than the second Landau level
of GaAs.
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I. INTRODUCTION

The discovery of integral quantum Hall plateaus in
graphene1 poses several questions: Does the fractional quan-
tum Hall effect �FQHE� also occur in graphene, and, if so,
what is its character? Does it resemble the integral quantum
Hall effect �IQHE� in graphene? How does it compare to the
FQHE in GaAs? What other physics does interaction pro-
duce? Even if the Zeeman energy is large enough to fully
polarize the �real� spin of the low energy state, as assumed
throughout this paper, the graphene Fermi point degeneracy,
which takes the form of a pseudospin 1/2 character, remains.
Strikingly, despite the qualitative changes in the Landau
level �LL� spectrum that arise from the Dirac dispersion of
the low energy states at zero field, the physics of the n=0
graphene Landau level is identical to that of electrons in the
n=0 GaAs Landau level, but with the Zeeman splitting set
identically to zero; the pseudospin, which is also a sublattice
index for n=0, plays the role of the traditional electron spin.
This leads to the prediction of the formation of composite
fermions, FQHE at �=n / �2pn±1�, odd versus even numera-
tor effects, and a pseudospin singlet composite fermion
Fermi sea. Giant pseudoskyrmions are predicted for the fer-
romagnetic integral and fractional quantum Hall states. Our
numerical diagonalizations show that, interestingly, the
FQHE of graphene in the n=1 Landau level is more robust
than that in the n=1 GaAs Landau level, due to more favor-
able interaction pseudopotentials. We assume below that the
pseudospin symmetry is exact, and also that LL mixing is
negligible.

In graphene, two Fermi points, each with a twofold band
degeneracy, generate a low-energy continuum approximation
with a four-component envelope wave function whose com-
ponents are labeled by a Fermi-point pseudospin= ±1 and a
sublattice. The Hamiltonian for one pseudospin component
is2,3

H = vF� 0 �x − i�y

�x + i�y 0
� , �1�

where vF is the Fermi velocity and �� = p� + �e /c�A� . Letting z

=x− iy, choosing the symmetric gauge A� = �−By /2 ,Bx /2�,

and introducing the Landau level raising and lowering opera-
tors, a†= �z̄ /2−2�z� /�2 and a= �z /2+2�z̄� /�2, the Hamil-
tonian becomes

H =
�2�vF

ilB
� 0 a

− a† 0
� . �2�

The eigenvalue problem is conveniently formulated in terms
of H2, which can be represented as LL number operators:

H2 =
2�2vF

2

lB
2 �a†a + 1 0

0 a†a
� . �3�

Any �=���n−1,m1

��n,m2

� is an eigenvector of H2, where �n,m are the
standard LL eigenfunctions in GaAs �n=0,1 , . . . is the LL
index, and m is the angular momentum index�. H�=En�
requires m1=m2 and fixes � /�, with the result that normal-
ized eigenvectors take the form �sgn�0�=0 by convention�

��n�0,m� =
1
�2
�− sgn�n�i��n�−1,m

��n�,m
� , �4�

��0,m� = � 0

�0,m
� , �5�

En = sgn�n��2�vF
2eB�n�/c . �6�

II. INTEGRAL QUANTUM HALL EFFECT

Before discussing the FQHE,4 we describe how interac-
tions are expected to affect the integral QHE in graphene.
For noninteracting electrons, when both the spin and the
pseudospin degeneracies are present, the Hall plateaus have
been predicted and seen at

RH =
h

je2 , j = . . . ,− 6,− 2,2,6,10,14, . . . . �7�

For magnetic fields large enough to resolve the spin bands
the Hall plateaus occur at
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RH =
h

je2 , j = . . . ,− 2,− 1,0,1,2,4,6,8, . . . , �8�

where j=0 implies a band insulator. However, all integral
plateaus should, in principle, become possible for interacting
electrons. Consider a magnetic field large enough to lift the
spin degeneracy at a filling �=2n+1 with n=1,2 ,3 , . . .
where no QHE occurs for noninteracting electrons. For inter-
acting electrons, the rotational symmetry in pseudospin
space is spontaneously broken due to pseudospin exchange,
with the pseudospin magnetization picking an arbitrary di-
rection. While this system supports gapless pseudospin-wave
excitation, the charged excitations have a gap, thus produc-
ing a Hall plateau.

III. FQHE IN THE n=0 LANDAU LEVEL OF GRAPHENE

The unusual electronic dispersion of graphene around E
=0 is reflected in both the structure of Landau levels and in
the offset of the Hall conductance staircase. Nonetheless, the
actual wave functions of electrons in the n=0 manifold are
identical to those in the conventional lowest Landau level of
GaAs. Consequently, the FQHE in the n=0 Landau level of
graphene at a high magnetic field maps onto FQHE of elec-
trons in GaAs with zero Zeeman energy,5 as corroborated
and extended by the numerical results described below.

The basic physics in the n=0 graphene LL, therefore, is
the same as in GaAs. Each electron captures an even number
�2p� of quantized vortices to become a composite fermion.6

The Berry phases generated by the vortices effectively cancel
part of the external magnetic field, so that the dynamics of
composite fermions are governed by a reduced magnetic
field B*=B−2p	
0, where 	 is the particle density in the n
=0 Landau level and 
0=hc /e is the flux quantum. The n
=0 Landau level of electrons splits into Landau-like levels of
composite fermions, whose filling factor �*, in terms of the
electron filling �, is given by �=�* / �2p�*±1�.

The IQHE of composite fermions for �*=n produces se-
quences of fractions:7

� =
n

2pn ± 1
. �9�

The origin of gap, i.e., the energy required to promote a
composite fermion into a higher CF-Landau level, is differ-
ent for even and odd values of n. For even n, the ground state
is a pseudospin singlet, with n /2 CF-Landau levels for each
component of the pseudospin occupied. For odd n, the
ground state is partially pseudospin polarized; no QHE
would occur here if the composite fermions did not interact,
but the residual interaction between composite fermions
opens a gap. To the extent the residual interaction is weak,
one expects fractions with even numerators to be more ro-
bust than those with odd numerators. The excitation energies
for the GaAs FQHE in the zero Zeeman energy limit apply to
graphene FQHE within the n=0 level. Calculated gaps to
creation of a far-separated charged quasiparticle/quasihole
pair at �=1/3 and �unpolarized� �=2/5 are 0.07 and 0.04
e2 /��B, respectively;8 the larger gap at 1 /3 indicates the sig-
nificance of inter-CF interactions.

So long as electrons are confined to the n=0 Landau
level, they have no memory of the Dirac nature of the zero-
field dispersion, with some surprising consequences for the
FQHE. The CF-cyclotron energy opens up approximately
linearly with B*, as expected for composite fermions with a
parabolic dispersion, even though the cyclotron energy of
electrons in graphene scales anomalously with B.

In GaAs, the sequence of FQHE states at �=n / �2pn±1�
terminates as n→� in a composite-fermion Fermi sea at �
=1/2p, where the effective magnetic field vanishes.9,10 For
zero Zeeman energy, variational calculations favor the spin
singlet Fermi sea,11 so graphene should have a pseudospin-
singlet CF Fermi sea at �=1/2p. The CF Fermi sea in GaAs
has been successfully modeled as an ordinary Fermi sea with
parabolic dispersion, which allows one to deduce an effec-
tive mass for composite fermions. The same should be true
of the CF Fermi sea in graphene, in spite of the fact that
electrons in graphene make a Dirac sea at zero magnetic field

FIG. 1. �Color online� �a� Pseudopotentials for n=0 and n=1 Landau levels in graphene and GaAs. �b�–�d� Activation gaps at ��n�

=1,1 /3, and 2/5 in several graphene LLs. All energies are given in units of e2 /�lB, where � is the dielectric constant of the host
semiconductor and lB is the magnetic length. The gaps in �b� and �c� refer to the energy required to create a pseudoskyrmion-antiskyrmion
pair. Gaps to pseudospin conserving �cons.� and pseudospin reversed �rev.� excitations are given in �d�.
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and have no effective mass. The singlet nature of the CF
Fermi sea can be ascertained through a measurement of the
Fermi wave vector, as was accomplished in GaAs systems by
various geometric means.10

IV. FQHE IN THE N=1 LANDAU LEVEL OF GRAPHENE

The nature of FQHE depends on the Haldane pseudopo-
tentials. In GaAs, the FQHE is essentially restricted to the
lowest LL: very few fractions are seen in n=1, and almost
none in higher LLs. The mapping between GaAs and
graphene does not hold in higher Landau levels, so different
behaviors are expected. We first evaluate the Coulomb ma-
trix elements within the nth graphene Landau level. Write
�n1 ,m1 ;n2 ,m2 ; . . . ;nN ,mN	 for the product state �n1,m1
� �n2,m2

� ¯ � �nN,mN
and 
n1 ,m1 ;n2 ,m2 ; . . . ;nN ,mN		 for

��n1,m1� � ¯ � ��nN,mN�. Then,

4��n,m1;n,m2
V
n,m3;n,m4		

= �n,m1;n,m2�V�n,m3;n,m4	

+ �n − 1,m1;n,m2�V�n − 1,m3;n,m4	

+ �n,m1;n − 1,m2�V�n,m3;n − 1,m4	

+ �n − 1,m1;n − 1,m2�V�n − 1,m3;n − 1,m4	 . �10�

By conservation of angular momentum, these matrix ele-
ments are all proportional to 
m1+m2,m3+m4. The problem of
electrons in the nth graphene LL thus formally maps into that
of the lowest GaAs LL �with two pseudospin copies� with an
effective interaction defined by the pseudopotentials

Vm
�n�graphene =

1

4
�Vm

�n� + Vm
�n−1� + 2Vm

�n,n−1�� ,

Vm
�n,n−1� =� d2k

�2��2

2�

k
Ln� k2

2
�Ln−1� k2

2
�e−k2

Lm�k2� , �11�

and Vm
�n� is the effective pseudopotential for the nth LL in

GaAs. As seen in Fig. 1�a�, Vm
�1�graphene lies between Vm

�0� and
Vm

�1�, except for m=1. To see what FQHE this interaction
implies, we have numerically diagonalized finite systems in a
geometry where N electrons move on the surface of a sphere
whose center holds a magnetic monopole of strength Q pro-
ducing a flux of 2Qhc /e through the surface of the sphere.
We use the pseudopotentials calculated above for the disk
geometry; this gives the exact result for very large systems
and is generally a reasonable approximation.

As a preliminary step, we have investigated the fully
pseudospin-polarized sector, where larger systems �with up
to ten particles� can be studied, and found that the n=1
graphene LL behaves very similarly to the n=0 LL. This
suggests that the FQHE in higher graphene LLs may be more
robust than in GaAs. We next compare ground states for
graphene systems including the pseudospin degree of free-
dom �but with the real spin frozen�, to GaAs systems with
zero Zeeman splitting. Table I shows the ground state quan-
tum numbers, orbital angular momentum L, and spin or pseu-
dospin S, for the n=0 and n=1 LLs at several fractions. The
n=0 results are identical for GaAs and graphene. The near
perfect overlaps in the last column of the table indicate that
the FQHE in the n=1 graphene LL also strongly resembles
that in the n=0 �lowest� graphene LL. �The analogous over-
laps are rather low for the FQHE states in the n=0 and n
=1 LLs in GaAs.12� The 1/3 state is fully polarized, whereas
the 2/5 and 2/3 are �pseudo�spin singlet. At 3 /5 the spin of
the ground state differs from that of the lowest LL for N=8;
the existence or the nature of FQHE at this fraction remains
unclear at the moment.

TABLE I. Orbital angular momentum L�n� and spin/pseudospin S�n� of the ground states of finite systems on a sphere at �=1 � 3, 2 � 3,
2 � 5, and 3 � 5 in the n=0 and n=1 Landau levels of graphene and GaAs. D is the dimension of the Hilbert space in the Lz=Sz=0 sector;
D0 is the dimension of the L=0 sector. The last column gives the overlaps between the n=0 and n=1 graphene ground states.

� N 2Q D D0 L�0� S�0�

GaAs Graphene

OverlapL�1� S�1� L�1� S�1�

1/3 4 9 145 5 0 2 0 2 0 2 0.99932

5 12 1106 10 0 5/2 2 3/2 0 5/2 0.99998

6 15 11588 50 0 3 0 3 0 3 0.99875

7 18 109138 290 0 7/2 0 7/2 0 7/2 0.99974

2/3 4 5 29 3 0 0 0 2 0 0 0.99968

6 8 500 10 0 0 1 3 0 0 0.98887

8 11 11483 91 0 0 2 4 0 0 0.97482

2/5 4 7 72 4 0 0 0 0 0 0 0.99248

6 12 3796 28 0 0 1 3 0 0 0.93622

8 17 274842 768 0 0 0 4 0 0 0.95578

3/5 5 8 226 5 0 3/2 0 5/2 0 3/2 1.00000

8 13 39131 205 0 2 0 4 0 0 0
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V. PSEUDOSKYRMIONS

In GaAs quantum wells, the excitations of the �=1 state
for exactly zero Zeeman splitting are not simple particle-hole
excitations but spin textures called skyrmions,13–15 in which
half of the spins are reversed. However, the skyrmion size
rapidly decreases with increasing Zeeman energy; experi-
mentally, skyrmions typically have 3 to 5 flipped spins.16,17

No skyrmions occur at �=3,5 , . . .. CF skyrmions are be-
lieved to be relevant near �=1/3 at very small Zeeman
energies.18–20

In contrast, for the state in which one of the two degen-
erate levels of the n=0 graphene manifold is fully occupied
�which produces zero Hall conductance�, the excitations
ought to be large pseudoskyrmions. In exact diagonalization
studies, we find pseudoskyrmions also in the n=1,2
graphene LLs, where the addition of one particle or hole to
the fully pseudospin polarized state produces a pseudospin
singlet state. No such behavior is seen for n�3; here the
excitation is fully pseudospin-polarized �S=N /2� on the
quasihole side and has a single pseudospin reversed �S
=N /2−1� on the quasiparticle side. Figure 1�b� depicts the N
dependence of the gap to creating a pair of pseudoskyrmion
and antipseudoskyrmion, computed by exact diagonalization.
�We follow the convention of Ref. 14 to define the pseudosk-
yrmion gap in terms of “neutral” quasiparticle/quasihole
energies.21� Extrapolation to the thermodynamic limit yields
�1

�0�=0.606�15�, �1
�1�=0.126�7�, and �1

�2�=0.18�1�. The gap
in the n=0 LL is consistent with �� /8�e2 /��B�, half the
energy required to create an ordinary particle-hole pair
excitation.14 We note that the pseudospin texture in the n
=0 graphene LL can be imaged directly by scanning tunnel-
ing microscopy, since an electron’s pseudospin determines
on which sublattice it resides.

Figures 1�c� and 1�d� show the gaps as a function of the
number of particles for several fractional filling factors in the

nth graphene LL. The lowest-energy charged excitations at
��1�=1/3 are CF pseudoskyrmions �pseudo-spin singlet
state�, with an excitation energy of 0.017, to be compared to
0.096 for a �pseudospin reversed� particle-hole pair of com-
posite fermions. �The latter gap is greater than in the n=0 LL
because the V1 pseudopotential is greater in the n=1 than in
the n=0 LL.� The gaps at filling factors 2 /5 and 2/3 involve
pseudospin reversal for composite fermions. For 2 /5 the
gaps, �2/5

�0� =0.051�1� and �2/5
�1� =0.062�1�, were obtained from

the trial wave functions of the CF theory, evaluated by a
procedure described in Ref. 22.

VI. CONCLUSIONS

We summarize our principal conclusions. The lowest LL
FQHE of graphene in the large Zeeman energy limit is
equivalent to the lowest LL FQHE in GaAs in the zero Zee-
man energy limit, terminating into a pseudospin-singlet
Fermi sea at half filling. The effective interaction in Eq. �11�
is shown to be more favorable to CF formation in the �n�
=1 LL of graphene than in the n=1 LL of GaAs. The gaps at
��1�=1/3, 2 /5 are calculated and FQHE is predicted at ��1�

=2/3 due to reverse flux attachment. In contrast to GaAs,
skyrmions are predicted to occur at ��n�=1,3 in the n
=0,1 ,2 LLs.

Recently, we became aware of the observation of new
integral plateaus by Zhang et al.23 Another recent paper24 has
considered many of these issues in a field theory approach
and obtained results similar to ours. The Coulomb pseudo-
potentials for graphene have also been derived by others.25
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