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Effect of long-range correlation on the metal-insulator transition in a disordered
molecular crystal
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Localization lengths of the electronic states in a disordered two-dimensional system, resembling highly
anisotropic molecular crystals such as pentacene, have been calculated numerically using the transfer matrix
method. The disorder is based on a model with small random fluctuations of induced molecular dipole mo-
ments which give rise to long-range correlated disorder in the on-site energies as well as a coupling between
the on-site energies and the intermolecular interactions. Our calculations show that molecular crystals such as
pentacene can exhibit states with very long localization lengths with a possibility to reach a truly metallic state.
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I. INTRODUCTION

Molecular crystals as active materials in electronic de-
vices have gained considerable interest during recent years.
Pentacene is reported to have the highest field-effect mobility
values for organic field-effect transistors (OFETSs) and also to
have good environmental stability.'~> Pentacene OFETs with
low (2.5 V) operating voltage have also been demonstrated.*
This feature increases the possibility to use pentacene OFETs
in real applications. However, the charge transport in penta-
cene molecular crystals is not yet fully understood; in par-
ticular, whether or not the observed high mobility can be
explained by band transport.

The mean free path of the charge carrier should be sig-
nificantly larger than the lattice parameter for the band trans-
port model to be valid. An upper limit to the mean free path
is the localization length. Hence, molecular crystals of pen-
tacene should have extended states or at least states delocal-
ized over larger regions in order for band transport to occur.
The relatively weak interactions in a van der Waals bonded
molecular solid, compared to, e.g., a covalent bonded crystal,
yield temperature induced disorder due to displacements and
rotations of the pentacene molecules. This type of disorder
affects both the on-site potential (diagonal disorder) and the
intermolecular interaction (off-diagonal disorder).’

In studies of systems with diagonal disorder, the Anderson
model is widely used.® Introduction of random (uncorrelated)
disorder in this model results in localized states in one and
two dimensions. The pentacene crystal can be considered a
two-dimensional system since the intermolecular interactions
in the third dimension are very small compared to the two
others.” Thus, band motion is not possible in the presence of
random disorder, which we have previously shown.® How-
ever, it is well known that long-range correlations in the
disorder can yield delocalized states in both one and two
dimensions.’~'? Even short-range correlation in the so called
random-dimer model can yield extended states.!'?

It is highly likely that the dominating disorder in molecu-
lar crystals is not completely random but contains long-range
correlations. The reason is that charges present in solids of
large polarizable molecules yield a polarization cloud around
the carrier. With structural disorder in the form of displace-
ments and rotations of the individual molecules with respect
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to the perfect lattice structure, this polarization cloud gives
rise to long-range correlated disorder in both the on-site and
off-diagonal matrix elements as well as a coupling between
on-site and hopping disorder.>!* The charge that induces the
polarization can be the carrier of the electric current itself, in
this case the carrier is dressed by a polarization cloud and
referred to as an electronic polaron or Coulomb polaron.'
Another possible source of this type of disorder is charged
impurity ions located in the molecular crystal or in the sub-
strate on which the crystal is grown.'*

In this paper we use finite size scaling to study the effect
of on-site and off-diagonal disorder with long-range correla-
tion on the metal-insulator transition (MIT) in a two-
dimensional (2D) system. The results are discussed in the
context of pentacene molecular crystals, but can be applied
to any 2D system described by a tight-binding model with
both on-site and off-diagonal disorder with long-range corre-
lation. We also study the effect on the localization length by
the introduction of molecular interaction between next near-
est neighbor in addition to nearest neighbor interaction.

II. METHODOLOGY

A two-dimensional rectangular lattice with width N and
length M is used as a model for the pentacene molecular
crystal (see Fig. 1), and the localization length is calculated
numerically, using transfer matrices and Lyapunov expo-
nents.

FIG. 1. (a) The pentacene crystal. The triclinic unit cell is indi-
cated by the parallelepiped. The directions d' and d* correspond to
the directions with the strongest intermolecular interaction. Also,
the direction d, has non-negligible intermolecular interaction. (b)
The rectangular lattice, where each point corresponds to a molecule
and M and N are the length and width, respectively, of the stripes
used in the calculations of the localization lengths.
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We use the Hamiltonian derived in Ref. 5,

H= E ei)il - 2 Lij eXP[%L} D)

i#j

; (1)

where the on-site energies represent the potential due to the
induced dipoles, i.e., the polarization cloud discussed above.
The off-diagonal terms are the effective transfer integrals
corresponding to the bare tight binding parameters scaled
(amplified) by disorder due to molecular polarization effects.
These effects also introduce a coupling between the on-site
and off-diagonal terms in the Hamiltonian. The second sum-
mation includes nearest neighbor interactions along the two
directions with strongest intermolecular interaction (d' and
d*).” The effect of intermolecular interactions in the d, di-
rection are also studied.

The electronic band considered in this study is the highest
molecular orbital (HOMO) of pentacene. Values of the inter-
molecular transfer integrals of the HOMO orbitals are ob-
tained from Ref. 7 and renormalized according to Ref. 5. The
same renormalization constant is used for the three different
transfer integrals #; (see Fig. 1) resulting in the following
values: #'=66 meV, =47 meV, and t,=32 meV. The
strength of the coupling between on-site and off-diagonal
elements, o, is set to 0.4 eV from Ref. 5.

The electric field produced by the fluctuations in the di-
pole moments will not result in completely random on-site
energies. Instead, as discussed above, there is a certain long-
range correlation in the potential produced by the variations
in this field from site. The correlation function for the on-site
energies, &, is (g,(r;)&,(r;)) 1/|r;—r;|. The modified Fourier
filtering method is used to generate the appropriate corre-
lated on-site energies.'® A set of numbers {u;};_; xn With a
Gaussian distribution are generated and distributed over a
rectangular lattice of size M X N. The mean square of the
Gaussian distribution is set to 15.8 meV corresponding to
+3° rotation angles of the molecules, which is typical ther-
mal disorder values at room temperature.’ The two-
dimensional Fourier transform of these numbers, Ugs is then
weighted/filtered by the spectral density, S(q), according to
£q= \r/muq. The inverse Fourier transform of {g,} yields a
set of numbers {e;} with long-range correlation.

In the modified Fourier filtering method the spectral den-

sity is defined as
27 Iql)ﬁ
———( ] K
r(,3+1)< 2 ) Kella

where q is a vector in reciprocal space, 8=(y-2)/2, Kg is
the modified Bessel function of the second kind and of order
B, and I' is the gamma function. The strength of the correla-
tion is determined by y, y=2(8=0) corresponds to a very
weakly correlated set with contribution from K;(|q|) only.
The long-range correlation resulting from randomly distrib-
uted dipoles correspond to y=1.14

All calculations presented in this work are performed for
this value of 7. It should be noted, however, that deviations
from this situation occur if, for instance, the distribution of
the rotational angles is somewhat anisotropic as a result of
the anisotropy of the crystal structure. In this case, the value

S(q) = ), 2)
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a)
FIG. 2. (Color online) On-site energy plots of square lattices of

1024 X 1024. (a) Uncorrelated numbers, (b) correlated numbers
with y=1.0.

of y would be less than unity. On the other hand, additional
screening of the electric field of the induced dipoles leads to
a reduction in the correlation and a corresponding increase in
the value of y. The implications of such deviations are dis-
cussed in connection to the results presented below.

Figure 2 shows a set of 1024 X 1024 correlated uncorre-
lated (left) and correlated (right) numbers with y=1.0. In the
uncorrelated set the variations in the numbers are such that
they almost average out at the level of resolution of the pic-
ture, whereas the correlated set shows much more structure
with more or less well-defined regions with close lying on-
site energies. The largest set of correlated numbers generated
here is NX M=512X2%2~2.1X10°.

In matrix form the Hamiltonian in Eq. (1) has a block-
tridiagonal structure

H T,
T, H, T, 0
H- o .G
T, , H; T, 2

0 Tj Hi+1 Ti+1

where H; is a NXN matrix that describe the on-site and
hopping within cell i [see Fig. 1(b)], and T; is a N X N matrix
describing the interaction between cell i and cell i+ 1. The
secular equation becomes

T! ,C_, + (H;— EN)C; + T,C;,, =0, 4)

where C; is a vector with N coefficients describing the wave
function in cell i. From Eq. (4) the transfer matrix is defined
as

7(E) = ( (5)

T;'(E1-H) —T:‘TL)
I 0 '
The transfer matrix gives a connection between the coeffi-
cients of the wave function along the system and therefore
contains information about the exponential decay of the
eigenstates. To determine the localization lengths of the
eigenstates we use the concept of Lyapunov exponents,
which describe the exponential evolution of the eigenstates.!”
The evolution of the eigenstate is described by the product of
the transfer matrices 7,(E)
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M
Qu=1I1=®. (6)
i=1

If the determinant of each 7,(E) is nonzero and finite the
following matrix exists:'8

I'= lim (Q}, Q)" (7
M—

The eigenvalues of I is of the type exp(y;), where v, are the
Lyapunov characteristic exponents (LCEs) of Q,,. The LCEs
describe the rate of the exponential decay of the eigenstates.
The localization length, Ay, is the inverse of the smallest
LCE,'7 which is calculated numerically using an orthogonal-
ization process described by Bettin and Galgani."”

The convergence criteria is set to AN <<0.001 unit cells. In
the calculations with long-range correlation this requires a
value of M up to M=2%? (see above).

In addition, to study the localization length for the infinite
system and to observe a possible MIT we also make use of
finite size scaling.!'”?® According to finite size scaling
theory!'7?® A, can be expressed as

Ay =fIEW)IN], (8)

where £=limy_,,. Ay. A wave function is localized when the
renormalized localization length, Ay, decreases with increas-
ing N. A constant or increasing Ay with increasing N indi-
cates extended states.!” By fitting the calculated renormal-
ized localization length to Ay=&/ N+b(&/N)? for small Ay, it
is also possible to obtain the localization length for the infi-
nite system. However, in all cases studied here that include
long-range correlations in the disorder, the localization
lengths are very long and consequently the value of N has to
be even larger to allow for this kind of fitting procedure.
Since the computations become very extensive for large val-
ues of N, this limits the application of this procedure. The
maximum value that we have been able to treat is N=512.
We therefore use finite size scaling as an indicator of ex-
tended states and a possible MIT and not to calculate local-
ization lengths for the infinite systems.

III. RESULTS

First, we study the effect of including the intermolecular
interaction, f,, in the d, direction. These studies were per-
formed on systems without long-range correlations in the
disorder and with the coupling between on-site and off-
diagonal elements excluded. The off-diagonal elements are
in this case generated from Eq. (1), but using an auxiliary set
on-site energies which is completely independent from the
energies used in the on-site matrix element.

The results from a set of calculations with N in the range
from 8 to 128 are shown in the left panels in Fig. 3. In the
lower left panel the intermolecular 7, interaction is absent
which results in moderate localization lengths, ~16 unit
cells for the largest system. The introduction of ¢, (top left
panel) yields an increase in Ay with a factor of ~1.4 and a
shift of the maximum localization lengths to negative ener-
gies.
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FIG. 3. (Color online) Localization length, Ay, vs energy, E, for
different N; 8 (lowest curve in each panel), 16, 32, 64, and 128
(uppermost curve). The two left and the two right panels correspond
to uncorrelated disorder and uncorrelated disorder with coupling
between the on-site and off-diagonal terms, respectively. The upper
and lower panels are results with and without 7, included,
respectively.

In the right panels in Fig. 3 are shown the result including
the coupling between the on-site and off-diagonal matrix el-
ements. These results are still with the long-range correla-
tions excluded. The localization lengths increase quite dra-
matically compared to the system discussed above with Ay
reaching close to 68 lattice units in the case with 7, excluded
(lower right panel) and above 185 lattice units with 7, in-
cluded. Note that the mean values and standard deviation of
the distribution of both on-site and off-diagonal matrix ele-
ments are the same with and without coupling included.
Thus, the increase in the localization length is due to the
qualitative difference between the two distributions. This dif-
ference also results in a shift in the maximum of \y towards
negative energies by ~0.2 eV in the right panels (with cou-
pling between on-site and off diagonal matrix elements)
compared to the left panels. To some extent this shift is also
present in the density of states (DOS) which we have calcu-
lated for a finite system of size 64 X 150. The DOS plots are
shown in Fig. 4 for the four different types of systems dis-
cussed above. The difference in shape in the DOS can be
explained by the fact that the largest values of the intermo-

DOS

DOS
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FIG. 4. Density of states, DOS (arb. units), vs energy, E, for
system of size 64X 150. The two left and the two right panels
correspond to uncorrelated disorder and uncorrelated disorder with
coupling between the on-site and off-diagonal terms, respectively.
The upper and lower panels are results with and without #, included,
respectively.
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FIG. 5. (Color online) Localization length, \y, vs energy, E,
with long-range correlation, y=1.0 for different N; 8, 16, 32, 64 and
128. The right plot include z,.

lecular interaction strength occur between sites with positive
on-site energies [see Eq. (1)]. The bonding linear combina-
tion of atomic orbitals (LCAO) form eigenstates at energies
slightly below £=0. States with large bonding LCAO contri-
butions on these strongly coupled sites are also the most
extended states observed in Fig. 3. Since the coupling be-
tween large positive energies and large intermolecular inter-
action strengths is missing in the uncoupled model, the lo-
calization lengths become shorter in this case.

We now proceed by introducing long-range correlations
into the on-site energies. The result for these calculations are
shown in Fig. 5 without (left panel) and with (right panel)
intermolecular interaction in the d, direction included. The
coupling between the on-site and off-diagonal terms is in-
cluded in both graphs, hence the intermolecular interaction
term includes long-range correlation. In these systems, the
localization length reaches ~446 unit cells and ~683 unit
cells without and with 7, respectively. Thus, the localization
length increases by a factor of 4-5 compared to the case with
uncorrelated disorder. This is purely an effect of the long-
range correlation since the mean values and standard devia-
tion of the distribution of both on-site and off-diagonal ma-
trix elements are the same in both cases. The maximum
values of Ay are shifted towards negative energies for the
same reason as discussed above.

It is clear from Fig. 5 that the localization lengths of the
states in the band tails are much shorter than in the center of
the band. Furthermore, these localization lengths do not scale
with the width of the system but remain approximately con-
stant for increasing N. This is a clear indication that the
region of the band tails contain localized states and with the
Fermi level positioned in this region, the system should be-
have as an insulator. Note however, that the DOS is small in
these regions and even moderate (field effect) charging of the
molecular layer can shift the Fermi energy into the region
where the localization lengths scale with N.

We now turn to investigate the scaling properties of the
localization length. Ay is calculated as a function of N for
both systems presented in Fig. 5 as well as for three of the
four systems presented in Fig. 3 (the case with no coupling
and 7, is excluded). Due to the different energies at which the
peak in the localization length occur, we choose to study the
scaling behavior at energies corresponding to the maximum
localization length in the spectra shown in Figs. 3 and 5.
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TABLE 1. Energies used in the finite size scaling analysis cor-
responding to the maximum localization lengths for the different
models.

Model Emax » (€V)
Uncorr. 0.00
Coupling -0.13
Coupling with ¢, -0.22
Long-range corr. -0.12
Long-range corr. with 7, -0.17

These energies are listed in Table I. The results are shown in
Fig. 6 for N up to 256 in all cases and also for N=512 for the
two cases of correlated disorder, i.e., the cases with the larg-
est values of \y.

Clearly there is a large difference between the results of
the systems with long-range correlation presented in Fig. 6
and those of the uncorrelated model. The uncorrelated sys-
tem yields localization lengths for the two-dimensional sys-
tem of 17 unit cells at N=256, corresponding to 7 nm, as-
suming an intermolecular distance of 4 A. With long-range
correlations included, the localization length reaches
678 unit cells without 7, included and 1074 unit cells with 7,
included. The finite-size scaling results up to N=256 still
show a localized behavior, i.e., Ay is decreasing with in-
creasing N. Since the systems with the most extended wave
functions could be close to a MIT, we have performed cal-
culations with N=512 for these cases in order to look for a
possible change in the behavior of A. The maximum local-
ization length obtained is 2115 unit cells, which corresponds
to 0.85 um. Compared to the system with uncorrelated dis-
order and no coupling between the diagonal and off-diagonal
disorder, this is an increase of the localization length by more
than two orders of magnitude.

The renormalized localization lengths for the system with
t, included show a tendency to saturate at a value of Ay
~4 (topmost curve in the lower panel in Fig. 6). According
to finite size scaling this indicates that the system is reaching
the transition from an insulating to a metallic state.!” Unfor-
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FIG. 6. (Color online) Localization length, Ay, and renormalized
localization length, Ay, vs N. Uncorrelated (circles), coupling be-
tween the on-site and off-diagonal terms (squares), coupling be-
tween the on-site and off-diagonal terms with 7, (diamonds), long-
range correlation y=1.0 without (triangle up) and with (triangle
down) z,. The solid lines are a guide to the eye. The localization
lengths are calculated at the energies specified in Table 1. The de-
viation for each calculated value are within the size of the symbols.
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tunately, at present we are unable to perform calculations for
even larger values of N to give a more conclusive result
concerning the MIT. Note that the particular type and
strength of the disorder used in our calculations represent the
behavior of a typical molecular crystal such as pentacene. It
is of course possible to drive the model system further to-
wards the metallic state by increasing the correlation factor
below the present value of y=1 (or alternatively, reduce the
width of the Gaussian distribution of on-site energies or in-
crease the intermolecular interaction strength). This would,
however, require another type of correlated disorder than that
obtained from the random dipole model. It will be the subject
of further studies to include conductivity in the model and to
relate the results obtained here to the experimental result of
bandlike transport of single crystals of pentacene at room
temperature.3

IV. CONCLUSIONS

In conclusion, the results presented here show that mo-
lecular crystals such as pentacene can exhibit extended states
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only if there exists correlation in the static disorder. The
existence of this type of disorder is motivated by the model
of randomly oriented induced dipole moments. Our results
show a substantial increase in the localization length of the
electronic state with correlated disordered as compared to the
case of uncorrelated disorder. The localization length ex-
ceeds the lattice constant by more than three orders of mag-
nitudes when calculated for a stripe of the molecular crystal
with a width of 512 lattice sites. The renormalized localiza-
tion length indicates a transition into an extended state which
can explain the experimental observation of bandlike trans-
port of single crystals of pentacene at room temperature.’
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