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The transport in complex multiple quantum well heterostructures is theoretically described. The model is
focused on quantum cascade detectors, which represent an exciting challenge due to the complexity of the
structure containing seven or eight quantum wells of different widths. Electronic transport can be fully de-
scribed without any other adjustable parameter than the doping density. Diffusion from one subband to another
is calculated with a standard electron-optical phonon Hamiltonian, and the electronic transport results from a
parallel flow of electrons using all the possible paths through the different subbands. Finally, the resistance of
such a complex device is given by a simple expression, with an excellent agreement with experimental results.
This relation involves the sum of transitions rates between subbands, from one period of the device to the next
one. This relation appears as an Einstein relation adapted to the case of complex multiple quantum structures.
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I. INTRODUCTION

Quantum well infrared photodetectors �QWIPs� have be-
come widely used quantum heterostructures for thermal im-
aging application during the last ten years.1 Thanks to the
very recent introduction of quantum cascade detectors
�QCDs�,2–4 QWIPs exist now in two modes of electronic
transport: photoconductive and photovoltaic. For the first
type �the regular QWIP inserted today in focal plane arrays�,
an external bias is necessary to drift the electrons. They are
characterized by a dark current and so they operate at low
temperature. The second type of detectors uses a photovol-
taic mode: no external bias is applied. No dark current exists
in these devices and they are promising for applications at
higher temperature, larger wavelengths,3 and smaller pixel
areas. In all these structures, however, the electronic trans-
port is a very complex issue and the performances of the
devices are finally governed by fundamental physics prob-
lems.

In a standard QWIP, the transport involves both two-
dimensional �2D� and 3D electronic states in the quantum
well and in the continuum, respectively. The diffusion of
electrons from 3D to 2D states �and vice versa� is a particu-
larly difficult theoretical problem.5,6 That is why most mod-
els use adjustable parameters such as the capture time7 or the
capture probability, affecting the photoconductive gain.8 In
quantum cascade lasers, on another side, significant electric
fields are applied, resulting in charge transfers. The descrip-
tion of the electronic transport has to involve Schrödinger
and Poisson equations self-consistantly, which is a source of
difficulty as well. Quantum cascade devices have been de-
scribed with kinetic model band making use the Monte Carlo
simulation.9 With respect to these two devices, the QCD
structure is rather simple since it involves only 2D states
�and therefore matrix elements can be calculated without dif-
ficulty� and no bias is applied: there is no need for the Pois-
son equation, and the flat band condition is an excellent ap-
proximation, also because the doping levels are low. For all
these reasons, the QCD appears as an archetype of complex
quantum heterostructures, a model system for the experimen-
tal study of the electronic transport in a complex multiple

quantum well structure at equilibrium together with its mod-
eling. This will be shown in this paper, in which the mecha-
nisms of electronic transport in quantum cascade detectors
are described. Electronic transport in such a complex struc-
ture is calculated without any other adjustable parameters
than the doping density, and also standard effective masses
and band offsets found in the general literature on semicon-
ductors. The details of the QCD structure and the principle of
detection are described in Sec. II. In Sec. III, the model de-
scribing the electronic transport is presented in details, rely-
ing on the calculation of all the transition rates between dif-
ferent subbands due to an electron-optical phonon
Hamiltonian. Through an analytical derivation of the sum of
the different paths that an electron can follow to cross the
structure, the resistance of the complex multiple quantum
well structure is expressed in a very simple form �Sec. IV�.
The analogy between this expression and the Einstein rela-
tion will be underlined.

II. PRESENTATION OF A QUANTUM CASCADE
DETECTOR

The QCD considered in this paper is a GaAs/AlGaAs
heterostructure composed of 40 periods of seven quantum
wells. The quantum wells are made in GaAs. The first quan-
tum well of each period is n doped in order to populate its
first energy level E1 in the conduction band with electrons
�the nominal doping concentration is about 5�1011 cm−2�.
Barriers are made in Al0.34GaAs0.66. The quantum wells �re-
spectively, the barriers� have the following widths: 68, 20,
23, 28, 34, 39, and 48 Å �respectively, 56.5, 39.55, 31, 31,
31, 31, 22.6 Å�. These dimensions have been optimized in
order to create the quantum cascade of levels shown in Fig.
1. Figure 1�a� presents wave functions associated with each
energy subband, in one period of the device. The envelope
functions have been calculated with a 1D Schrödinger equa-
tion in a single band approximation. Space charge effects
have been neglected. We have indeed verify that a self-
consistent calculation does not change the result signifi-
cantly, since all the electrons and the Si donors are located in
the fundamental level. Wave functions associated with each
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energy subband are delocalized through the heterostructure.
Absorption of a photon brings electrons from the first energy
level to energy E7 or E8. The first and the second quantum
wells are coupled. In this way, electrons are transferred from
level E7 or E8 towards energy level E6 mostly through the
longitudinal optical phonon interaction. Because of the cou-
pling between the second and the third quantum well, elec-
trons will be relaxed to energy level E5 and so on. Electrons
are relaxing from the left to the right of the structure step by
step �see Fig. 1�b��. Finally the net result under illumination
is the transfer of electrons from energy level E1 of one period
to energy level E1 of the following period. In this way, the
structure acts as a photovoltaic infrared detector.

III. MODEL OF THE ELECTRONIC TRANSPORT

As usual with this kind of device, the resistance will be
presented in terms of R0A �where R0 is the resistance of the
pixel and A the area of the pixel�. Hypotheses about elec-
tronic transitions between the different energy levels have to
be made for the determination of the R0A of such a structure.
Considering the well and barrier widths, only interactions
between electrons and optical phonons �LO phonons� have
been taken into account. The differences between the energy
levels are indeed sufficiently high to neglect the influence of
the interaction between electrons and acoustical phonons.10

All other possible interactions have been neglected, too. In-
terface roughness has low influence on intersubband scatter-
ing, although it was possible to measure its influence at very
low temperature11 �4 K�. Electron-electron interaction is ef-
ficient for electrons thermalization inside a subband,12,13 but
negligible for intersubband scattering in our cascade scheme
with many subband separations greater than 36 meV which
corresponds to the energy of the optical phonons14,15 �acous-
tical phonons and carrier-carrier interactions are implicitly
taken into account in our model when we assume an elec-
tronic population at thermal equilibrium since the thermali-
zation is mediated through these interactions, but optical
phonons are the only interaction considered for the descrip-
tion of transitions rates between two differents subbands�.
The transition rates due to the interaction between electrons
and optical phonons will be evaluated first following Ferreira
and Bastard.16 Bulk phonons have been used in the calcula-
tion. Starting from an initial state of wave vector k and en-
ergy E in the subband i,the transition rate Sij

a,e�E� towards the
subband j �in s−1� is obtained through the integration of a
matrix element involving a standard electron-optical-phonon
Hamiltonian. This integration involves all the possible final
states of energy E± ��LO in the subband j, where �LO is the
energy of a LO phonon, the plus or minus sign accounting
for absorption or emission of LO phonons, corresponding to
superscript a or e, respectively. This evaluation is made in
the parabolic approximation of the energy bands �our struc-
tures use low Aluminum content AlGaAs barriers, and low
energy levels because of the detection wavelength which is
greater than 8 �m�. Transitions rates Sij

a and Sji
e are linked by

the following equation:

Sij
a �E� = Sji

e �E + � �LO� . �1�

Finally, the global transition rate Gij between the subband i
and subband j is the sum of the two transition rates for ab-
sorption of LO phonons �Gij

a �, and emission of LO phonons
�Gij

e �. In order to calculate the global transition rates Gij
a and

Gij
e , all the initial states of energy E are filled at thermal

equilibrium by the Fermi-Dirac occupation factor f . A single
electronic temperature is assumed for all subbands and equal
to the temperature of the lattice. Let us first consider the
electronic promotion from a subband i to a higher subband j
�i.e., j� i�. The integration on all these states is now per-
formed on the subband i:

Gij
a = �

�j−��LO

+�

Sij
a �E�f�E��1 − f�E + � �LO��noptD�E�dE ,

�2�

Gij
e = �

�j+��LO

+�

Sij
e �E�f�E��1 − f�E − � �LO��

� �1 + nopt�D�E�dE; �3�

nopt is the Bose-Einstein statistic function which accounts for
phonon population, D�E� the two-dimensional density of
states of the subband i and � j is the minimum of energy of
the subband j. Of course, similar expressions can be written
in the case of electronic transfers from a subband i to a lower

FIG. 1. Presentation of a period of a QCD. �a� Conduction band
diagram and wave function associated with each energy level of a
period. �b� Principle of a detection.
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subband j. Figure 2 summarizes the four possible electronic
transitions.

At thermodynamical equilibrium, each global coefficient
Gij is equal to its reciprocal factor Gji. The number of elec-
trons per second transferred from subband i to subband j is
equal to the number of electrons per second transferred back
from subband j to subband i. The net current is null and the
population in every subband is stationary.

In the context of a photovoltaic detector, the resistance at
0 V is a key parameter since it governs the Johnson noise of
the device. The calculation of this resistance needs the deter-
mination of the current for a very small applied bias. The
bias can then be introduced as a perturbation, and therefore
we will suppose that the matrix elements and the Sij�E� tran-
sition rates do not depend on the voltage. Indeed, the elec-

tronic wave functions given by the weakly perturbed poten-
tial can be supposed nondependant on the arbitrary small
voltage. In the frame of this approximation, the current re-
sults only from the variation with the applied bias of the
distribution of the population as a function of the energy
which affect the Gijs through the occupation factors f .

As an illustration of the exchanges of electrons between
subbands occurring in the structure, Fig. 3 represents the
main transition rates at thermodynamical equilibrium at
80 K. In addition, these transfer rates are indicated in Table I.
Transition times 	ij can be deduced from the global transition
rate Gij by

	ij = ni/Gij , �4�

where ni is the two-dimensional carrier density associated
with the subband i. Two consecutive cascades A and B are
represented in Fig. 3. For sake of clarity, transitions between
two levels in the same cascade have been represented sepa-
rately from transitions between two levels in consecutive
cascades. In Fig. 3�a�, most significant intracascade transi-
tions are represented. The typical value of transitions rates
between two neighboring levels are between a few 1020 and
1025 m−2 s−1, corresponding to transition times between a
few ps and a few tens of ps for a temperature of 80 K. In Fig.
3�b�, the intercascade transitions are reported. Again, the
solid-line arrows represent the main transfer rates between
one cascade and the following one, but these transitions are
now limited to a few 1018 m−2 s−1 at the same temperature
�and a corresponding transition time greater than 1 �s due
also to the low amount of electron promotion to higher sub-

FIG. 2. The different types of electronic transitions between two
subbands i and j.

FIG. 3. Major transition rates of two consecu-
tive cascades of the real device at 80 K. �a� The
main transition rates inside each cascade �only
the transition rates greater than 1020 m−2 s−1 are
represented�. �b� The main transitions between
the cascades: solid lines concern the major tran-
sition �greater than 4�1018 m−2 s−1�, whereas
dashed lines represents the other main transitions
�greater than 1�1018 m−2 s−1 and lower than the
major transitions�.
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bands for satisfying the Fermi-Dirac distribution�. The
dashed-line arrows represent other minor transitions. The
comparison between intra- and intercascade transitions
shows that the electronic mobility is higher inside a cascade
than between two consecutive cascades by several orders of
magnitude. This justifies our classification between inter- and
intracascade transitions and has major consequences on the
understanding of the transport in the structure. It recalls the
situation in a p-n junction, where intraband thermalization is
faster than interband recombination by several orders of
magnitude �picoseconds versus nanoseconds�. More gener-
ally, this is a very general situation in the physics of transport
where a system can be divided into two reservoirs separated
by a bottleneck for the conduction. The concept of quasi-
Fermi level can be imported from the p-n junction formalism
into our case. Each cascade stays at a quasithermodynamical
equilibrium. Two quasi-Fermi levels associated with two
consecutive cascades can be considered: the cascade A �re-
spectively B� is associated with the quasi-Fermi energy EF

A

�respectively EF
B�. At thermodynamical equilibrium without

applying any voltage these two quasi-Fermi levels are equal.
The structure is characterized by only one Fermi level. In the
presence of an external applied voltage, a gap between the
two quasi-Fermi levels appears and increases with the volt-
age: EF

A=EF
B+qV. Each energy level of the cascade A in-

creases of the same factor qV, too. Figure 4 represents the
situation of two consecutive cascades under a bias voltage V.

The main transitions at 80 K between two consecutive
cascades occur between subband E1

A to the subbands E5
B and

E6
B �transition towards level E5

B is more efficient than the
other transitions�. In conclusion, the resistance of a QCD is
completely determined at 80 K by a few intercascade cross
transitions, namely E1

A→E5
B and E1

A→E6
B. The optimization

of a QCD requires decreasing these transitions rates, thus
increasing the resistance and decreasing the noise figure.
This is possible by a separation of the wave functions, but at
the expanse of a lower optical matrix element, and a lower

response. All the challenge of the QCD design consists of
mastering this trade off.

IV. DERIVATION OF AN EINSTEIN RELATION

The global current density will be evaluated by counting
the electronic transitions between the two consecutive cas-
cades. On one hand, each cascade stays at thermodynamical
equilibrium, but on the other hand equilibrium between the
two consecutives cascade is broken. As a consequence, tran-
sition rates from cascade A to cascade B are not equal to the
reciprocal transitions rates from cascade B to cascade A. A
global current appears. This global current density is given
by

J = q�
i�A

�
j�B

�Gij�V� − Gji�V�� . �5�

Let us consider two subbands i and j associated, respectively,
with cascades A and B. The introduction of two quasi-Fermi
levels implies the differentiation of the two Fermi occupation
factors in Eq. �2� and Eq. �3�. Gij

a and Gji
e can be evaluated by

Gij
a �V� = �

�j−��LO

+�

Sij
a �E�fA�E��1 − fB�E + � �LO��

� noptD�E�dE , �6�

Gji
e �V� = �

�j

+�

Sji
e �E�fB�E��1 − fA�E − � �LO��

� �1 + nopt�D�E�dE , �7�

where fA and fB are the Fermi-Dirac occupation factors as-
sociated with quasi-Fermi level EF

A and EF
B. Considering Eq.

�1�, the difference is then equal to

TABLE I. Values of some transition rates in relation to the main
electronic transition represented on Fig. 3. The left column concerns
the higher transition rates inside each cascade �intracascade transi-
tion rate� and the right column gives the higher transition rates
between two consecutive cascades �intercascade transitions rates�.
These values are evaluated at 80 K.

Intracascade transition
rate �m−2 s−1�

Intercascade transition
rate �m−2 s−1�

G12=2.7�1025 G14=3.0�1018

G13=1.0�1024 G15=5.1�1018

G14=1.2�1022 G16=5.0�1018

G23=1.7�1024 G17=3.5�1018

G24=3.8�1023 G18=2.3�1018

G25=1.2�1021 G24=1.1�1018

G34=1.9�1023 G25=4.6�1018

G35=2.2�1022 G26=1.3�1018

G45=1.2�1022 G35=1.3�1018

G56=4.6�1020

FIG. 4. Evolution of the first cascade in relation to the second
cascade under a bias voltage. Solid lines represent the position of
the energy levels under a bias voltage and dashed lines concern the
position of the energy levels without any applied voltage. Fermi
levels are represented on this figure in bold lines.
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Gij
a �V� − Gji

e �V� = �
�j−��LO

+�

Sij
a �E�
�E��1 − ��E��dE , �8�

where


�E� = noptfA�E��1 − fB�E + � �LO��D�E� , �9�

��E� =
fB�E + � �LO��1 − fA�E���1 + nopt�

fA�E��1 − fB�E + � �LO��nopt
. �10�

Without any applied voltage, the term 
�E� is equal to

eq�E� given by


eq�E� = noptf�E��1 − f�E + � �LO��D�E� . �11�

It corresponds to the first term of the series expansion of 
 as
a function of the voltage V. Expressing the Fermi-Dirac
functions, ��E� is simplified into

��E� = exp�EF
B − EF

A

kbT
� = exp�− qV

kbT
� , �12�

where T is the temperature of the sample and kb the Boltz-
man constant.

We recall that in the context of infrared photovoltaic de-
tection, applied biases are very small. The Johnson noise is
related to the resistance at 0V :R0. In this calculation, it is
then justified to linearize

1 − ��E� 	
q

kbT
V . �13�

This leads directly to the linear I�V� behavior of the structure
at low bias, through the multiplication by the constant 
eq

�calculated with no applied voltage�. For little variations of
the voltage, the difference can be approximated by the fol-
lowing equation:

Gij
a �V� − Gji

e �V� 	 �
�j−��LO

+�

Sij
a �E�
eq qV

kbT
dE �14�

	Gij
a �V = 0V�

qV

kbT
. �15�

A similar expression can be found for the difference

Gij
e �V� − Gji

a �V� 	 Gij
e �V = 0V�

qV

kbT
. �16�

Finally, global current density is so evaluated by the formula

J = q�
i�A

�
j�B

Gij
qV

kbT
, �17�

where the term Gij is defined by the sum of Gij
a and Gij

e

calculated without any applied voltage. R0A can be finally
deduced from the last equation,

R0A =
kbT

q2�
i�A

�
j�B

Gij

. �18�

We have previously made the hypothesis that the elec-
tronic wave functions and the matrix elements are not depen-

dent on the small bias. The current has been calculated as a
result from a variation of the distribution of carriers as a
function of the energy from cascade A to cascade B. This
means that the current appears as a diffusion current, in a
system with a nonhomogenous chemical potential. In this
context, it is expected to find an expression of the R0A which
looks like an Einstein relation. By an identification between
R0A and l2 / �qn2D�� �where l is the period of the structure,
n2D is the 2D density, and � is the electron mobility�, we find
indeed again D /�=kbT /q, with the diffusion coefficient D
expressed classically as a function of the transfer rates at
equilibrium Gij by

D =
l2�i�A � j�B

Gij

n2D
. �19�

We find again D= l2 /	 used in the context of diffusion
currents in p-n junctions.17 It is remarkable in Eq. �18� that
the R0A can be calculated in a structure with no applied bias,
considering only the transition rates Gij at equilibrium, from
one cascade to the next. Equation �18� appears as the main
result of this paper. We have shown that the electronic trans-
port in a complex structure as a QCD can be simplified. The
transport is entirely dominated by two or three matrix ele-
ments present in the sum in Eq. �18�, which is interpreted as
an Einstein relation adapted to QCDs.

Figure 5 presents a typical example chosen to illustrate
the quality of the modeling: the experimental R0A of the
device as a function of 1000/T, where T is the temperature
of the sample, and the result of our modeling using the pre-
vious Eq. �18� for two doping densities �5�1011 cm−2,
which corresponds to the nominal Si-donors concentration
and 3�1011 cm−2, which provides the best fit�. Activation
energy deduced from experimental curves lies around
120 meV. This energy corresponds to the transition between
the first energy level E1 and the energy level E6. Dark current
originates essentially from electrons transferred from level
E1 to level E6, which is in an excelent agreement with the
evaluation of the transfer rates presented in this article. The

FIG. 5. R0A as a function of 1000/T, where T is the temperature
of the sample. Solid line corresponds to the experimental curve. The
circled-markers �respectively: the cross markers� are the results of
the presented model considering a doping density of 5
�1011 cm−2 �respectively 3�1011 cm−2�.
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theoretical modeling provides a good fit of the experimental
curve: activation energy deduced from the model lies around
120 meV, too.

The resistivity given by the model considering the nomi-
nal doping density �5�1011 cm−2� is slightly lower than the
experimental value. We atribute this small discrepancy to a
doping level slightly lower than expected. Indeed, including
the lower doping level �3�1011 cm−2� in the model provides
a perfect fit of the experimental result, as shown in Fig. 5,
and, on the other hand, the measurement of the integrated
absorption agrees very well with this value of the doping
level. Other small discrepancies between the experimental
results and our model could come from other deviations of
the structure parameters from the nominal values. The influ-
ence of the variations of structure parameters on the resistiv-
ity will be systematically reported in a forthcoming study.
This is indeed necessary to analyze the performances of
QCD focal plane arrays, in term of homogeneity.

V. CONCLUSION

In conclusion, we have reported a model of electronic
transfers in a multiple quantum well device. Lifetimes asso-
ciated with all transitions between two subbands are evalu-
ated by considering only interactions between electrons and
optical phonons. The resistivity of such a structure around a
null bias voltage can then be deduced by Eq. �18�, which
appears as an Einstein relation. An excellent agreement is
found between experimental result and our model, which
does not include any other adjustable parameter than the
doping density.
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