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We numerically analyze the conductance and spin polarization of realistic quantum point contacts �QPCs�
using density-functional theory, including both exchange and correlation effects. The self-consistent calcula-
tions are performed as a function of split gate voltage, for different temperatures and QPC lengths.We show
that in short enough QPCs �100 nm� there is no spontaneous spin polarization, and the conductance for up-spin
and down-spin electrons is the same. As the length of the QPC increases, so does the spin polarization and the
difference in conductance between up-spin and down-spin electrons, resulting in an anomalous structure in the
total conductance—the 0.7 anomaly. This structure moves from around 0.9 �in units of 2e2 /h� for a 200 nm
QPC to slightly below 0.5 for a 400 nm QPC. Due to the strong ferromagnetic spin polarization in a long QPC,
it will effectively work as a spin filter. The temperature dependence of the conductance is discussed in relation
to the “Reilly model,” whose underlying assumption, regarding the shape of the spin gaps, is investigated using
the self-consistent results.
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I. INTRODUCTION

The discovery of the so-called “0.7 anomaly” 1 shows
how seemingly simple systems may possess remarkably rich
physics, and has sparked considerable interest in the conduc-
tance properties of quantum wires and quantum point con-
tacts �QPC�. From the theory of noninteracting electrons, one
expects that the conductance curve for a ballistic QPC should
be quantized in steps of 2e2 /h.2 However, in the experimen-
tal results of Thomas et al.1 there is also an additional small
structure in the conductance curve around 0.7 �in units of
2e2 /h�, hence the name “0.7 anomaly.” Despite its name, the
0.7 anomaly is not always pinned at 0.7 but can be observed
in a range between 0.5 and 0.85 �Refs. 3–8� depending on
geometry, inhomogeneities and electron density in leads. In
Ref. 5, for example, there is some evidence that the value
decreases with the length of the QPC �wire�.

One explanation of the 0.7 anomaly, based on the idea of
spontaneous ferromagnetic spin polarization driven by inter-
actions and ab initio spin-density calculations, was suggested
for QPC in Ref. 9, and further investigated in Refs. 10–18.
Doubts have been cast on this explanation19,20 as it would be
in contradiction with the Lieb-Mattis theorem,21 which pre-
dicts an antiferromagnetic singlet ground state. However, the
Lieb-Mattis theorem only applies for strictly one-
dimensional systems, in a mathematical sense, which is not
the case for a typical QPC �see Ref. 22 for further discus-
sion�.

Other explanations of the 0.7 anomaly, based on Kondo-
type mechanisms, have also been developed.23–26 The un-
usual low-temperature behavior and the zero bias anomaly
�ZBA� that have been reported for the 0.7 structure may be
analyzed within such a framework. A drawback of the tradi-
tional Kondo picture is, however, that it relies on the pres-
ence of bound states, which is somewhat counterintuitive for
an open system like a QPC. It has not yet been clearly ex-
plained how bound states or, at least, sharp resonances asso-
ciated with quasibound states may come about for a QPC

with typical device characteristics as discussed in Ref. 11. In
addition, by studying the crossing of Zeeman split subbands
and “0.7 analogs” Graham et al.27 argue that the “Kondo-
like” physics is not the root of the zero field 0.7 structure
although it may enhance the conductance. In addition to the
spin polarization and Kondo-type models there is at present a
number of other scenarios for the 0.7 anomaly, e.g., the one-
dimensional Luttinger model,28 the formation of a Wigner
lattice,29 and effects of electron-phonon interactions.30

There are recent experiments that shed more light on the
mechanism underlying the 0.7 structure. In particular there
are three different types of experiments that favor the static
spin polarization model. For example, measurements of the
Fano factor reduction on the 0.7 structure have shown that it
is accompanied with two conduction channels with different
transmission probabilities.31 The evolution of the reduction
with parallel magnetic field B supports the picture of two
channels with different spin orientations. Related studies of
shot noise and dc transport in a QPC show that an observed
asymmetry in noise is consistent with a phenomenological
density-dependent level splitting model.32 Most recently a
half-integer plateau in a symmetric GaAs quantum wire has
been observed8 using a biased scanning probe tip. Source-
drain energy spectroscopy and temperature response provide
compelling evidence that the origin of the 0.5 structure is the
spontaneous ferromagnetic spin polarization of the electrons
in the constriction. This structure is in addition to a 0.7 struc-
ture. In general the results are sensitive to the tip position
and the potential landscape. Dual conductance structures of
this kind were also found in previous simulations.10 Also
most recently, Rokhinson et al.33 used a spin-selective mag-
netic focusing technique to probe the polarization in a p-type
GaAs/AlGaAs and found that static polarization is indeed
present at low electron densities. Polarization is sharper in
samples with a well-defined 0.7 structure, results which, ac-
cording to these authors, question the Kondo interpretation.

The two different scenarios outlined above do not have to
be mutually exclusive. Thus ZBA and Kondo-type features
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appear to be typical for the very low temperature region
�typically below a few hundred mK �Ref. 34�� and go away
with a finite source-drain voltage �sd and/or with magnetic
field B. Spontaneous spin polarization, on the other hand,
prevails at elevated temperatures, at finite �sd and B. In the
following we will focus on the spontaneous spin polarization
and how it is driven by exchange and correlation. ZBA and
Kondo-type behavior may represent interesting fundamental
questions. However, spontaneous spin polarization appears
more interesting in view of potential applications like spin
injection and spintronics.

Focusing on spontaneous spin polarization there is the
important question about the nature of the spin gap. For ex-
ample, Reilly et al.14–16 have developed a phenomenological
model, primarily for long wires with transmission zero or
one. A density-dependent spin gap is assumed to open in the
one-dimensional �1D� energy spectrum each time the Fermi
energy passes a subband threshold. The density dependence
of the gap is assumed to be linear. Graham et al., on the other
hand, argue that their data give evidence that the spin gap
opens abruptly27 as predicted theoretically for infinite
wires.35,36 According to Graham et al. the abrupt behavior
should be traced to the onset of subband fillings. In such
situations, they argue, the dependence of electron density on
applied gate voltage would not be linear as normally as-
sumed. Other important questions concern geometry and the
nature of the magnetized state, i.e., is it ferromagnetic, anti-
ferromagnetic, etc.

To resolve the issues outlined above we report here on
numerical modeling of typical QPC devices and their con-
ductance and magnetic properties using the local spin-
density approximation/density-functional theory �LSDA-
DFT� including both exchange and correlation effects. The
self-consistent calculations are performed as a function of
split gate voltage, for different temperatures, and for increas-
ing QPC lengths to explore the dependence of geometry on
induced spin order, nature of spin gaps and magnetization
regimes. Calculations of this type have previously been per-
formed for shorter QPCs �see, e.g., Refs. 11 and 12�. Our
calculations, however, are performed also for long QPC/
wires. We utilize a set of suitable basis functions that con-
siderably reduces the computational time. By also taking the
fourfold symmetry in the problem into account we are able
to obtain results with very high resolution. Throughout the
paper, the physics will focus on phenomena relevant to the
non-ZBA/ “Kondo” regime, i.e., in which exchange correla-
tion and spontaneous spin polarization prevails.

II. MODELING A SPLIT GATE DEVICE

We assume that the QPC is made of successive layers of
GaAs, n-AlGaAs, and AlGaAs, where the thickness of the
different layers and the doping density are the same as in
Ref. 36. A metallic gate is situated on top of this structure.
Depending on the geometry of the gate, different low-
dimensional systems can be realized. In our case, we use the
geometry in Fig. 1 in order to model the QPC. To the left and
right in the figure there are two wide reservoirs with a large
number of subbands occupied �around 25�. Electron motion

in these regions is essentially two dimensional. Between the
reservoirs a narrow constriction, or channel, is formed where
the electron density can be controlled by the external voltage
�sg. This density is very low within the parameter range we
study here. In fact, there will only be a handful of electrons
in the channel, which will enhance interaction effects.

We choose the direction normal to the heterostructure in-
terface as the z axis. Assuming that confinement in this di-
rection is much stronger than confinement in the xy plane,
we may restrict ourselves to the case when only the lowest z
mode is occupied, effectively rendering the problem two di-
mensional. The self-consistent Kohn-Sham �KS� equation
then takes the form

�−
�2

2m*�2 + Ueff
� �x,y���i

��x,y� = �i
��i

��x,y� , �1�

or, shorter, H��i
��x ,y�=�i

��i
��x ,y�, where we choose the

center of the constriction as the origin. The effective poten-
tial in �1� consists of electrostatic confinement, Hartree, and
exchange-correlation terms

Ueff
� �x,y� = Uconf�x,y� + UH�x,y� + Uxc

� �x,y� . �2�

The electrostatic confinement potential can in turn be written
as a sum of different contributions

Uconf�x,y� = − eVg�y� − eVsg�x,y� − eVd − eVs. �3�

Here, Vg is the potential from an infinite plane, held at volt-
age �g, with a slit of width Wg; Vsg is the potential from the
split gate that forms the QPC; the two other contributions Vd
and Vs from donors and surface states can be found in Ref.
36. It is possible to derive an analytic expression for Vg �see
Ref. 37�

Vg�y� = vg�1 −
1

�
�arctan�Wg/2 − y

z0
�

+ arctan�Wg/2 + y

z0
�	
 , �4�

where z0 is the vertical distance from the gate to the electron
gas. To find Vsg, however, we use numerical integration. In-
cluding mirror charges to ensure that boundary conditions
are satisfied we get

FIG. 1. Gate layout for realizing a QPC. The dark gray areas are
assumed to extend to infinity in all directions leaving only the slit of
width Wg. The origin is placed in the center of the constriction.
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Vsg�x,y� =� vsgz0

2��z0
2 + �x − x��2 + �y − y��2�3/2dx�dy�, �5�

where the integration is performed over the surface of the
split gate, held at potential �sg. The Hartree term UH in �2� is
calculated in a similar fashion,

UH�x,y� =
e2

4���0
� 	�x�,y��� 1

��x − x��2 + �y − y��2

−
1

��x − x��2 + �y − y��2 + 4z0
2�dx�dy�. �6�

Here, the second term stems from the mirror charges. Inte-
gration is performed over the whole computational area. For
the important exchange-correlation potential Uxc, finally, we
use the parametrization from Refs. 38 and 39. Although not
stated explicitly, in order to break the �spin� symmetry of the
problem, we also add a Zeeman term, associated with a weak
in-plane magnetic field in the x direction. In the iterative
scheme for solving the KS equation we let this term be
present only in the first iteration.

We solve the KS-LSDA equations for the geometry in
Fig. 1 using periodic boundary conditions. However, rather
than solving the equation directly by discretization on a grid,
we introduce a set of basis functions. This procedure will
reduce the size of the problem. In the x direction the system
is open, which makes a basis set consisting of plane waves
suitable. The number of these lateral basis functions depends
on several parameters, e.g., the length Lsg and width Wsg of
the constriction. Typically, we use between 30 and 50 of
them. In the y direction the system is closed, and the trans-
verse modes are well described by a basis set consisting of
Gaussian functions, in particular in the QPC region in which
the confinement is closed to parabolic in y2. In our case,
around 40 of them are required in order to provide accurate
results.We have checked this approach by comparing with
numerical integration of the transverse wave functions in in-
finite wires with multisubbands occupied.36

More explicitly, the lateral basis functions have the form


m�x� =
1
�L

eikmx, �7�

where km=2�m /L. The transverse Gaussian basis functions
are chosen as eigenfunctions of the harmonic oscillator,

�n�y� =� �

��2n−1�n − 1�!
e−�2y2/2Hn−1�y� , �8�

where Hn−1 is the Hermite polynomial of order n−1, and the
parameter � is of the same order of magnitude as the width
Wsg of the channel. To improve the quality of the basis set �
can be tuned empirically.

The basis functions for the two-dimensional �2D� problem
are tensor products of the functions in �7� and �8�. An arbi-
trary KS orbital �i can be expanded in a linear combination
according to

�i�x,y� = 
m,n

M,N

cmni
m�x� � �n�y� , �9�

where cmni are the expansion coefficients. For ease of nota-
tion we label the basis functions  j, using a single index
defined as j= �m−1�N+n. Multiplying Eq. �1� from the left
by a specific  j��x ,y� followed by integration yields


j

cji� j��H� j� = �i
j

cji� j�� j� . �10�

Note that since we have chosen the basis functions to be-
come orthogonal the term � j� � j� in �10� simplifies to � j�j.
Repeated use of the above procedure leads to a matrix eigen-
value problem

HC = C� ,

Hj�j = � j��H� j� , �11�

where � is a diagonal matrix containing the values �i. Nor-
mally, the matrices in �11� will not be sparse so a direct

FIG. 2. �Color online� Conductance as a function of split gate
voltage for a 100 nm QPC.

FIG. 3. �Color online� Conductance as a function of split gate
voltage for a 200 nm QPC.
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approach for calculating eigenvalues and eigenvectors must
be applied. The great advantage here is that the dimension of
H is typically considerably smaller than that of the matrix
obtained when discretizing H directly on a grid.

The solution of �11� is used to calculate the electron den-
sity, which is in turn used to update the effective potential �2�
from which a new electron density can be obtained. The
procedure is repeated until a self-consistent solution is
reached. We use the effective potential from this solution to
calculate the conductance through the QPC. For a source-
drain bias �sd the differential conductance is given by the
expression

G =
2e2

h


n
�

−�

�

Tn�E�
�

�vsd
�f�E,�L� − f�E,�R��dE , �12�

where the sum runs over the occupied subbands; f�E ,��
=1/ �exp��E−�� /kBT��+1� is the Fermi-Dirac distribution
for temperature T and chemical potential �. Here �L,R
=Ef ±e�sd /2 for left and right reservoirs assuming a symmet-
ric potential drop; Tn are the transmission coefficients for the
different modes which are calculated for open boundary con-

ditions with continuous matching of wave functions and their
derivatives. At small source-drain bias and zero temperature,
expression �12� simplifies to the Landauer-Büttiker formula2

G =
2e2

h


n

Tn�Ef� , �13�

III. RESULTS

We calculate electron and spin densities as well as con-
ductance, as described in the preceding section, for the pa-
rameter choice: �g=−0.73 V, W=420 nm, Wg=400 nm,
Wsg=80 nm, L=800 nm; Lsg is varied from 100 nm up to
400 nm; �sg is chosen to display the first step in the conduc-
tance curve.

The first set of calculations is performed for zero tempera-
ture and varying Lsg. For the case of Lsg=100 nm, i.e., a
short constriction, the conductance curves are similar for up-
spin �G↑� and down-spin �G↓� electrons �Fig. 2�. But as Lsg

increases, the difference in conductance becomes pro-
nounced �Figs. 3–6�. In these figures also the total conduc-

FIG. 4. �Color online� Conductance as a function of split gate
voltage for a 250 nm QPC.

FIG. 5. �Color online� Conductance as a function of split gate
voltage for a 300 nm QPC.

FIG. 6. �Color online� Conductance as a function of split gate
voltage for a 400 nm QPC.

FIG. 7. �Color online� The number of up- and down-spin elec-
trons in a 100 nm QPC as a function of the split gate voltage.
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tance G is plotted. It is clearly seen that when G↑ and G↓
differ, there is an anomalous structure in G that evolves from
around 0.9 �Fig. 3� to slightly below 0.5 �Fig. 6�. The oscil-
lations around 1.0 in the total conductance, and the peak in
the anomalous structure, are likely to be caused by some
kind of broad resonance depending on the gate geometry.
Our results are in good qualitative agreement with
experiments,3–6 and also with theoretical results.11,12,40 How-
ever, we remark that due to differences in gate layout, het-
erostructure, donor density, theoretical modeling, etc., the re-
sults should not be compared quantitatively. Also,
experimental results obtained for long QPCs are sensitive to
accidental constrictions and other disorder effects caused by,
e.g., impurities and inhomogeneities.41,42

For a measure of the spin polarization, we calculate the
number of up- and down-spin electrons in the interior of the
QPC, as a function of �sg, for the different choices of Lsg �see
Figs. 7–11�. For Lsg=100 nm the number of electrons is es-
sentially the same for both spin directions over the whole
range of voltages �see Fig. 7�, and there is no spontaneous
spin polarization; in the other cases the voltage interval, for
which ferromagnetic polarization occurs, agrees well with

the interval where the conductance for up- and down-spin
electrons differs. Evidently, for a short wire/QPC there is in
practice no magnetization. With increasing length magneti-
zation clearly sets in and grows in magnitude. Another ob-
servation is that the total number of electrons in the split gate
region is basically a linear function of the gate voltage, i.e.,
our results do not support the abrupt filling of subbands as
proposed by Graham et al.27

We remark that the conductance properties of the system
with Lsg=400 nm are close to those expected for a long ideal
quantum wire; the up-spin conductance stays flat at 0 while
the down-spin conductance reaches almost 0.5. The trans-
mission coefficients are to a first approximation either zero
or one as expected for long wires. An interesting observation
of practical value is that this system works as a spin filter and
could, in principle, be used for spin injection.

In Fig. 12 we have plotted the effective potentials in the
400 nm QPC, along the cross section y=0, for a fixed gate
voltage. For polarized down-spin electrons there is a dip in
the effective potential inside the QPC. One might suspect
that this potential could contain narrow quasibound states,
supporting the Kondo picture. However, there is no sign of

FIG. 8. �Color online� The number of up- and down-spin elec-
trons in a 200 nm QPC as a function of the split gate voltage.

FIG. 9. �Color online� The number of up- and down-spin elec-
trons in a 250 nm QPC as a function of the split gate voltage.

FIG. 10. �Color online� The number of up- and down-spin elec-
trons in a 300 nm QPC as a function of the split gate voltage.

FIG. 11. �Color online� The number of up- and down-spin elec-
trons in a 400 nm QPC as a function of the split gate voltage.
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such states in the total electron density �plotted along y=0 in
Fig. 13�; neither are there any resonances in the correspond-
ing conductance curve �Fig. 6�.

At low densities, electrons inside a long QPC are pre-
dicted to form a Wigner crystal with an antiferromagnetic
ground state.43 Calculations, based on both standard LSDA
and exact configuration interaction methods for finite closed
wires and rings also suggest the presence of charge modula-
tion at low densities, referred to as “Wigner molecules” be-
cause of finite size.44,45 However, in Fig. 13 no density
modulations can be observed, and Fig. 14, displaying the
difference in up- and down-spin electron density along y=0,
shows that the spin state is still of ferromagnetic type. We
have also performed calculations where we have relaxed the
assumption that spins are only directed along the z axis, to
allow for noncollinear spins. However, these calculations did
not change the overall features of Figs. 13 and 14. Hence, we
draw the conclusion that, for device parameters used here,
neither the formation of a Wigner crystal lattice nor an

antiferromagnetic ground state will be observed for our long
400 nm wire. For the shorter wires, 250 and 300 nm, the spin
gap closes at finite conduction. In that regime the polariza-
tion splits spatially into two parts.10 On further decrease of
the voltage these two parts move to opposite ends of the
QPC and aquire antiparallel spin ordering. Hence the total
magnetization is zero as in Figs. 9 and 10.

We now turn to the issue of temperature dependence by
repeating the above conductance calculations for T=0, 1, 2,
and 3 K. For the short 100 nm and 200 nm QPC our model
is not able to replicate the experimental results1,3,34,46 show-
ing that the anomaly becomes more pronounced with in-
creasing temperature. In our case, we only observe tempera-
ture smearing of the conductance curves �not shown in the
paper�; there is no sign of any distinct anomaly. However, for
the longer 250 nm and 300 nm QPCs the agreement with
experiments5 is much better. These results are summarized in
Figs. 15 and 16. In the former case the anomalous structure
evolves from around 0.75 down to around 0.65 with increas-
ing temperature; in the latter case the anomaly moves in the

FIG. 12. �Color online� The effective potential, for �sg=
−0.75 V, for up- and down-spin electrons along the cross section
y=0 in a 400 nm QPC.

FIG. 13. �Color online� The total electron density along the
cross section y=0 in a 400 nm QPC.

FIG. 14. �Color online� The difference between up- and down-
spin electron densities along the cross section y=0 in a 400 nm
QPC.

FIG. 15. �Color online� Conductance as a function of split gate
voltage for different temperatures in a 250 nm QPC.
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opposite direction, starting from around 0.50 and evolving
up to around 0.55. In both cases increasing temperature
makes the conductance curves smoother. The overall features
are similar in shape to those calculated theoretically in. Ref.
12.

The temperature dependence of the conductance can be
explained by the “Reilly model,” 15 which is based on an
assumption of a spin gap that opens linearly as a function of
the 1D electron density inside the QPC. This model can be
seen as an extension of the one developed by Kristensen
et al.,46 in that it gives a specific form for the spin gap. To
examine the validity of the assumption of a linear spin gap
we calculate the energy difference between the lowest sub-
band E1 in the QPC and the effective potential Ueff at x=y
=0, as a function of the one-dimensional electron density 	1D
at x=y=0, for up- and down-spin electrons. Results for the
250, 300, and 400 nm QPCs are shown in Figs. 17–19, re-
spectively. As the lowest down-spin subband starts to popu-
late, Hartree interaction causes its energy to increase �in re-
lation to Ueff�0,0��. Also, a spin gap will open between the
up- and down-spin subband as a consequence of exchange

interaction. As seen in the figure, the opening process can be
described, at least piecewise, by a linear approximation.
However, as the voltage increases the spin gap starts to close
again. Although not shown in the figure we mention that the
spin gap will open again for each new subband that popu-
lates, although smaller for each time. This behavior is not
incorporated in Reilly’s model and it is not clear how it will
affect the overall conclusions that can be drawn from the
model.

Ignoring the reservation above, with the terminology in
Ref. 15 the temperature dependence in Fig. 15 is explained
by a slowly opening spin gap, whereas in Fig. 16 the spin
gap opens rapidly, cf. the first figure in Ref. 15. This is in
agreement with our results in Figs. 17 and 18.

IV. SUMMARY

We have used the Kohn-Sham local spin-density equa-
tions to study the transport, spontaneous magnetization, spin

FIG. 16. �Color online� Conductance as a function of split gate
voltage for different temperatures in a 300 nm QPC.

FIG. 17. �Color online� The energy difference between the low-
est subband and the effective potential at x=y=0, as a function of
the one-dimensional electron density, in a 250 nm QPC.

FIG. 18. �Color online� The energy difference between the low-
est subband and the effective potential at x=y=0, as a function of
the one-dimensional electron density, in a 300 nm QPC.

FIG. 19. �Color online� The energy difference between the low-
est subband and the effective potential at x=y=0, as a function of
the one-dimensional electron density, in a 400 nm QPC.
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gaps and spin order in some typical ballistic semiconductor
split-gate devices. The theory is approximate but appears to
catch basic features such as local spin polarization induced
by electron interactions. For example, when compared with
more accurate methods like configuration interaction44 for
quantum dots it turns out that the local density technique
yields a spin correlation function which agrees quite well
with the more accurate methods.

We have found that spontaneous ferromagnetic spin po-
larization is capable of explaining the conductance anomaly
in long QPCs. Moreover, we have discovered that long QPCs
could have applications for the purpose of spin injection. We
have also partly justified the assumption of a linear opening
of the spin gaps in the Reilly model, with the important
addition that also the closing of the spin gaps should be
incorporated in the model.

Note added in proof. Recently, Rejec and Meir47 have also
shown how different spin-polarized states may be formed.
Thus, symmetric and antisymmetric spin polarization close
to pinch-off, as reported briefly in this paper, are also dis-
cussed by Rejec and Meir in detail.
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