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Spin states and persistent currents in mesoscopic rings: Spin-orbit interactions
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We investigate theoretically electron spin states in one-dimensional and two-dimensional (2D) hard-wall
mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-
orbit interaction (DSOI) in a perpendicular magnetic field. The Hamiltonian of the RSOI alone is mathemati-
cally equivalent to that of the DSOI alone using an SU(2) spin rotation transformation. Our theoretical results
show that the interplay between the RSOI and DSOI results in an effective periodic potential, which conse-
quently leads to gaps in the energy spectrum. This periodic potential also weakens and smoothens the oscil-
lations of the persistent charge current and spin current and results in the localization of electrons. For a 2D
ring with a finite width, higher radial modes destroy the periodic oscillations of persistent currents.
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I. INTRODUCTION

In recent years, the spin-orbit interaction (SOI) in low-
dimensional semiconductor structures has attracted consider-
able attention due to its potential applications in spintronic
devices.!> There are two types of SOI in conventional semi-
conductors. One is the Dresselhaus spin-orbit interaction
(DSOI) induced by bulk inversion asymmetry,? and the other
is the Rashba spin-orbit interaction (RSOI) induced by struc-
ture inversion asymmetry.*> The strength of the RSOI can be
tuned by external gate voltages or asymmetric doping. Re-
cently, the intrinsic spin Hall effect (SHE) in a spin-orbit
coupled three-dimensional p-doped semiconductor® and in a
Rashba spin-orbit coupled two-dimensional electron system’
was predicted theoretically. It provides us a possibility to
generate the spin current (SC) electrically without the use of
ferromagnetic metal or a magnetic field.

Recently advanced growth techniques make it possible to
fabricate high quality semiconductor rings.® A quantum ring
exhibits the intriguing spin interference phenomenon be-
cause of its unique topology. The persistent charge current
(CC) in mesoscopic rings threaded by a magnetic U(1) flux
has been studied extensively, neglecting the spin degree of
freedom of the electron.>”'! It has been experimentally ob-
served both in a gold ring'?> and in a GaAs-AlGaAs ring!3
using standard superconducting quantum interference device
magnetometry. As for the persistent SC, the SC-induced elec-
tric field that was predicted by several authors'*!> may con-
tribute to the successful measurement of the persistent SC in
mesoscopic rings in the future. The electronic structures and
magnetotransport properties of one-dimensional (1D) rings
with the RSOI alone have attracted considerable interest.!®!8
Since the strength of the DSOI in thin quantum wells is
comparable with that of the RSOL'’ one should consider
both of the SOIs in low dimensional structures. A few works
have been done on the effects of the competition between
these two types of SOI on the transport properties of two-
dimensional electron gas (2DEG).?>?2 The effects of the in-
terplay between the RSOI and DSOI on the spin states and
persistent currents (CC and SC) in mesoscopic rings are
highly desirable.

In this paper, we investigate theoretically the spin states
and persistent CC and SC in mesoscopic rings under a uni-
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form perpendicular magnetic field in the presence of both
RSOI and DSOI. We find that the persistent CC and SC,
charge density distribution, and local spin orientation are
very sensitive to the strength of the RSOI and DSOI. The
interplay between the RSOI and DSOI leads to an effective
periodic potential. This potential has significant effects on
the physical properties of mesoscopic rings, e.g., the energy
gaps, the localization of electrons, and weakening and
smoothening of persistent CC and SC. Five different cases
are considered: (1) a 1D ring with RSOI alone; (2) a 1D ring
with DSOI alone; (3) a 1D ring with RSOI and DSOI of
equal strengths; (4) a 1D ring with RSOI and DSOI of dif-
ferent strengths; and (5) finite-width effects on the energy
spectrum, charge density distribution, the persistent CC, and
SC. The eigenstates of cases one and two are analytically
solved and can be connected by a unitary transformation.
The paper is organized as follows. In Sec. II the theoretical
model is presented. The numerical results and discussions
are given in Sec. IIl. Finally, we give a brief conclusion in
Sec. IV.

II. THEORETICAL MODEL

A. Hamiltonian

In the presence of both RSOI and DSOI, the single-
particle Hamiltonian for an electron in a finite-width ring
[see Fig. 1(b)] under a uniform perpendicular magnetic field
reads

2,2
I,
o +a(ok, - ok,) + Blok, — oyk,) + Eg ugBo,

+V(r), (1)

H=

where k=-iV +eA/f. A(r)=B/2(-y,x,0) is the vector po-
tential. m" is the electron effective mass. The fourth term
describes the Zeeman splitting with Bohr magneton up
=eh/2m, and the effective g factor g*. o.(i=x,y,z) are the
Pauli matrices. @ and B specify the RSOI and DSOI
strengths, respectively. V(r) is the radial confining potential,
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FIG. 1. Schematic diagrams for 1D ideal ring (a) and 2D hard-

wall ring (b).
Oy
V(r) = {
m’

where r; and r, are the inner and outer radii of the ring,
respectively.

In the following we take the average radius a=(r,
+7,)/2 as the length unit and Ey=A%/2m"a® as the energy
unit. The dimensionless Hamiltonian in the polar coordinates
becomes

SIS

2)

otherwise,

H,+V(r) + gbl2 Bk, + iak_
H= k_ Bk, +ia - ’ 3)
Bk_—iak,  Hp+V(r)-gbl/2

where Hk=(e,k,+e(pk¢)2 is the dimensionless kinetic term

ko=k,xik,=e*¥(k,xik,), with k,==i7 and k,=—1:-+3r; b

=heB/m'E, is the dimensionless magnetic field; a(B)
=a(B)/Eqa specifies the dimensionless RSOI (DSOI)
strength; and g=g"m"/2m, is the dimensionless g factor.

The wave function W(r) of an electron in the ring can be
expanded as

V() = 2 dunoRu(r)0,(@)Xos2), (4)

nmo

R,(1)0O,(@)x,(s,) = \/dz Sin[ 7(r - rl)} \%Te”"%(g(s ),
(5)

where d=r,—r; is the width of the ring and y,(s.)(o==1)
are the eigenvectors of s..

Most previous theoretical studies on mesoscopic rings are
based on the Hamiltonian of a 1D ring [see Fig. 1(a)], which
can be obtained by simply disregarding all the terms propor-
tional to derivatives with respect to r in the 2D Hamiltonian.
But this conventional procedure leads to a non-Hermitian
Hamiltonian in the presence of RSOI or DSOL?* We can
obtain a Hermitian Hamiltonian including both RSOI and
DSOI following Ref. 23. The stationary Schroédinger equa-
tion 1s

HV =EV. (6)

The dimensionless 1D Hamiltonian including both RSOI and
DSOI reads
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_ 2 —
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H=|-i—+—+—0,——0,(- -—
ety T2 e 4
ap . 1_
+ 7 sin 2¢ + Egb()'z, (7)
where o,=cos o, +sin ¢o,, »=C08 po,—sin ¢o,, P

=Bma* is the magnetic flux threadlng the ring, and @,
=h/e is the flux unit. Notice that there is a periodic potential

term (_2§ sin 2(,0) induced by the interplay between the RSOI

and DSOL
We introduce a vector function S(r) to describe the local
spin orientation of a specific eigenstate ¥ in a 1D ring:

Sr)=VsV=Vs Ve + Vs Ve, + Vs e, (8)

When the coupling strength @ or B vanishes, the sin 2¢
potential accordingly disappears and the analytical solution
to the eigenvalue problem is available (see the Appendix for
details). Generally we have to solve Eq. (6) numerically

when @# 0 and B8+0.

B. Persistent currents

The charge density operator and the charge current den-
sity operator are

pir')==edr' -r),

Jir) = ST 6 + 07() 9)

where r’ refers to the field coordinates and r the coordinates
of the electron. We can also introduce the spin density op-
erator and spin current density operator' as

A f
S’ = E&E(r' -r),

Jir)= —[S(r )0 +08(r)], (10)

where 6=6.e,+6,e,+6.¢_ is the vector of the Pauli matri-
ces. The charge current den31ty and spin current density can
be obtained by calculating the expectation values of the cor-

responding operators:

(r') = (W[j|W) = — e Re{W (") W (r")},

Jor") = (i W) = Re{ W (r")d'sW(r")}, (11)

where W(r) is the wave function of an electron in the ring.
For convenience, we note r',0’ as r,0 hereafter.

The ¢-component of the velocity operator associated with
the Hamiltonian in Eq. (1) is

h 0 eBr «a
bome,| ——+ L s o Col. (12
Ve=Cel im roe 2m h ﬁU‘P( ¢) (12)

The azimuthal (spin or charge) current can be defined as'”
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FIG. 2. (a) The energy spectrum for 1D GaAs rings. @=B=0,

g=-0.01474. (b) The energy spectrum for the 1D InSb ring. &

=B=0, g=-0.357. In (a) and (b) the solid (dashed) lines denote
spin-up (spin-down) levels.

1 2 ) .
I<P= ;TJ;) d(pJ;l dr]q,(r). (13)

We ignore the Coulomb interaction between electrons in
this work. At the low temperature, N electrons will occupy
the lowest N levels of the energy spectrum. The total (charge
or spin) current is the summation over all occupied levels.'

For a 1D ring, the eigenstates could be expanded in the
basis set 0,,(¢)=exp(ime)/\21 which is much simpler than
that in Eq. (4), and we can get the azimuthal component of
the velocity operator in a 1D ring by specifying the variable
r as the constant a in Eq. (12).

Most of the previous investigations of the persistent CC in
mesoscopic rings are based on the well-known formula 7,,=
—JE,/ P, where I, denotes the contribution to the persistent
CC from the nth state and ® is the magnetic flux through the
ring.'®2423 In this paper we calculate the persistent CC and
SC via Eq. (11). Note that for a 1D ring our results are
identical with those obtained from the formula 7,
=—0E,/ 9.

III. RESULTS AND DISCUSSION

We show the energy spectrum of a 1D ring in Fig. 2 for
different g factors. The relevant parameters of the materials
used in our calculation are listed in Table I. Without the
spin-orbit couplings, the g factor accounts for the spin split-
ting. For a material with a large g factor such as InSb, al-
though the parabola behavior of the energy levels as func-
tions of the magnetic fields is still retained, the periodicity of

TABLE 1. Parameters used in our calculation are from Ref.
26.

m’"(m,) g
GaAs 0.067 ~0.44
InSb 0.014 -51

PHYSICAL REVIEW B 74, 235315 (2006)

the energy spectrum is severely broken by the g factor, es-
pecially at large magnetic fields. For a material with a small
g factor, e.g., GaAs, the Zeeman splitting is quite small even
in a rather large magnetic field.

A. 1D ring with RSOI alone

As shown in the Appendix, the electron states in a 1D ring
with RSOI alone under a uniform magnetic field including
the Zeeman splitting can be solved analytically.

The energy spectrum in the presence of RSOI alone is
plotted in Fig. 3(a). When the g factor is set to be zero, the
energy of each level is given by

b 1 o \?> tan’ 6
E,o=\n+—+-- — (14)

where f=arctan(a) [Eq. (A11) or Eq. (A12) represents the
corresponding eigenstate so long as 6, is replaced by 6]
From the above expression we find that the spin-up and spin-
down levels with the same quantum number n are separated
in the b axis by 4/cos 6, and both of the spin-up and spin-
down levels are pulled down by tan? §/4 compared to the
case without SOL

For the RSOI alone case, the local spin orientation for all
the spin-up states along the ring is described as

R _ Rt . R R R R 1R
S =Wkis W e + WRis WK e + WEis WX e
h
= ——[sin(~ )(cos ge, +sin pe,) + cos(~ O)e_].
4ara

(15)

The local spin orientation for all the spin-down states S (r)’f is
opposite to S(r)ITe as shown in Figs. 3(c) and 3(d). In this
case, the oblique angle f=arctan(a@) becomes independent
from the quantum number n and the magnetic field b. It
means that the local spin orientations for all the spin-up
(spin-down) states are the same. When there is RSOI alone,
the local spin orientation exhibits rotational symmetry for
either spin-up or spin-down states.

The contributions to the persistent CC and SC from each
level can be easily obtained explicitly:

b 1 o
I,=—\n+—+-- , (16a)
’ 4 2 2cosb
. b 1 o
Lio=\n+—+- - o cos 6. (16b)
’ 4 2 2cosé

I, (I;7,) denotes the contribution to the persistent CC (SC)
from the eigenstate W, . I, , (I;7,) is in units of 2Ey/®,
(Eo/27r). We should notice that these expressions deduced
from operators coincide with the formula 7,=—dE,/d®.
Splettstoesser ef al. analyzed the persistent CC induced by
the magnetic flux in the 1D ring with both RSOI and an
impurity potential.'® They demonstrated that the strength of
the RSOI can be extracted from the dependence of the per-
sistent CC on the magnetic flux. The number of electrons N
in their work was assumed to be large enough. We focus on
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FIG. 3. (a) Energy spectrum of a 1D ring in the presence of RSOI alone, where the solid lines (dashed lines) denote the spin-up
(spin-down) levels. (b) The projection of S(r)ITa onto the x-y plane. (c) Local spin orientation for all the spin-up levels S(r)lf. (d) Local spin

orientation for all the spin-down levels S(r)’f. a=1, =0, and g=0.

the case in which there are few electrons in the ring (see Fig.
4). We find that the persistent CC is a periodic function of b
exhibiting many linear segments with a slope ratio of —1/4
which can be easily deduced from Eq. (16a). The periodicity
of the persistent CC for an arbitrary N is 4, the same as that
of the energy spectrum. For an arbitrary even number of
electrons N=2n, the jumping amplitude is 1/2 and the neigh-
boring two jumps are shifted along the CC axis. For an odd
number of electrons N=2n+1, there are two jumping ampli-
tudes which appear alternately at those points where b
=0,2,4,6,.... One jumping amplitude is (n—1/cos 6
+2)/(2n+1), while the other is (n+1/cos 6—1)/(2n+1).
When n approaches infinity, the above two amplitudes tend
to 1/2.

The dependence of the persistent SC on the magnetic field
b shows interesting behavior. Turning (jumping) points in the
persistent SC oscillation for an odd (even) number of elec-
trons are caused by the crossing of levels with opposite
(same) spins. When the magnetic field b sweeps, the persis-
tent SC oscillation for an odd (even) number of electrons
exhibits sawtooth (square) wave behavior and the oscillation
amplitude of the persistent SC for an even number of elec-
trons is bigger than that for a neighboring odd number of
electrons especially when the number of electrons increases
(see Fig. 5). For an odd number of electrons N=2n+1, the
slope ratios of the persistent SC are +cos 6/4(2n+1) alter-
nately. For an even number of electrons N=2n, the jumping
amplitude is cos 6/2 for all jumping points.

235315-4
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FIG. 4. The persistent CC in a 1D ring with different numbers of

electrons N vs magnetic field b while @=1, =0, g=0. The persis-
tent CC is in units of 2N Ey/ D,

B. 1D ring with DSOI alone

Now we consider a 1D ring with DSOI alone. The eigen-
states of the Hamiltonian of a 1D ring with @=a, B=b, and

g=c can be connected to those with @=b, B=a, and g=—c
by a unitary operator T (see the Appendix). As we will show
in the next section, 7 represents a rotational transformation
in spin space. b and c are set to be zero and the relationship
between the RSOI alone case and DSOI alone case is speci-
fied as

E),=EX__, (17a)
W =explim/4]TVY |, (17b)
\1’21 =exp[- l'7T/4]T%\I’§,T. (17¢)

The energy spectrum while @=0, B=1, and g=0 is plot-
ted in Fig. 6(a), which is exactly the same as that of a 1D
ring with RSOI alone [see Fig. 3(a)], but the spin orienta-

N=1 N=2
0.2 0.2
o 00 0.0
@ -0.2 -0.2
N= N=4
0.2 0.2
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8 0.0 0.0
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L e e T T ]
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N= N=8
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FIG. 5. Same as Fig. 4, but for the persistent SC. The persistent
SC is in units of N Ey/2.
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tions of the corresponding eigenstates are different. This fea-
ture arises from the sign reversal behavior of o, under the
unitary transformation 7.

Although the eigenstates for the RSOI alone case and
those for the DSOI alone case can be connected by the uni-
tary transformation 7, the behaviors of S(r)’fl and S(r)% are
very different. In the case with DSOI alone, spin-up (spin-
down) states with different angular quantum number n or
under different magnetic field b share the same local spin
orientation S(r) [S(r)D ]. The angle between S(r)D [S(rP] I
and the z-axis is —0 (7~ 6). The local spin orientations S(r),
can be obtained by interchanging the x and y components of
S(r)’fl [see Egs. (15) and (18)].

S =Wis Wl e+ Wis Wl e, + Wis W2,
=W T's, TW) e, + W) T's, TV e,
+WRTs TWR e,
=-Wiis WK e - WKis WK e - WEis WE e
=Wils WR e + Wiis W e + \IrR;s Ve,

f
= —[sin(-— 6)(sin e, + cos ge,) + cos(— H)e_].
4ra :

(18)

This interesting feature comes from the behavior of o (y)
under the unitary transformation 7, i.e., To x(y)TT—TTO'x o)
=-0,(y. The projections of S(r)%e and S(r)? onto the x-y
plane are very different [see Figs. 3(b) and 6(b)]. For the
RSOI alone case, the vector always points along the radial
direction and the locus of the arrowhead is a circle [see Fig.
3(b)]. For the DSOI alone case, the vector varies along the
ring and the cylindrical symmetry is broken [see Fig. 6(b)].

In the current case, the persistent CC oscillations exhibit
the same behavior as those of the RSOI alone case (see Fig.
4) because the corresponding levels are identical as functions
of the magnetic field b. We know that the contribution of
each level to the persistent SC is related not only to the
magnetic field dependence of the eigenenergy but also to the
spin orientation of the eigenstate. Since the spin-up and spin-
down levels are interchanged compared to those of the RSOI
alone case, the persistent SC in the current case can be ob-
tained by changing the sign of the persistent SC for the RSOI
alone case.

C. 1D ring with equal strength RSOI and DSOI

The electron energy spectra for @=8=1, g=0 and a=p
=3, g=0 are plotted in Figs. 7(a) and 7(c), respectively. We
can see that the energy spectra are spin degenerate. The spin
degeneracy comes from the symmetry of the Hamiltonian

when @= . In this paper, we use the unitary operator T (see
Appendix) to describe the symmetry of the 1D Hamiltonian.
When @=8+0 and g=0, THT'=T'HT=H. If we have H¥
=EWV, in which V¥ is an eigenstate for the eigenenergy E,
then the states TW and T™W are also eigenstates and are
equivalent to each other. Thus the energy levels are twofold

235315-5
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FIG. 6. (a) Energy spectrum of a 1D ring in the presence of DSOI alone, where the solid lines (dashed lines) denote the spin-up
(spin-down) levels. (b) The projection of S(r)? onto the x-y plane. (c) Local spin orientation for all the spin-up levels S(r)? . (d) Local spin

orientation for all the spin-down levels S(r)? . a=0, B=1, and g=0.

degenerate. The operator for a ¢ rotation around the unit
vector n in the Hilbert space reads

D(n, QD) — e—iqonL/ﬁ ® e—iz,pns/h’ (1 9)

where L and s denote the orbital and spin angular momentum
operators, respectively. It is easy to demonstrate that the uni-
tary operator T’ can be written as exp[—i7m;-s/h] with n;
=(1/\2,-1/ \5,0). Then T is actually a rotation operator in
the spin space. For a quantum ring in the x-y plane, the
orbital angular momentum vector L=r Xp points along the
z-axis, and therefore n;-L=0. Thus the unitary operator T is
eventually a rotation operator in the whole Hilbert space:

T=D(n,,m). (20)

That means the unitary transformation T (T7) is actually a
rotation by 7 (—r) around n,. Similarly, there are also sym-
metric operations corresponding to 7 and —m rotations
around n,=(1/y2,1/+2,0) for the Hamiltonian with @=—5.
We need to stress that these symmetric operations also exist
for a two-dimensional electron gas with equal strength RSOI
and DSOI (a=+p) and g=0.

Besides the spin degeneracy, it is interesting to find that
gaps appear in the energy spectra. In order to understand this
feature, we transform the original Hamiltonian to a simple
form via a unitary transformation A as follows:

235315-6
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FIG. 7. (a) Energy spectrum of a 1D ring while @= =1, g=0. (b) The charge density (CD) distribution of the lowest single electron state

in a 1D ring while a=B8=1, g=0, b=0. (c) Energy spectrum of a 1D ring while @a=8=3, g=0. (d) The charge density (CD) distribution of

the lowest single electron state in a 1D ring while a=£=3, g=0, b=0. The charge density is in units of e¢/2a.

e 1{ expl- iaf()] expliaf(¢)] o
V2 Lexpl— im/4lexpl-iaf(¢)] - exp[—im/4lexpliaf(¢)] |’
with f(¢)=sin(¢+1/4). The original electron Hamiltonian with @=/ and g=0 reads
He|-it 280 S0 )2 2 o Z sin2 (22)
=|l-i—+—-+-0,—- -0, (- - —+ — sin2¢.
Yo 4T 20T e T Ty Ty e

After the transformation, the Hamiltonian becomes
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?+? sin2¢. (23)

. 9 b>2 @ @

That means the Hamiltonian of a 1D ring with equal strength
RSOI and DSOI and zero g factor is equivalent to that of a
ID ring with a periodic potential alone [see the last term in
Eq. (23)]. The potential height is proportional to the square
of the SOI strength, and the average of the potential shifts
down by about @*/2. The eigenvectors of Eq. (23) are actu-
ally the periodic solutions of the Mathieu equation.”’” The
energy gaps, which are proportional to the potential height,
decrease with decreasing SOI strengths, especially for higher
gaps [see Fig. 7(a)]. When the strengths of SOI are fixed, the
higher energy gaps are narrower than the lower ones because
there is less influence from the potential.

When only one type of SOI (RSOI or DSOI) exists, the
charge density distribution will be constant along the ring;
but the charge density distribution becomes localized along
the ring when both RSOI and DSOI are taken into account.
This localization arises from the effective periodic potential,
whose height is determined by the product of the strengths of
RSOI and DSOI [see Eq. (7)]. Therefore large SOI strengths
lead to strong electron localization. The absolute value of the
charge density exhibits maxima at the valleys of the sin 2¢
potential (¢=37/4 or ¢=T77/4) and minima at the peaks of
the sin 2¢ potential (¢p=7/4 or ¢=5m/4) [see Figs. 7(b) and
7(d)].

In the spin degenerate case, we cannot define the local
spin orientation S(r) for an eigenenergy level and the persis-
tent SC for an odd number of electrons because of the un-
certainty of the eigenvectors. The persistent CC oscillation
for an odd number of electrons N=2n+1 is simply the arith-
metic average of that for N=2n and that for N=2n+2 in a
spin degenerate case. Thus we compare the persistent current
(CC and SC) oscillations in the three degenerate cases: @

=pB=0, @a=B=1, and @=B=3 only for even numbers of elec-
trons (see Fig. 8). The persistent SC is zero in the two de-
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generate cases for even numbers of electrons. The sin2¢
potential in Eq. (7) accounts for the flatter magnetic disper-

sion as well as gaps in the energy spectrum when @=8+0.
Since the contribution to the persistent CC from an energy
level is actually determined by the dependence of the energy
level on magnetic field, the oscillation of the persistent CC

for the case @=B+0 is smoother and smaller than that for

the case @=3=0. The interplay between the RSOI and DSOI
smoothens and weakens the persistent CC oscillation most
obviously when the Fermi level locates near the lowest gap
[see the panels labeled N=4 in Figs. 8(b) and 8(c)]. While
the number of electrons increases, the oscillation of the per-
sistent CC becomes sharp again since the higher gaps be-
come smaller. This smoothening and weakening effect can
even be found again for a large number of electrons when the
SOI strengths increase [see Fig. 8(c)].

D. 1D ring with different strength RSOI and DSOI

Generally, the symmetry of the Hamiltonian shown in the

previous section no longer exists when |a| # | 8], even for g

=0. We show the electron spectra for a=2, B=1, g=0 and
@=4, B=3, g=0 in Figs. 9(a) and 9(c), respectively. The
energy gaps increase with increasing SOI strengths. But the
spin splitting in the two spectra is quite different. It is inter-
esting to note that the energy spectrum becomes spin degen-
erate again when the two SOI strengths are tuned to proper
values even though they are different. Figures 9(b) and 9(d)
show the distribution of charge density for different strength
RSOI and DSOIL. The electron is localized along the ring due

to the periodic potential %é sin 2¢. The electron density dis-
tribution becomes more localized with increased potential
height, i.e., the product of the strengths of RSOI and DSOI
[see Eq. (7)].

The persistent CC and SC are plotted in Figs. 10 and 11,
respectively. We find that the oscillations of the persistent
CC and SC become smooth and weak due to the gaps in the
energy spectrum, especially when the Fermi level locates
near the largest energy gap (N=4). The persistent current
(CC or SC) oscillation no longer consists of linear segments
since the parabolic behavior of the energy levels disappears

due to the periodic potential 225 sin 2¢ in the 1D Hamiltonian
[see Eq. (7)].

The local spin orientation S(r) also reveals the interplay
between the RSOI and DSOI since S(r)® is quite different
from S(r)°. According to Eq. (7), the interplay between
the RSOI and DSOI is divided into two parts, i.e.,

go;—go-q,(—(p) in the kinetic term and the periodic potential

Qf sin 2¢. The first part makes the direction of the local spin

orientation vary along the ring, and the second part leads to
the electron localization [see Figs. 12(a) and 12(b)]. When
the SOI strengths increase, the spin orientation exhibits rapid
variation due to the enhancement of the interplay between
the RSOI and DSOL.
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FIG. 9. (a) Energy spectrum of 1D ring while a=2, B=1, g=0. (b) The charge density (CD) distribution of the lowest single electron
state in a 1D ring while @=2, B=1, g=0, b=0. (c) Energy spectrum of 1D ring while @=4, B=3, g=0. (d) The charge density (CD)

distribution of the lowest single electron state in a 1D ring while @=4, =3, g=0, b=0. The charge density is in units of e/2ma.

In Fig. 12(c), we plot the persistent SC as a function of
RSOI strength @ and DSOI strength S for a fixed number of
electrons N=8 and magnetic field b=2. The contour plot
shows interesting symmetry. It is symmetric (antisymmetric)
with respect to the lines @=0 and =0 (a=+4). From this
figure we find that the maxima and minima of the persistent
SC occur while only one of the two types of the SOI exists.
That is because the effects of the RSOI and DSOI on spin
splitting tend to cancel each other. The persistent SC be-
comes zero when the strengths of the RSOI and DSOI are
equal to each other (@==gp). This corresponds to the spin
degenerate case discussed before. Besides the two orthogonal

lines (@=+p) on the a— ;3 plane there are many circlelike

closed curves on which the persistent SC disappears. These
zero-SC lines intersect the & axis at those points
(+ym?*-1,0) and the B axis at (0,=\m?—1) where m
=1,2,3,.... The persistent SC disappears because the energy
spectrum becomes degenerate again when the strengths of
RSOI and DSOI are tuned to proper values even though they
are not equal. The contour plot of the oscillation amplitude
of the persistent CC for a fixed number of electrons N=8 is
shown in Fig. 12(d). The oscillation amplitude as a function
of @ and B is symmetric with respect to the lines @=0 and
B=0 and @==+ . When only one type of SOI appears, the
maximum of the persistent CC oscillates with increased SOI
strength. When both types of SOI are included, the maxi-
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FIG. 10. The persistent CC in a 1D ring with different numbers

of electrons N vs magnetic field b while @=2, B=1, g=0. The
persistent CC is in units of 2NEy/®,,.

mum of the persistent CC decays since the interplay between
the RSOI and DSOI leads to a periodic potential along the
ring which results in the gaps in the energy spectrum, con-
sequently smoothening and weakening the oscillation of the
persistent CC.

E. Finite width effects

Now we turn to consider a mesoscopic ring with finite
width. When a 2D ring is thin enough, its characteristics are
almost the same as those of a 1D ring since the second radial
levels are too high to be occupied and the compressing effect
of the magnetic field on the radial wave function is negli-
gible. Here we consider the wide ring case.

The energy spectrum for a 2D ring with a finite width
while @=2, B=1, and g=0 is plotted in Fig. 13(a). The sec-
ond radial mode can be seen in the top of the energy spec-
trum. The compressing effect of the magnetic field on the
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2 N
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FIG. 11. Same as Fig. 10, but for the persistent SC. The persis-
tent SC is in units of NE,/2.
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radial wave function accounts for the increase of the energy
with increasing magnetic fields. Like the 1D case, the inter-
play between the RSOI and DSOI leads to an effective peri-
odic potential [see Eq. (A2)], resulting in energy gaps that
depend on the magnetic field. The charge density distribution
of a single electron in a 2D ring at =0 is shown in Fig.
13(b). We find that the electron probability is localized due to
the sin 2¢ potential arising from the interplay between the
RSOI and DSOI.

The persistent CC and SC in the 2D wide ring as a func-
tion of magnetic field are plotted in Fig. 14. The number of
the electrons is tuned to detect the effect of the second radial
mode. When we consider the contribution of the lowest 16
levels, the oscillations of the persistent CC and SC have a
profile similar to that in the 1D ring because the second
radial mode has not been involved yet; but when we increase
the number of the electrons to 20, the quasiperiodicity of the
persistent CC and SC as functions of the magnetic field b is
destroyed. This feature arises from the contribution of the
second radial mode.

IV. SUMMARY

We have conducted a theoretical investigation of the spin
states and persistent CC and SC in mesoscopic rings with
spin-orbit interactions. We have demonstrated theoretically
that the Hamiltonian of the RSOI alone is mathematically
equivalent to that of the DSOI alone by a unitary transfor-
mation 7. This property results in the degenerate energy
spectrum for equal strength RSOI and DSOI. The interplay
between the RSOI and DSOI leads to an effective periodic
potential %ﬁ sin 2¢. This periodic potential results in gaps in
the energy spectrum, and smoothens and weakens the oscil-
lations of the persistent CC and SC. The charge density and
the local spin orientation S(r) are localized along the ring
due to the effect of the periodic potential. Higher radical
modes become involved as the ring width increases, destroy-
ing the periodicity of the persistent CC and SC oscillations.

This work was supported by NSFC Grant Nos. 60376016
and 60525405.

APPENDIX: THE HAMILTONIAN AND AVAILABLE
ANALYTICAL SOLUTIONS

The dimensionless Hamiltonian for a 2D ring reads

where the kinetic term H;=(e,k,+ek,)?, the Rashba term
Hp=a(o,k,—0.k,), the Dresselhaus term Hp= Blo(-e)k,
-0,(-¢)k,], and the Zeeman term H,=gbo /2. V(r) is the
radial confining potential.
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FIG. 12. (Color online) (a) Local spin orientation S(r) for the lowest spin-up level while @=2, B=1, g§=0, b=2. (b) Local spin orientation
S(r) for the lowest spin-up level while @=4, =3, g=0, b=2. (c) The persistent SC in a 1D ring with different RSOI and DSOI strengths
when the magnetic field b is 2. (d) The oscillation amplitude of the persistent CC in a 1D ring with different RSOI and DSOI strengths. In
(c) and (d) we set g=0 and N=8. The persistent CC (SC) is in units of 2NEy/®, (NEy/2).

2 3 4

s

10 — j — 1 j —
H2D == (9_'2 - ;E + V(r) + k2<p+ [C_Y(Tr— BO'(’D(— ‘P)]kqo"' i[_ ao—(p"' Bo-r(_ (P)] + Egbo-z + (kr - é)[_ L_YO'(P + ﬁa-r(_ (P)]

# 19 j — a B ' la g 2
=—a—r2—;5+v(r)+(k,—$>[— aoc,+ Bo,(- )]+ lk‘p+ga',—§a‘p(— (p)] - |:§a',—§(r¢(— @)] +E§ba'Z
# 19 j _ a B @B 1
=—?—;5+V(r)+(k,—é>[— ao,+ Bo,(- <p)]+lk¢,+§o;—§a¢,(— go):| _Z Z'B +?sin2<p+ Egbaz.

(A2)

Specifically we write H,p=H,+H;, where H0=—&%— %a%"’ V(r). The correct 1D Hamiltonian H can be obtained by evaluating
the expectation of H, in the lowest radial mode of H,.>* In the limit of a very narrow ring, we can set r to be a constant value

(r=1) and the following equation will hold for an arbitrarily given confining potential V(r):
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(a) (b)

FIG. 13. (a) Energy spectrum for 2D hard wall ring with width
d=1.33 while @=2, B=1, g=0. (b) The charge density (CD) distri-
bution of the lowest single electron state in a 2D hard wall ring with
d=1.33 while @=2, B=1, g=0, b=0. The charge density is in units
of e/2ma’.

J 1
—+ — =0. A3
<Po|&r 2r|l)0> (A3)

Here p, is the lowest radial mode for V(r). Now we can write
the 1D Hamiltonian explicitly. We get

J9 b a B ? a’+ B
H= —z—+—+—(r,—50'¢(—(p) ~ =4

1
+ 7'8 sin 2¢ + Egb(rz. (A4)

A unitary operator

[ 0 exp[— im/4] ]
T=
—explim/4] 0

is defined, and we have T'=T"'=-T. By applying this uni-
tary operator, the Hamiltonian becomes

— 2 —
J b a a* + B
THTTz[—i—+—+é0',—EU¢(—go):| _X+p
dp 4 2" 2 4
& 1
R (AS)

2 2

Thus the Hamiltonian in which a=a, E:b, g=c is math-

ematically equivalent to that in which a=b, B:a, g=—c.
The Hamiltonian in matrix form is

H,, H
H:{ 1 12]
Hy Hy

where
H ( R b>2 gbl2
= —_+— + ,
1 l(?(p 4 &
_ d b 1 = d b 1
Hp=ae |\ —i—+———|+ipe'?| —i—+—-+ -,
dp 4 2 dp 4 2
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FIG. 14. (a) The perisistent CC in a 2D ring vs magnetic field b
while a=2, ,é:l, g=0, the width d=1.33, and N=16. (b) Same as
(a) but for the persistent SC. (c) Same as (a) except N=20. (d) Same
as (b) except N=20. The persistent CC (SC) is in units of 2NE/ P,

. d b 1 . d b 1
Hy=ae'?\—i—+—+—-|—ipe?|-i—+——-=,
dp 4 2 do 4 2

H —( i+’—’)2 Zbi2 (A6)
2= lﬁgo 4 8 .

To solve the equation HV =EWV, we expand the wave func-
tion ¥V as

\If:(qjl):E (a'")@m(@),

where ®m(qo)=% explim¢]. The secular equation becomes

m

bm+l&

b 1 — b 1
<m+—+—>+ibm_1ﬂ<m+———>
4 2 4 2
p\2
= E—<m+z> —-gbl2 \a,,

_ b 1\ | - b 1
Ay m+4_1_5 —ia,,. B m+1+5

b 2
= E—<m+Z> +gb/2 |b,,.

Generally, we can write the Hamiltonian in an infinite quin-
tuple diagonal matrix form based on Eq. (A7).

(A7)
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0 0 0 0 0]
2 b 1
(b—l) gb 0 (———) 0 0 0
4 2 4 2
2 3 (b 1
0 0 (9-1> _& —i (———) 0 0 0 0
4 2 4 2
(b 1 b\* gb b 1
0 il —-— - -— 0 0 al —+— 0
4 2 4 2 4 2
b 1 b\> @b _ 1 ’
0 a(———> 0 0 (—) _&2 13(—+—) 0
4 2 4 2 4 2
(b 1 b 2 @b
0 0 0 0 ipl - += —+1| += 0 0
4 2 4 2
b 1 2 3
0 0 0 <—+—) 0 0 <13+1) _&
4 2 4 2
L 0 0 0 0 : 0 J
a_y a_y
b_, b_,
Qg Y| (A8)
bO bO
ay ay
b, b,

We consider three different cases. For the first and second .0 ion
cases, in which the quintuple diagonal matrices are reduc- 1 sin —~e™¢
ible, analytical solutions can be obtained. PR = ?ei(”+1/2)¢ 0 ) (A12)
(a) @#0, B=0; N2 oS Enei(p/Z
(m+0b/4)>+gbl2  a(m+bl4+1/2) a, o ,
_ y The local spin orientations for eigenstates are
alm+bld+1/2) (m+bld+1)"—gbl2 || b,
R_ N .
_ E{ a, } (A9) S(r)y = E[sm(— 6,)(cos e, +sin @e,) + cos(- 6,)e.]
b
m+1 (A13)
The eigenvalues are and
o +é+l o 2 tanzﬁn+ gb Z
no =\ T S T S s 0,] 4 75 cos 0, S(r)f = E[Sin(’ﬁ— 6,)(cos e, +sin ge,) + cos(m— 6,)e,].
(A10) (A14)
a(n+bl4+1/2) . . _
where tan ﬁn=m. The corresponding eigenvectors (b) @=0, B#0;
are
, (m+bl4+1)>+gbI2 iB(m + bl4 + 1/2) {amﬂ]
Yn i — -
. cos —Fe™# —iBm+bl4+1/2) (m+b/4)?-gb/2 |L bu
VR = —”Te'("ﬂm‘p’ (Al1) .
Nem —sin E"e[‘*’/z = E[ Z” } (A15)
and The eigenvalues are

235315-13



J. S. SHENG AND KAI CHANG

b 1 o 2
Eﬁo=<n+—+— ) -~

tan’ 7, gb
+ +
4 2 2cosm,

g ’
4 2 cos 7,
(A16)

Bln+bl4+1/2)

where tan 7,= The corresponding eigenvectors

n+blA+1/2+gbl2"
are
| cos ﬂei“’/2
\l,nD,l — ; ei(n+l/2)(p , (A17)
12 .. _
K —isin ZeTi¢?
2
and
. — i sin L,ie?
D i(n+1/2
V=735 {12} , (A18)
/n' i
v cos ?"e i¢/2

The local spin orientations for the eigenstates are

PHYSICAL REVIEW B 74, 235315 (2006)

fi
S(r)IT) = —[sin(- 7,)(sin @e, + cos @e,) + cos(- 7,)e.]
4ma

(A19)

and

h
S(r)?P = 4—[sin(ﬂ'— 7,)(sin pe, + cos ge,) + cos(m - 7,)e.].
ma

(A20)
(c) a#0, B+#0.

While both RSOI and DSOI have nonvanishing strengths,
we cannot reduce the infinite quintuple diagonal matrix
shown in Eq. (A8) into a more compact form. Thus analyti-
cal solutions do not exist. We give numerical results instead.
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