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Use of dynamical coupling for improved quantum state transfer
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We propose a method to improve quantum state transfer in transmission lines. The idea is to localize the
information on the last qubit of a transmission line by dynamically varying the coupling constants between the
first and the last pair of qubits. The fidelity of state transfer is higher then in a chain with fixed coupling
constants. The effect is stable against small fluctuations in the system parameters.
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Efficient short-distance quantum state transfer is an im-
portant problem in the field of quantum computing. One of
the most promising solutions is to use chains constructed
from qubits that are statically coupled to each other. The idea
to use quantum spin chains was initially put forward by
Bose! and then developed in a number of papers. These pro-
posals exploit the unitary time evolution governed by the
system Hamiltonian. The state is initialized/encoded at the
sender part of the chain and then, after a certain time,
measured/decoded at the receiving part of the chain. The
major advantage of this method is its simplicity: it does not
require controllable coupling constants between the qubits or
complicated gating schemes. It was shown' that for short-
length chains the fidelity of state transfer is high, i.e., close to
one. But the fact that it is substantially reduced with the
length of the chain triggered the search of methods that allow
one to increase the fidelity or even to obtain perfect state
transfer, in the absence of decoherence and relaxation pro-
cesses.

The main reason for imperfect transfer is the dispersion of
the initial information over the whole chain. Therefore it was
proposed to use spatially varying coupling constants to “re-
focus” the information at the receiving part of the chain.>*
Another possibility is to encode the information in Gaussian
wave packets (with low dispersion) spread over several
spins.’ Chains where the first and the last qubits are only
weakly coupled to the rest of the chain provide a very high
fidelity,’ because the intermediate spins are only slightly ex-
cited, which means that dispersion is small. This method has
the major disadvantage that the time required for the transfer
is long compared to the qubit decoherence/relaxation times
in present experimental setups. The idea of so-called conclu-
sive transfer, providing perfect state transfer using parallel
quantum channels,”? is very promising. It can be realized
using almost any spin chain and it is stable against fluctua-
tions of the chain parameters.”

Almost all the proposals mentioned above have one com-
mon disadvantage: the time interval for which the fidelity is
high is very small for physical qubits and realistic qubit cou-
pling parameters. For example, for a chain of flux qubits'”
with realistic experimental parameters,'' the half-width of
the first fidelity maximum is about 0.2 ns. At these time
scales state readout and manipulation is impossible using
current experimental technology. Here we show that by dy-
namically varying the coupling constants only between the
first and the last pair of qubits we can solve this problem and
also increase the fidelity of state transfer.
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In real chains the state to be transmitted is initialized in
the first qubit, and this process must not influence the fidelity
and dynamics of the chain. The most natural idea for a full
transferring protocol is as follows: initialize the state in the
first qubit, that is decoupled from the rest of the chain, then
adiabatically couple it, wait a certain time and then adiabati-
cally decouple the last qubit from the chain. This method
requires two controllable gates like one of the proposals for
achieving perfect state transfer.'? In this paper, the main pur-
pose of the gates is to localize the state on the last qubit
where it can be manipulated during times that are compa-
rable to the decoherence/relaxation times.

In the following we use the terms spin and qubit as
equivalent. State |1) in qubit language (which we will also
call “excitation”) corresponds to spin up in spin language,
and state |0) corresponds to spin down.

We consider the XXZ Hamiltonian with time-dependent
coupling constants between the first and the last pair of qu-
bits:

N-1

H(1) =—J (1) (0507 + 0307) — nyz (ofo_+0,0"))
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This type of Hamiltonian or some of its special cases is
used in most of the papers mentioned above. The XX part of
the Hamiltonian describes the tunneling of the excitation
from one site to another and is a necessary requirement for
quantum state transfer.

The physical systems described by this type of Hamil-
tonian include Josephson arrays of charge'®> and
persistent-current'%# (flux) qubits, connected by Josephson-
junctions/capacitors. The time-dependent coupling constants
can be realized by varying the gate voltages on the first/
second and (N—1)th/Nth qubits for the flux qubit chain, or
by replacing the Josephson junction between the charge qu-
bits with a superconducting quantum interference device
(SQUID) and varying the flux through it.

As a model we use “Fermi-functionlike” coupling con-
stants:

Jx_vl(t) = nyf(ti’t),
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FIG. 1. Coupling constants J,,; and J,,y as functions of time
and coupling parameters.

nyN(t) :nyf(t’tf)’ (2)
with

fet') = (3)

1 +exp

=t

These are smooth functions that vary from 0 (no cou-
pling) to J,, (full coupling) and vice versa, see Fig. 1. The
time scale of the coupling/decoupling procedure is deter-
mined by 7. Instant coupling/decoupling corresponds to 7
=0.

Our goal is to calculate the fidelity of state transfer, the
quantity that characterizes the quality of the transmission
line. We assume that the chain is initialized in the state
|00- - -00). Then, the first qubit is prepared in the state |i;,),
i.e., the total state of the array is |;,,00...00). This is not an
eigenstate of the Hamiltonian (1), therefore the system will
evolve in time. After a time ¢ the state of the last qubit is
read out. Following Bose,! we average the fidelity over
all pure input states on the Bloch sphere, F(z)
=[] Poe ()| 4:,)d 21 (477) to obtain a quantity 1/2<F(r)
=<1 that measures the quality of transmission independent of
|t4,). Here p,,, is the reduced density matrix of the last qubit.
Fidelity 1 corresponds to perfect state transfer.

By numerically solving the Schrédinger equation for the
time-dependent Hamiltonian (1) we get the fidelity of the
state transfer as a function of time and the coupling param-
eters 7, t;, and .. The fidelity has a complex oscillating be-
havior. Our goal is to find the coupling parameters that allow
us to localize the state at the last qubit by decoupling it from
the rest of the chain such that the fidelity is maximal. In
comparing this fidelity with the static case, we concentrate
on the first maximum: higher maxima appear only after times
much longer than the time at which the first one occurs.!®!13
The typical behavior of F(z) for the static chain in the vicin-
ity of the first maximum is shown in Fig. 2 (dashed line).

Figure 2 also shows the fidelity in the presence of time-
dependent coupling constants (solid line). At large times, the
state is localized at the last qubit with a fidelity F, that is
higher than for static coupling constants. The time at which
the maximum is achieved is slightly larger. This is natural
since in the presence of the coupling/decoupling procedure
the transmission of the information from the first qubit to the
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FIG. 2. Fidelity as a function of time (in units of J;;) for a chain
with constant coupling parameters (dashed line) and time-
dependent coupling parameters (solid line), N=10, =0, f;
=6.2/Jyy, T=1/Jy,.
chain and then to the last qubit is slower. After decoupling,
the localized state can be manipulated during a time interval
comparable with the decoherence and relaxation times for
the qubit, which are several orders of magnitude longer than
the half-width of the first fidelity maximum in the static case
in present experimental setups. We would like to mention
that the first fidelity maximum in the case of dynamical cou-
pling constants is even higher than the stationary value of the
fidelity after decoupling. Numerical calculations show that it
can exceed the value 0.99 (but, in this case, after the full
decoupling the fidelity will go down to about 0.9).

Figure 3 shows the fidelity of the state transfer after com-
pletely decoupling the last qubit from the rest of the chain for
t—o as a function of the parameters 7 and ¢, (for #;=0).
There is a region where the fidelity for the localized state is
higher than in the time-independent case (up to 4%).

]
[

S,

7
N
7
Ay

FIG. 3. Stationary value of the fidelity after decoupling as a
function of 7 and 75, N=10, #;=0.
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FIG. 4. Dots: relative increase of the width of the first fidelity
maximum in Fig. 3. Solid line: fidelity of the maximum compared
to F().

The origin of this phenomenon is similar to the effect
described in Ref. 12. By dynamically varying the coupling
constant between the first and the second qubit, the informa-
tion about the state enters the chain as a wave packet that has
small dispersion. This corresponds to some sort of filtering,
an interpretation in agreement with the fact that the fidelity is
higher in the case of equal “profiles” for the coupling and
decoupling functions. If we use dynamical decoupling only
at the end of the chain and employ instant coupling to ini-
tialize the chain, the maximal possible fidelity for a chain of
N=10 qubits drops from about 0.99 to 0.95 (but it is still
higher than the fidelity for the time-independent case, which
is around 0.93). Apparently, during the dynamical decou-
pling, the information that is still dispersed in the chain will
arrive at the last qubit. Therefore, slow decoupling allows
more information to be gathered before the full decoupling
occurs.

Figures 3 and 4 also show that adiabatic coupling requires
a less precise definition of ¢, to achieve the same quality of
the state transfer, compared to instantaneous coupling.

Experimental qubit arrays are always inhomogeneous, so
in the rest of the paper we will discuss the effect of static
disorder in J,, and dynamical fluctuations in the coupling/
decoupling functions. For charge qubit arrays, the most im-
portant source of inhomogeneity is the variance of the Jo-
sephson energies of the junctions (about 5%). In the case of
the flux-qubit chain with capacitive coupling, J,, is a com-
plicated function of the Josephson and charging energies as
well as the capacitance of the coupling capacitor, see Ref. 11.
A rough estimate using realistic parameters leads to a vari-
ance of 10%.

We have performed numerical simulations to evaluate the
time evolution of the system. As a result we find that the
phenomena described above, are stable to static disorder and
dynamical fluctuations in the coupling functions, see Figs. 5
and 6. Figure 5 shows the distribution of the fidelity after
complete decoupling in the presence of disorder in the cou-
pling constants. Its half-width is quite small: even in the
worst case the fidelity is higher than the fidelity of the ideal
chain without disorder. The graph was constructed using a
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FIG. 5. Fidelity distribution in the presence of small disorder in
the coupling constants J,,, N=10, 1;=0, 7=0.325/J,,, 1;=6.2/J,,.
Fy is the first fidelity maximum for the ideal chain with static cou-
pling constants. Inset: distribution of the fidelity difference between

the dynamical and statical cases in the presence of equal disorder.

numerical simulation for an ensemble of 10000 chains
where the coupling constants were of the form J,,;— Jy,(1
+r;), i=1-+-N. The quantity r; was a random number with
uniform distribution in the interval [0; 0.07].

The inset of Fig. 5 shows the difference between the fi-
delities for different realizations of the chains with constant
and time-dependent couplings. This difference is around 2%,
so the effect of increased fidelity persists. In each realization
both chains have the same randomized coupling constants
and the only difference is that J,,, and J,,y are not multiplied
by coupling functions for the time-independent chain.

Figure 6 shows the influence of fluctuations in the
coupling/decoupling functions. Here the coupling constants
J., are the same for all realizations and the coupling/
decoupling functions are of the form
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FIG. 6. Fidelity distribution in the presence of fluctuations in the
coupling/decoupling function, all other coupling constants are fixed
and equal. #;=0, 7=0.325/J,,, t;=6.2/J,,. F, is the fidelity after
decoupling in the absence of fluctuations. Inset: fidelity distribution
in the presence of site energy fluctuations (6B=5%).
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The quantities ry y(¢) are stepwise stochastic processes of
step width 0.0367, the step heights are uniformly distributed
in the interval [0; 0.02]. The influence of these fluctuations is
small. The fidelity in the presence of dynamical fluctuations
in the coupling functions is always decreased. This is in
agreement with the filtering idea described above.

The inset of Fig. 6 shows the influence of fluctuations in
the site energies. This influence is small, because assuming
that B is chosen to maximize the average fidelity, the fluc-
tuations of B will influence only one term in the fidelity as a
multiplicative factor that is approximately equal cos(SB), see
[1].

Finally, to check that all the effects described above are
not the consequence of our special choice of coupling func-
tions (2), we also did the calculation for another type of
dynamical coupling/decoupling:

0 1<0,
Jo1 =17 te[0,7] (5)
Iy t>r
Ty 1<1y
Jon=\Io((tr=0/m+ 1) t € [tpt;+ 7] (6)
0 1>+ 7.

These functions vary from 0 to J,, (and vice versa), and
we have chosen £,=0. The parameters a and 7 describe the
shape and time scale of the coupling/decoupling function.
The first maxima of the fidelity for different a € [0.1;1] are
shown in Fig. 7. Here, as in Fig. 6, 7 and t; are chosen to
maximize the fidelity. One can see that this type of dynami-
cal coupling also allows us to have better state transfer than
for the chain with constant couplings (where the height of
the first maximum is F,). In general, wave packets with big-
ger width have lower dispersion. Therefore we expect that
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FIG. 7. Fidelity maxima in the case of coupling functions pa-
rameterized as J,,((£)/ D)%, J,,((ty=1)/ T+ 1)

every smooth monotonic coupling/decoupling function with
equal profiles will allow us to improve the fidelity of state
transfer.

In the past, a number of quantum transmission line sys-
tems was proposed to achieve a perfect or almost perfect
state transfer. A common disadvantage of most of these pro-
posals is the very short time interval, for which the fidelity of
the state transfer is high. Manipulating the state in such short
time intervals is impossible using current experimental tech-
nology. In this paper we have proposed a method that allows
one to localize the transferred state on the last qubit of the
transmission line, by varying the coupling constants between
the first and the last pair of qubits. We have also shown that
this method increases the fidelity of the state transfer and that
this effect is stable to static disorder in the coupling constants
and dynamical fluctuations in the coupling/decoupling func-
tions. We would also like to mention, that applying a se-
quence of coupling/decoupling pulses may lead to an even
better fidelity.”
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