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We treat the hopping model of small polarons which are coupled by the Rashba spin-orbit interaction. The
kinetic equations for the density matrix are derived and solved for a number of different charge- and spin-
transport phenomena. We focus on the mutual coupling between the spin and charge degrees-of-freedom and
its dependence on an applied electric field. Specific results are obtained for: �1� the electric-field-induced spin
accumulation, �2� the relaxation of an initial homogeneous spin-magnetic moment, �3� the anomalous Hall
effect of charge carriers, �4� the frequency response of the spin-Hall current, �5� the spatial charge- and
spin-distribution near the boundary, and �6� the creation of a spin-magnetic moment due to particle diffusion.
Although the polaron model has its own peculiarities, many results are reminiscent of corresponding findings
in the band-transport theory, which recently has received considerable interest in the literature.
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I. INTRODUCTION

The generation of magnetic moments in semiconductors
with spin-orbit interaction can be controlled by an electric
field1,2 or by optical means.3,4 This effect is considered to be
a particularly promising tool for spin-based device applica-
tions. As a consequence, the theoretical and experimental
study of spin-related phenomena in the electronic transport
of such systems has recently attracted intense attention. Most
important is the interplay between the spin and charge
degree-of-freedom as well as the antisymmetric scattering in
the absence of any magnetic field, which gives rise to the
spin-Hall effect5 and the spin accumulation.6

The majority of theoretical studies is devoted to the linear
transport regime of extended electronic states subjected to
pure elastic scattering �see, for example, Refs. 7–11�. In con-
trast, there are only few papers referring to the alternative
hopping transport regime in systems with spin-orbit
interaction.12–16 Some spin-related effects have a different
character in systems with extended and localized eigenstates.
As an example, we mention the anomalous Hall effect,
which is due to asymmetric scattering �quantum interference�
for itinerant �localized� electrons. In the theory of hopping
transport, one restricts the approach usually to two-site tran-
sitions. In the presence of a magnetic field, this approxima-
tion, which neglects the influence of the magnetic field on
scattering probabilities, becomes completely insufficient. In
order to account for the field-induced quantum interference,
it is necessary to treat at least three-site hopping processes
too.17 The associated magnetic flux depends on how the car-
riers circle the triangle of the three hopping sites. Conse-
quently, the carrier motion proceeds along a direction, which
differs, in general, from that one of the electric field �Hall
effect�. Note that the three-site hopping model is only the
simplest approximation that takes into account the quantum
interference. For crystals, this approximation is only appli-

cable for hexagonal symmetry. Otherwise �for instance for
cubic symmetry�, the more complicated four-site hopping
model has to be taken into account. As the spin-orbit cou-
pling �in the absence of an external magnetic field� leads to
similar effects as an effective magnetic field, the consider-
ation of its influence on the hopping transport also requires a
treatment beyond the two-site approximation.12,13

In this paper, a general approach is presented that ac-
counts for combined spin-charge effects in the hopping trans-
port of localized carriers. We focus on a model for a crystal
with hexagonal symmetry, in which localized eigenstates are
due to strong electron-phonon interaction �model for small
polarons�. Our main task is the derivation of a coupled set of
rate equations for the charge and spin densities. In addition,
we present solutions of these kinetic equations for a number
of experimentally relevant phenomena such as the spin accu-
mulation, the anomalous Hall effect, the stationary spatial
distribution of carriers and spins at contacts, and the decay of
an initial packet of charge carriers and spins due to diffusion
processes.

The derived rate equations are sufficiently general so that
they are expected to be also applicable for transport phenom-
ena due to extended states, when the model parameters �drift
and Hall mobilities, diffusion coefficient, relaxation time� are
appropriately redefined. However, it will be shown that this
analogy holds only for the case of sufficiently weak spin-
orbit coupling. Otherwise, the rate equations become non-
Markovian so that the experimentally relevant quantities ex-
hibit a nontrivial frequency dispersion under the influence of
a time-dependent electric field.

II. MODEL AND BASIC EQUATIONS

Let us treat a model of a two-dimensional electron gas
�2DEG� with Rashba spin-orbit interaction18 that gives rise
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to the following dispersion relation for a system with
nearest-neighbor coupling and with a narrow energy band

��k − �� � K�� = Jg cos��k − �� � K��g� , �1�

where g denotes the vector between nearest neighbors
and Jg the resonance integral between them. � is the vector
of Pauli matrices and k= �kx ,ky ,0� denotes the in-plane
momentum. The spin-orbit coupling is given by the wave
vector K, which is oriented perpendicular to the 2DEG
�along the z axis�. Most authors used the Rashba coupling
constant �=�K /m*, which has the dimension of a velocity
�m* denotes the effective mass�. In addition, the model is
characterized by the presence of strong inelastic electron-
phonon couplings, for the description of which the polaron
theory is utilized.19 In this approach, the well-known polaron
canonical transformation of the Hamiltonian leads to the
result

H = − eE�
m,�

Rmam�
† am� + �

q
��q�bq

†bq +
1

2
�

+ �
m,�

�
m�,��

Jm�m
���

�̂m�mam���
† am�, �2�

where E and Rm denote the external electric field and the
radius vector of the lattice site m, respectively. Furthermore,
the annihilation operators for electrons at the site m with spin
�=1,2 and for phonons with the wave vector q and fre-
quency �q are expressed by am� and bq, respectively. The

polaron multiphonon operator �̂m�m is defined, e.g., in Refs.
14 and 19. The only difference between the Hamiltonian in
Eq. �2� and its standard form in the polaron theory is due to

the spin dependence of the resonance integral Jm�m→Jm�m
���

given by

Jm�m
��� = Jm�m exp�i� · �K � Rm�m�����. �3�

Therefore, the diagram technique developed to account for
scattering processes of small polarons can be applied with
slight modifications �cf., for instance, Ref. 19�.

For the treatment of spin-dependent hopping effects, we
need the density matrix

���
� �m,t� = �am��

† am�	t, �4�

which is calculated from balance equations

d���
� �m,t�

dt
= �

m�
�

�1,�2

��2

�1�m�,t�W�2��
�1� �m�,m� , �5�

in which the transition probabilities W satisfy the sum rule

�
m,�

W�2�
�1��m�,m� = 0. �6�

Due to the conservation of the particle number, we obtain

S−1�
m,�

��
��m,t� = n , �7�

where S denotes the area of the 2DEG and n is the electron
density per unit area. Note that Eq. �5� was obtained in

the one-electron approximation so that all results derived
below apply only to Boltzmann statistics. In addition,
non-Markovian effects are excluded from our consideration.

In this paper, we treat a crystalline system, for which the

transition probabilities W�2�
�1���m� ,m� depend only on the

difference of the site numbers m�−m so that the balance
equation �5� becomes diagonal after performing a Fourier
transformation

���
� ��,t� = �

m

���
� �m,t�exp�i� · Rm� , �8�

d���
� ��,t�

dt
= �

�1,�2

��2

�1��,t�W�2��
�1� ��� . �9�

For disordered systems, the influence of the spin-orbit
interaction on localized states was treated in Ref. 16.

To proceed further, it is expedient to collect from the four
components of the density matrix ���

� the particle � and spin
�= ��x ,�y ,�z� contributions defined by

� = �
�

��
�, � = �

�,��

���
� ����. �10�

The kinetic equations for these quantities have the form

d���,t�
dt

= �
�1,�2

�
�

��2

�1��,t�W�2�
�1���� , �11�

d���,t�
dt

= �
�1,�2

�
�,��

��2

�1��,t�W�2��
�1� �������, �12�

where, as usual in the theory of small polarons, the hopping
probabilities W are expanded into a series of the resonance
integral J. The lowest-order two-site approximation of the
Eqs. �11� and �12� has already been studied in Ref. 13. This
approach provides the following contributions to the right-
hand sides of Eqs. �11� and �12�, which are linear in the
electric field E and linear and quadratic in �:

− �D�2 + iu�� · E��� , �11a�

− 
D�2 + iu�� · E� +
Â

	
��

− 4D�
K � �i� −
eE

2kBT
�� � �
 . �12a�

In these equations, the drift mobility of small polarons

u = u0

�
J2

Ea
1/2�kBT�3/2 exp�−

Ea

kBT
� �13�

has been introduced. The parameters are: Ea—an activation
energy �cf. Ref. 19�, D=ukBT /e—the diffusion coefficient,
a—the lattice constant, u0=ea2 /�—a mobility parameter,

	= �4DK2�−1—the spin-relaxation time, and Â—a diagonal
tensor with the components Axx=Ayy =1, Azz=2.

As mentioned above, a due treatment of the spin-orbit
coupling in a system of small polarons requires the
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consideration of at least three-site hopping transitions. The
situation is reminiscent of the calculation of the charge-Hall
effect in the presence of a magnetic field,19 where the three-
site transitions give rise to a magnetic flux and associated
quantum interferences.17 For hopping systems with spin-
orbit coupling, three-site hops were already treated in Ref.
13. However, in this paper only contributions up to the order
K2 were taken into account. Unfortunately, this simplification
does not allow the treatment of such interesting phenomena
as the electric-field-induced spin accumulation. The calcula-
tion of the three-site hopping contributions to the right-hand
sides of Eqs. �11� and �12� is somewhat tedious but straight-
forward �and similar to calculations in Ref. 13�. The final
result has the form

− 4iD
uH

uK
� e���K � E���K · ��

2kBTK2 + �� · �K � ���
 ,

�11b�

− 4D
uH

uK
�ie

���K � E��
2kBTK2 K + 
K � �i� −

eE

kBT
��
� ,

�12b�

where a spin-related mobility uK=e / ��K2� has been
introduced. In addition to the results in Ref. 13, there are
contributions proportional to K3. The Hall mobility

uH = u0

�
J
�EakBT

exp�−
Ea

3kBT
� , �14�

of small polarons in hexagonal crystals drastically differs
from the drift mobility given in Eq. �13�.19

Note that there are three-site contributions that are due to
virtual hopping transitions and which are given by the imagi-
nary part of the scattering probability.13 Similar virtual tran-
sitions also occur in the spin-mediated band transport.20

Although the significance of these contributions is not
sufficiently clear up to now, we can safely drop their
consideration for not too strong spin-orbit couplings.

Taking into account Eqs. �11a� and �11b� together with
�12a� and �12b�, we obtain from Eqs. �11� and �12� the final
set of kinetic equations

d�

dt
= − �D�2 + iu�� · E��� − 4iD

uH

uK
� e�� · �K � E���K · ��

2kBTK2

+ �� · �K � ���
 , �15�

d�

dt
= − 
D�2 + iu�� · E� +

Â

	
�� − 4D�
K � �i� −

eE

2kBT
��

� �
 − 4D
uH

uK
�ie

���K � E��
2kBTK2 K + 
K � �i�

−
eE

kBT
��
� . �16�

These rate equations for the charge �15� and spin �16�
degrees-of-freedom are the main results in this paper. In the

literature, many authors9,21–25 derived similar equations for
extended states subject to elastic scattering. As in these stud-
ies energy dissipation is not included, the kinetic equations
refer to spectral densities, which are integrated over the en-
ergy at the end of the calculation. In contrast, Eqs. �15� and
�16�, which do not have a spectral character, refer to the
hopping regime with strong inelastic scattering with the pho-
non heat bath. When the electric field is switched off, the
energy relaxation does not play any significant role and from
a phenomenological point of view, Eqs. �15� and �16� agree
with corresponding results in Refs. 9 and 22, when model
parameters like u, uH, D, and 	 are appropriately redefined.

III. SPATIALLY HOMOGENEOUS SYSTEMS

First, let us solve the basic kinetic Eqs. �15� and �16� for
spatially homogeneous systems by omitting any boundary
effects. In this case, one can treat the field-induced homoge-
neous spin accumulation and the relaxation of an initial ho-
mogeneous nonequilibrium magnetic moment. For �=0, the
Laplace transformed kinetic Eqs. �15� and �16� take the
simple form

��0� = n/s , �17�

�s +
Â

	
���0� − 2u��K � E� � ��0�� − 4

uHu

uK
�K � E���0� = �0,

�18�

where s is the Laplace variable, which replaces the time t. �0
denotes the initial homogeneous spin moment and the upper
index �0� refers to spatially homogeneous quantities. Solving
these equations and returning to the time representation, we
obtain

��t� = �ac�t� + �r�t� , �19�

where the field-induced spin accumulation

�ac�t� = ���1 − exp�− t/	�� ,

approaches the steady-state value

�� =
�uH

kBT
�K � E�n = �uH�K � E�

dn

d�F
. �20�

Here, we conveniently employed dn /d�F=nkBT �with �F be-
ing the Fermi energy�, which is satisfied for the Boltzmann
statistics. The generation of a magnetic moment by an elec-
tric field is the well-known magnetoelectric effect of the
electrodynamics. Its appearance in systems with spin-orbit
interaction was predicted by Edelstein6 many years ago. Note
that Eq. �20� completely agrees with Edelstein’s result,6 al-
though he treated extended states and Fermi statistics �in this
model, the Hall and drift mobilities agree uH=u=e	p /m*,
with 	p being the momentum relaxation time�. This similarity
stresses the universal character of Eq. �20�, which seems to
be independent of the transport mechanism and the carrier
statistics. An ac electric field E�t�=E exp�−i�t� induces a
frequency dispersion of the spin accumulation, which exhib-
its the standard Drude form
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�ac��� =
��

1 − i�	
�21�

for the considered hopping regime. For extended states, the
frequency dependence of the spin accumulation is in general
more complicated20 and takes the Drude form only for weak
spin-orbit coupling, when �FK	p=Kl
1 �where �F denotes
the Fermi velocity and l the length of the mean free path�.
Under the condition Kl�1, the spin accumulation of itiner-
ant electrons behaves differently and exhibits a resonance at
the frequency �=2�FK. Therefore, we conclude that the uni-
versal character of Eqs. �15� and �16� is only expected for
weak spin-orbit coupling. In general, the time dependence of
the spin accumulation has a non-Markovian character.

Next, let us study the spin contribution �r�t� in Eq. �19�,
which describes the relaxation of a homogeneous spin mo-
ment. For an electric field oriented along the x axis, we have

�ry�t� = �0y exp�−
t

	
� , �22�

�rx�t� = exp�−
3t

2	
�

�
�0x cos�t��2 − 1/2	 − �� + �0z sin�t��2 − 1/2	�

cos �
,

�23�

�rz�t� = exp�−
3t

2	
�

�
�0z cos�t��2 − 1/2	 + �� − �0x sin�t��2 − 1/2	�

cos �
,

�24�

where the phase � is calculated from sin �=�−1, with �
being the following field parameter

� = E/Ec, Ec = �4u	K�−1 = DK/u = KkBT/e . �25�

According to this solution, an initial nonequilibrium mag-
netic moment in the x-z plane performs spin rotations in this
plane with the frequency ��2−1/ �2	�, when the electric field
is larger than the critical value Ec. The spin rotation was
predicted for a magnetic moment in the hopping regime in
Refs. 12 and 13 and later also for the band-transport
model.21,24 The experimental verification of these damped
oscillations requires strong electric fields ��1. The eigen-
modes can be excited by interference effects with photo-
generated electrons or by an external magnetic field.14 We
call these eigenmodes spin remagnitization waves in analogy
to the well known trap recharging waves �space charge
waves� in semiconductors,26,27 which are experimentally de-
tected by the frequency dependence of the current or by the
study of the Bragg diffraction pattern in photorefractive
crystals.

IV. HALL CURRENT

The current of charge carriers is defined by the time
derivative of the dipole moment j=dD /dt, the Fourier
transformed version of which has the form

j�t� = ie��� d

dt
���,t��

�=0
. �26�

The � derivative of Eq. �15� is easily calculated and we
obtain

j�t� = eunE +
�uH

	
� e�K � E�

2kBTK2 �K · ��0��t�� + �K � ��0��t��
 ,

�27�

in which the spatially homogeneous spin density ��0��t� is
given by Eqs. �19�, �20�, �22�, and �24�. When initially there
is no magnetic moment �0=0, the ac response of the charge
current has the form

j��� = �1 −
�2uH/uK�2

1 − i�	

enuE . �28�

As j��� has the same direction as the electric field E, the
Hall current of charge carriers disappears in this case. The
spin-orbit interaction leads only to a small correction �K4,
which, however, exhibits a frequency dispersion that makes
its experimental detection in principle feasible. Note that the
frequency dependence in Eq. �28� has no counterpart in the
polaron theory of particles without spin. For small polarons,
the frequency dependence of the conductivity sets in at very
high frequencies ��Ea /�, which typically lies in the visible
spectral range.19 However, such a frequency dependence as
that of Eq. �28� is also observed in the conductivity of ex-
tended electronic states coupled by spin-orbit interaction.20,28

In general, the resonance denominator in the expression for
the spin accumulation is more complicated in this case.20

If an initial magnetic moment exists, then a charge current
is induced, which is calculated from

jr�t� =
�uH

	
� e�K � E�

2kBTK2 �K · �r�t�� + �K � �r�t��
 , �29�

where the spin-relaxation density �r�t� is given by
Eqs. �22�–�24�. We point out that this current does not
disappear at zero electric field E=0. According to the time-
reversal invariance of the Hamiltonian, such a current is ex-
clusively due to the initial macroscopic spin moment �0. In-
serting Eqs. �22�–�24� into Eq. �29�, we obtain for the
relaxation components of the charge current

jrx�t� = − uKkBT
uH

uK
exp�−

t

	
��0y , �30�
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jry�t� = 2eE
uH

uK
u exp�−

3t

2	
�

�
�0z cos�t��2 − 1/2	 + �� − �0x sin�t��2 − 1/2	�

cos �

+ kBTK
uH

uK
u exp�−

3t

2	
�

�
�0x cos�t��2 − 1/2	 − �� + �0z sin�t��2 − 1/2	�

cos �
.

�31�

The Hall contribution in Eq. �31�, the principle existence of
which was already predicted in Refs. 29 and 30, disappears
in the steady-state due to spin relaxation. This result is not
surprising because the system does not obey the magnetic
symmetry. A stationary Hall current of charge carriers exists
in systems with spin-orbit coupling only under additional
conditions, as, for instance, the presence of an external mag-
netic field perpendicular to the 2DEG or ferromagnetic
contacts.

We now turn to the spin-Hall current, which was origi-
nally treated by Hirsch.5 Most theoretical studies in this field
refer to the band-transport model. Shortly after the interest in
this field had grown rapidly, the subject led to a controversial
discussion and to contradicting results. The main problem
consists in the definition of the proper spin current. In con-
trast to the charge current, the spin current is not a measur-
able quantity and does not occur in Maxwell’s equations. In
the experiment, only the induced magnetic moments at the
sample boundaries can be detected, which might be due to a
spin current perpendicular to the electric field,31–33 quite
similar to the Hall voltage, which results from the Hall cur-
rent of charge carriers. The question, how the proper spin
current has to be defined was thoroughly treated in the
literature.20,34,35 Here, in analogy to Eq. �26�, we identify the
spin current with the time derivative of the spin displacement

j�s��
i �t� = � i

2

d

dt

�

���

�i�t��
�=0

, �32�

where i=x ,y ,z denotes the components of the spin-density
matrix � and �=x ,y the axis of the 2DEG. According to this
definition, the spin current is given by the time derivative of
the center of mass velocity of the spin packet multiplied by
the total spin of the system. Contrary to the charge current,
which is based on particle-number conservation, the spin
moment finally relaxes to zero so that it is expected that the
spin current in Eq. �32� disappears in the steady state.

By calculating the � derivative of Eq. �16� and putting
�=0 afterwards, we obtain for the spin-Hall current

j�s��
i �t� = j�s0��

i �t� + j�sE��
i �t� , �33�

where the first contribution

j�s0�y
x �t� = − K

�uH

2e	
n exp�−

t

	
� , �34�

is independent of the electric field. The y component of this
spin current is zero j�s0�y

y =0. A field-independent spin-Hall
current was already obtained in Refs. 13 and 15 for the hop-
ping regime and in Ref. 20 for the band-transport model. The
origin of this field-independent spin current is the initial time
evolution of the spin accumulation, which is related to this
spin current by the universal relation

d�ac
y �t�
dt

n = − 2eEj�s0�y
x �t�

dn

d�F
�35�

that expresses the phenomenological concept of an effective
electrochemical potential �a similar relationship has been
obtained for the band transport20�.

The second contribution to the spin-Hall current in Eq.
�33� is induced by an electric field and has the following
explicit form in the time domain

j�sE�y
x �t� = K

3�uH

2e	
n�e−t/	 − e−3t/�2	�
1 + �2/6

��2 − 1
sin� t

2	
��2 − 1�

+ cos� t

2	
��2 − 1��
 , �36�

j�sE�y
z �t� = − K

�uHn

2e	

�

2
e−3t/�2	�� 7

��2 − 1
sin� t

2	
��2 − 1�

− cos� t

2	
��2 − 1�
 . �37�

In analogy to the spin accumulation, the relaxation of the
spin-Hall current proceeds by a rotation of the magnetic mo-
ment in the x-z plane with the frequency ��2−1/ �2	� �when
E�Ec�. All previous theoretical studies of the spin-Hall cur-
rent are restricted to linear electric field effects. In that ap-
proximation, there is no rotation of the magnetic moment so
that the interest of the authors focused on the frequency de-
pendence of the spin-Hall current, which is due to an oscil-
lating electric field of the form E exp�−i�t�. In the linear
field regime, the frequency dispersion of the spin-Hall cur-
rent is obtained from Eq. �37� by a Fourier transformation.
The result

j�sE�y
z ��� =

�uHEn

4kBT

i��2 + i�	�
�1 − i�	��2 − i�	�

�38�

describes a spin-Hall current that disappears proportional to
�2 in the limit �→0 �cf. also Ref. 15� and reaches for �	
→� the plateau �uHEn / �4kBT	�. The transition between
these two regimes occurs at ��	−1=4DK2. A similar fre-
quency dispersion of the spin-Hall current is also character-
istic for the band-transport model, where, however, the bal-
listic spin-Hall conductivity of a pure sample remains finite
in the limit �→0 �cf., for instances, Refs. 20 and 36–38�.
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V. EFFECTS AT CONTACTS

The basic rate Eqs. �15� and �16� also allow the calcula-
tion of the stationary spatial distribution of charge carriers
and spin at the sample boundaries. We restrict to a simple
sample geometry namely the half plane defined by y�0, for
which the kinetic Eqs. �15� and �16� simplify to

�� + 2
uH

uK
�x� +

uH

uK
��z� = 0, �39�

�x� − �x +
�

2
�z − 2

uH

uK
�� = 0, �40�

�y� − �y + 2�z� +
uH

uK
�� = 0, �41�

�z� − 2�z − 2�y� +
uH

uK
��� −

�

2
�x = 0, �42�

where �� expresses the derivative of � with respect to
�=y /�D	=2Ky. The solution of these equations has a rather
complex form so that we derive only results for weak spin-
orbit coupling uH
uK. In this case, the carrier density is
homogeneous �=n, where n denotes the equilibrium particle
density. For the spin-density matrix �, we obtain

�x = c exp�− �� + � Re�c1 exp�− ���� , �43�

�y = − c
�

4
exp�− �� + 4 Re�c1� exp�− ���� +

uH

uK
�n ,

�44�

�z = − 2 Re�c1��2 − 1�exp�− ���� , �45�

where the real c and complex c1 constants are determined
from the boundary condition whereas � is given by

� =
1

2
���8 + �2 − 1 + i��8 + �2 + 1� = i�1

2
�1 + i�7 + �2� .

�46�

The last term on the right-hand side of Eq. �44� provides the
field-induced spin accumulation �cf. Eq. �20��.

Assuming a finite magnetic moment �z at the boundary
y=0 �e.g., realized by a ferromagnetic contact�, an electric
field induces all three components of the spin moment,
which experience damped oscillations with the wavelength
2
K−1��8+�2+1�−1/2 up to a depth of K−1��8+�2−1�−1/2.
When E=0, the spin component �x is zero �or vanishes at a
distance �2K�−1 from the boundary when �x�y=0��0�. For
weak spin-orbit coupling �FK	p
1, the characteristic diffu-
sion length calculated for the band-transport model at E=0 in
Ref. 22 completely agrees with the result in Eq. �46�.

Let us now turn to the treatment of the spin-induced
charge accumulation at the boundary y=0 for E=0, when
Eqs. �39�–�42� decouple into independent sets of equations
for � ,�x and �y ,�z. For �=0, the Eqs. �39�–�42� have the
solution

� = n + �x
�0�exp„− �1 − �2uH/uK�2�…

�1 − �uK/2uH�2
, �47�

�x = �x
�0� exp„− �1 − �2uH/uK�2�… , �48�

�y = Re
c
1 − �2

2�
exp�− ���� , �49�

�z = Re�c exp�− ���� , �50�

where � is given by Eq. �46� for �=0. The solutions in Eqs.
�47� and �48� are applicable under the condition 2uH�uK,
which is very well satisfied in low-mobility samples, where
uH�1 cm2/Vs but uK�103 cm2/Vs for K−1�10−6 cm.
Note, however, that Eq. �47� gives only a rough estimate of
the spin-mediated charge accumulation at the boundary be-
cause the approach does not fully capture the basic physics
of the problem. The redistribution of charges induces an in-
ternal electric field that has to be self-consistently treated by
the Poisson equation. Such a self-consistent approach, which
becomes especially important for 2uH�uK �when oscillatory
solutions exist�, subsequently leads to a coupling between all
components of the density matrix.

The solutions in Eqs. �49� and �50� for the spin compo-
nents �y and �z describe the generation of a stacked magnetic
moment near the interface, which occurs, when at least one
of the densities �y and �z does not vanish at y=0. Such
long-lived spin-coherent oscillations have been identified by
a recent numerical study, too.39

The hard-wall boundary condition deserves particular at-
tention, when at y=0 both the charge and spin currents
across the boundary have to disappear. Just under these con-
ditions, the experimental study of the spin-Hall effect in
GaAs has been performed.31–33 Two competing mechanisms
determine the formation of a spin moment at the boundary
namely �i� the supply of polarized spins by the spin-Hall
current and �ii� the relaxation of the created excess magnetic
moment. Taking into account Eq. �39�, the condition for the
disappearance of the charge current at the boundary is
formulated by

�� +
uH

uK
�2�x + ��z� = 0. �51�

To obtain a similar boundary condition for the spin current,
one needs a reliable definition of the spin current under spa-
tial dispersion. In Ref. 13, the following hard-wall boundary
conditions have been applied to solve Eqs. �40�–�42�

�x� −
2uH

uK
� = 0, �52�

�y� + 2�z = 0, �53�

�z� − 2�y +
uH

uK
�� = 0. �54�

Under these conditions, all three components of the spin mo-
ment exist at the interface. Moreover, the approach predicts
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the appearance of a magnetic field,13 the quantitative experi-
mental identification of which, however, seems to be difficult
at present.

According to the boundary conditions �52�–�54�, a finite
inhomogeneous charge and spin distribution exist at the
interface even at E=0. In contradiction to this result,
arguments are put forward in the literature40,41 that favor the
disappearance of the spin moment in the whole sample �in-
cluding the interface� under the condition of thermodynamic
equilibrium.

VI. EFFECTS OF SPIN DIFFUSION

Finally, we demonstrate that the basic kinetic Eqs.
�15� and �16� also allow a detailed analysis of diffusion
phenomena in systems with spin-orbit interaction. Here, our
primary concern is the treatment of the diffusion of an
initial point source ��=1, �=0�, which is described by the
Laplace-transformed kinetic Eqs. �15� and �16�:

�s + D�2 + iu�� · E��� + 4iD
uH

uK
� e���K � E���K · ��

2kBTK2

+ �� · �K � ���
 = 1, �55�


s + D�2 + iu�� · E� +
Â

	
�� + 4D�
K � �i� −

eE

2kBT
��

� �
 + 4D
uH

uK
�ie

���K � E��
2kBTK2 K + 
K � �i�

−
eE

kBT
��
� = 0. �56�

Again, s denotes the Laplace variable that replaces the time t.
When an electric field is absent, these equations decouple
into a set of equations for the quantities � and �����z as
well as �z and �� ·��. Accordingly, a spin moment may de-
velop in the system, whose divergence and consequently also
its “magnetic charge” vanish. For the Rashba model, this
feature has an universal character that appears also in the
band-transport model.42

To derive analytical results for the spin and particle diffu-
sion, we consider a system with weak spin-orbit coupling,
when the spin and charge degrees-of-freedom completely de-
couple in the lowest-order approximation so that we obtain

���,s� = �s + D�2 + iu�� · E��−1, ���,s� = 0 .

A finite correction to the spin diffusion arises from the
first-order approximation of Eq. �56�, which has the form

���,s� = −
�uH

	�s + D�2 + iu�� · E� + Â/	��s + D�2 + iu�� · E��

� �i
���K � E��K

2kBTK2 + 
K � � i

e
� −

E

kBT
��
 . �57�

Applying an inverse Fourier and Laplace transformation, we
obtain

���r,t� = 
1 − exp�−
t

	
���uH
K � �r + uEt�

2eDt
���r,t� ,

�58�

�z�r,t� = 
1 − exp�−
2t

	
�� �uH

8DtkBT
�E � r�z��r,t� , �59�

with ��= ��x ,�y� and the well-known particle-diffusion
function

��r,t� =
1

4
Dt
exp�−

�r − uEt�2

4Dt
� .

The Eqs. �58� and �59� describe the evolution of an initially
absent spin moment that is created by the particle diffusion.
The dynamics of both the spin and particle diffusion have a
similar character. At E=0, the vector of the induced spin
moment lies in the plane of the 2DEG and its divergence
vanishes. Note that the generation of a magnetic moment by
the charge-carrier diffusion is closely related to the spin-Hall
effect.

VII. SUMMARY

The main results in this paper represents the set of kinetic
Eqs. �15� and �16� for the four components of the density
matrix that refer to a hopping system with localized states
subject to spin-orbit interaction. These equations are similar
to corresponding ones in the theory of band transport, espe-
cially for zero electric field. However, in contrast to the band
model, the Eqs. �15� and �16� have been derived by consid-
ering strong inelastic scattering mediated by a phonon heat
bath so that they do not have a spectral character. Neverthe-
less, from a phenomenological point of view, the kinetic
equations for the hopping and band transport phenomena
agree for weak spin-orbit coupling �Kl
1�, when physical
parameters as the drift and Hall mobilities are adequately
redefined. For small polarons, both parameters are given by
Eqs. �13� and �14�, whereas for the band transport, we
have u=uH=e	p /m*. Independent of the transport mecha-
nism, the diffusion coefficient obeys the Einstein relation
nu=eDdn /d�F. The situation changes drastically for strong
spin-orbit interaction �Kl�1�. In this case, the non-
Markovian behavior becomes essential so that the effective
diffusion coefficient varies with time, and relaxation pro-
cesses are no longer simply exponential. Physical effects in
this interesting regime will be treated in a forthcoming paper.

Based on the kinetic Eqs. �15� and �16�, a number of
different spin-related problems in the model of small
polarons were considered:

�i� The field-induced spin accumulation in the model of
small polarons was treated in response to both a dc and ac
electric field �Eqs. �20� and �21��. In addition, we considered
the temporal relaxation of an initial nonequilibrium magnetic
moment and its field-mediated rotation �Eqs. �22�–�24��.

�ii� The anomalous Hall effect of charge carriers was ana-
lyzed, which exists, when an initial homogeneous magnetic
moment exists �Eqs. �30� and �31��.

�iii� The frequency-dependent spin-Hall current was
calculated �Eq. �38�� and compared with previous results.
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�iv� The steady-state spatial distribution of the magnetic
moment near the boundary was considered. For weak electric
fields, the spin moment executes damped oscillations up to a
depth of the order of K−1. This penetration depth decreases
by the factor Ec / �KE� with increasing electric field strength
�cf., Eq. �46��.

�v� It was demonstrated that the diffusion of a particle
packet generates a spin-magnetic moment. For zero electric
field, the induced magnetic moment lies in the plane of the
2DEG and its divergence vanishes. Under the influence of an
electric field, all components of the spin moment are nonzero
and the magnetic charge does not vanish �Eqs. �58� and
�59��.

In spite of these theoretical findings, an experimental
study of spin-related phenomena in the hopping transport
regime would be worthwhile. Recently, transport mecha-
nisms via polaron hopping have been identified in the
hexaboride compounds Eu1−xCaxB6.43
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