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We investigate the theoretical problem of electron heating in the conduction band of wide band gap insula-
tors and semiconductors induced by intense femto-second Ti:Sapphire laser pulses. We analyze in detail the
heating mechanism due to the sequence of direct interbranch transitions in the conduction band, which has
been shown to be of crucial importance in previous work. This analysis is fulfilled by resolving the time
dependant Schrödinger equation �TDSE� in a basis of Bloch functions for the CsI crystal. The field is repre-
sented semiclassically and the laser-electron interaction is treated in the dipole approximation. The presented
approaches are based on a one-active electron approximation. First the TDSE is solved in a basis of Bloch
functions, in one dimension, the influence of laser and crystal parameters on the electron spectra is studied. The
electron transfer from the lower conduction band to the higher one is already effective at intensity of 3
�1012 W/cm2. Then the problem is solved in three dimension. The electron spectra is consistent with the
experimental results, we note in particular the presence of a large plateau at intensities of the order of the
terawatt per square centimeter.
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I. INTRODUCTION

The interaction of ultrashort high intensity laser pulses
with transparent �wide band gap� solids involves a large
number of elementary processes. Recent experiments, ac-
companied by theoretical models,1–4 show that direct inter-
band transitions in the conduction band play an essential role
in the electron heating resulting from the interaction of wide
band-gap insulators with short IR femtosecond laser pulses.
The cascade of these processes leads to the creation of elec-
trons with unexpectedly high energies. From our estimations,
the microscopic processes �like electron-photon-phonon
heating, electron-phonon relaxation, inelastic electron-
electron scattering, Auger processes, etc.� cannot explain the
production of high energy electrons.2 Note that the low en-
ergy electrons cannot be observed in the experiments due to
the crystal affinity and for experimental reasons. We showed
that, for example, in CsI irradiated by a Ti:Sapphire laser
radiation at 3 TW/cm2 �1 TW=1012 W�, the electron spec-
trum shows a wide plateau with a cutoff at 24 eV �Ref. 1� �it
is about a hundred times the ponderomotive potential Up�.
Under similar conditions a plateau with a cutoff at 10 Up is
expected in the atomic case.5 Whereas the large variety of
microscopic processes �cited above� occurring in insulators
after a weak optical excitation has been extensively studied,
all these processes remain poorly understood at the regime of
intense optical excitation. It is in particular the case of the
mechanism of heating due to the cascade of one- and multi-
photon interbranch transitions in the conduction band of in-
sulators, although its importance has been already empha-
sized.6 Elementary processes are interconnected; moreover
the supposition of successive and independent processes is
violated since the typical mean time between two processes
is smaller than their typical duration.

Electron heating in the conduction band of wide band-gap
insulators and semiconductors occurs when an electron in the

conduction band scatters on the crystal lattice, absorbs one or
more photons and populates the upper branch of the conduc-
tion band. Such sequence of processes occurs during the
pulse duration, thus, it leads to an effective heating mecha-
nism.

The theoretical description of such transition cascades is
rather complicated. The interbranch transition rate was cal-
culated in previous works.2,3,7 It was shown that, for a large
variety of wide band-gap crystals, the transition rate associ-
ated to two- and three-photon transitions becomes compa-
rable with one-photon transition rates at intensities of several
TW/cm2. On the basis of these calculations we proposed a
model of cascade transitions, which qualitatively explains
the spectra of electrons in the conduction band. The simpli-
fied form of this cascade model �without emission of pho-
tons� was also subsequently applied to treat the case of im-
pact ionization in wide band-gap insulators.8 However, this
simple model has some drawbacks. First, resonant transitions
�i.e., the situation where the difference �E between energy
levels equals the photon energy ��� are presumed to exist in
this model, i.e., each electron can absorb �or emit� a photon
and transfer to the higher �lower� level at any time. This,
obviously, leads to an overestimation of the heating effi-
ciency. Second, the model used to represent the band struc-
ture is not realistic, in particular, the density of states in the
conduction band should decrease with the electron energy as
��−1/2 in the one-dimensional case �1D� or increase as ��1/2

in the three-dimensional case �3D�, but it is supposed to be
constant in the cascade model.2,3,7,8 Third, this simple model
does not account for the transitions through the virtual states.
In our approach we overcome these problems by using a
model where the TDSE is resolved in a basis of Bloch
functions1,4 calculated in a realistic potential. This model can
efficiently describe the mechanism of electron heating by
intense laser pulses; it has been previously used to treat high-
order harmonic generation in a crystalline solid.9 The under-
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standing of the heating mechanism is of particular impor-
tance for the description of electronic excitation dynamics in
conduction band of insulators at excitation intensities close
to the optical breakdown threshold. Detailed study of this
electron heating mechanism is also needed to improve the
radiation resistance of optical materials.

In the following section we present the theoretical ap-
proach. First we resolve the stationary problem, by using
Bloch functions and a pseudopotential to describe the elec-
tronic states in the conduction band. The heating mechanism
is treated as a two-step mechanism; one-photon absorption
from a defect state to the lower conduction branch followed
by the electron heating within the conduction band. The first
step is in fact treated in a phenomenological manner, as one-
photon absorption from a defect state to the lower conduc-
tion band. Then the TDSE is resolved in the basis of the
Bloch functions representing the conduction band. In Secs.
III and IV the problem is resolved in 1D and 3D, respec-
tively. The main features of the photoelectron spectra are
shown; the influence of laser crystal parameters is discussed
in this context.

II. THEORY

First we consider the free-field �i.e., without the laser
field� stationary problem for an electron in the conduction
band of an insulator. The stationary electronic levels are de-
termined by using the time-independent Schrödinger equa-
tion for an electron of wave-vector k, which is written:

Ĥc�r��k
n�r� = Ek

n�k
n�r� , �2.1�

where �k
n�r� is the one-electron Bloch wave function with a

wave-vector k, n is the index of the branch. In the simplest
approach the free-field crystal Hamiltonian can be written as

Ĥc�r�= Ĥf�r�+U�r�, where Ĥf�r�=− �2

2m�2 is the Hamiltonian
for a free electron, U�r� is a periodical crystal potential,
which can be represented, for example, by using the theory
of pseudopotentials �see, for example, Refs. 9–13�, and m is
the free electron mass. Since the potential energy is periodi-
cal, it is represented by a Fourier series:

U�r� = �
G

UG exp�iG · r� , �2.2�

where G=��=1
3 m�b� are the reciprocal lattice vectors, while

m� are integers and b� are the primitive vectors of the recip-
rocal crystal lattice. For crystals with simple cubic lattice b�

compose a set of orthogonal vectors with length b�=2	 /a,
where a is the lattice period. Here

UG =
1


c
�


c

exp�− iG · r�U�r�dr ,

where 
c is the volume of an elementary cell. Since the zero
level of the potential energy can be arbitrarily chosen, we set
UG=0=0. For the case of crystals, which has a center of in-
version, Fourier components associated to symmetrical lat-
tice vectors are equal; U−G=UG.

Equation �2.1� can be resolved for each value of wave-
vector k, by expanding the solution over a plane wave basis
set:

�k
n�r� = �

j=1

Nmax

Ck,j
n exp�i�k + G j�r� , �2.3�

where Nmax is the number of plane waves used in the basis.
Introducing the expansion �2.3� in Eq. �2.1�, we obtain an

eigenvalue system, which is solved using standard routines.
Finally, one obtains the eigenfunctions �k

n�r� and eigenener-
gies Ek

n for the stationary problem. The number of solutions
of the stationary problem �i.e., the number of branches in the
Brillouin zone� is Nmax, given in Eq. �2.3�. The eigenenergies
Ek

n represent the structure of the energy bands while the
eigenfunctions are used to calculate the dipole matrix ele-
ments. Once the eigenenergies Ek

n and dipole matrix elements
have been determined, the dynamical part of the problem is
investigated, the approach is described below.

The dynamics of an electron in the conduction band of an
insulator under laser irradiation is described by the time de-
pendent Schrödinger equation �TDSE�. In this approach, the
wave function ��r , t� of an electron in the conduction band is
written:

i�
��k�r,t�

�t
= Ĥ�r,t��k�r,t� . �2.4�

The Hamiltonian of the nonstationary problem is given by
the following expression:

Ĥ�r,t� = Ĥc�r� + Ĥint�t� , �2.5�

where Ĥc�r� is the crystal Hamiltonian �see Eq. �2.1�� and

Ĥint�t� is the laser-electron interaction Hamiltonian. Within

the dipole approximation Ĥint�t� is given by �in the Coulomb
gauge�:

Hint�t� =
e

mc
A�t� · p̂ , �2.6�

where e is the absolute value of electron charge, c is the light
velocity, p̂=−i� �

�r is the momentum operator, A�t� is the
time-dependant vector potential.

For the calculations considered in this paper, the vector
potential has been taken in the following form:

A�t� = e fA0�cos
	t

T
	2

cos �t, − T/2 � t � T/2,

�2.7�

and A�t�=0 for 
t 
 T /2. e f is the polarization unit vector, �
is the laser frequency, T is the pulse duration, and A0

=cE0 /�, where E0=�8	I0

cn0
is the electric field amplitude, c is

the light velocity, n0 is the refractive index of the crystal, and
I0 is the peak laser intensity. The electric field value of E0
=1 a.u. corresponds to an intensity of 3.51�1016 W/cm2

�for n0=1�.
We assume that the dynamics of electronic excitations in

an insulator under laser irradiation can be divided into two
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stages; the ionization stage �which includes the ionization of
defects and eventually the multiphoton ionization from the
valence band� and the stage of electron heating in the con-
duction band. It is worth to recall that it is the first stage
which defines the initial condition �i.e., the population of
lower conduction bands� subsequently used in the TDSE. We
assume that laser intensities are such that one-photon ioniza-
tion from defects dominates over multiphoton ionization
from the valence band. Therefore, in our approximation, only
the lower branch of the conduction band is populated at the
beginning of the second stage. Thus, the initial condition for
Eq. �2.4� has the following form:

�k�r,t = − T/2� = �k
1�r� , �2.8�

where �k
1�r� is the wave function of the stationary problem

corresponding to the lowest branch of the conduction band
�Ek

1 �Ek
n, ∀n=2¯Nmax, ∀k�. This supposition for initial

conditions can be restricted by the proposition that only a
region in the Brillouin zone is populated. In this case only
equations with k corresponding to populated states are in-
volved in the set �2.4�.

The general solution of Eq. �2.4� is written:

�k�r,t� = �
m=1

Nmax

�k
m�t��k

m�r� . �2.9�

Since ��k
i �r� 
�k

j �r�=�ij, where �ij is a Kronecker delta func-
tion, the time-dependant coefficients �k

m�t� are evaluated by
solving the following system of equations:

i�
��k

q�t�
�t

= Ek
q�k

q�t� +
e

mc
A�t� �

m=1

Nmax

pk
qm�k

m�t�, q = 1 ¯ Nmax,

�k
1�t = − T/2� = 1,

�k
p�t = − T/2� = 0, p = 2 ¯ Nmax, �2.10�

where pk
qm= ��k

q�r� 
 p̂ 
�k
m�r� are dipole matrix elements.

From the above equations, it is clear that only direct in-
terband electron transitions are taken into account; the elec-
tron wave vector does not change, therefore our approach
takes into account only transitions due to the interaction with
the laser field; effects like electron-phonon scattering, which
involve different wave vectors, and inelastic electron-
electron scattering, which, moreover leads to the change of
the number of active electrons, are neglected. Therefore one
has to solve Eqs. �2.4�–�2.10� for each value of k. Thus,
supposing that initially �i.e., at the beginning of the second
stage� an electron with a wave-vector k exists in the conduc-
tion band with a probability equal to 1, one obtains the fol-
lowing expression for the probability that the electron will be
on the band m of the conduction band after the interaction
with the laser pulse:

Pk
m = 
�k

m�t = T/2�
2, �2.11�

with �m=1
NmaxPk

m=1. Thus, provided we know the initial wave-
vector distribution f�k� of the electrons �or electron energy
distribution f�E��, the final spectrum of electrons in the con-
duction band can be obtained.

III. RESOLUTION OF THE TDSE IN ONE DIMENSION

First we simplify the problem by considering a one-
dimensional �1D� space for the wave vector.1 Though this
model is rather crude, it allows us to get an insight into the
dominant physical processes. Thus, as we will see below, it
is of great help to analyze the results in 3D. We have noticed
in Sec. II that the probability distribution Pk

m depends on the
following parameters: the peak laser intensity I0, the photon
energy ��, the pulse duration T, and crystal parameters �the
Fourier components UG and the lattice period a�. For the CsI
crystal, the lattice period is a=4.57 Å. In the present one-
dimensional simulation we have considered the following
model for the Fourier component UG: U−G=UG, UG=0=0,
UG=2n	/a=n−1UG=2	/a �note that Kronig-Penny model where
the potential is treated as a stepwise well of width b and
depth U0 results in

UG=2n	/a = U0 sin�	bn

a
	�	n

with typical n−1 asymptotic behavior�. Here we use UG=2	/a
=Ug=0.015 a.u.=0.408 eV. Figure 1 shows the four lowest
branches of the conduction band and the one-, two-, three-,
and four-photon transitions in monochromatic electromag-
netic field. We see in the figure that interbranch transitions
only occur at particular values of the wave-vector k.

Note that the above considerations are valid in the context
where the perturbation applies, they do not take into account
alternative current �ac� Stark shifts or other high intensity
effects; we will return to this point later. Moreover, the den-
sity of states in the one-dimensional case behaves like �−1/2

for high electron energy values � �compared to �1/2 in the 3D
case�. Thus, the photoexcitation of higher states is more dif-
ficult in the 1D model; the heating efficiency should be un-
derestimated in this model. In order to have a better under-
standing of the contribution of one- and multiphoton
transitions in the heating process, we study in the following
the dependence of Pk

m on the different parameters of the
model.

FIG. 1. The conduction band structure in the first Brillouin zone
for the one-dimensional case and a nearly free electron model �lat-
tice constant and Ug correspond to CsI crystal�. One-, two-, three-,
and four-photon ���=1.55 eV� transitions are marked out by
arrows.
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We choose the following default laser pulse parameters:
peak laser intensity I0=3 TW/cm2; pulse duration T=40 fs,
photon energy ��=1.55 eV, thus the number of cycles in a
pulse is about N�15. These parameters correspond to ex-
periments recently performed at CELIA.1–4 We used up to
Nmax=5 plane waves in Eq. �2.3�. First we focus on the
populations of the first and the second branches, which
dominate over the upper branch populations. In our model
only the lowest branch is populated at the beginning of the
second stage. So, Pk

1�t=−T /2�=1, ∀k, while Pk
2�t=−T /2�

=0, ∀k. Thus, the value P�k�= Pk
2�t= +T /2� is equal to the

probability of transition to the upper level for an electron
after the interaction with the laser pulse. Figures 2 and 3
show the dependence of the excitation probability P�k� on
the laser intensity and pulse duration, respectively.

We have performed calculations by varying the peak in-
tensities from 104 W/cm2 to 1013 W/cm2. Interbranch tran-
sitions �due to either one-photon or multiphoton transitions�
are not efficient at laser intensities smaller than 1010 W/cm2.
At laser intensities close to 3�1010 W/cm2 one-photon tran-
sitions start to play a role. As the intensity increases, transi-
tions involving two, three, and four photons appear. The re-
sult of these calculations is presented in Fig. 2 for intensities
varying from 5�1010 W/cm2 to 1013 W/cm2. One-, two-,
three-, and four-photon transitions �cf. Fig. 1� become appar-
ent at different points of the wave-vector space kn, corre-
sponding to the resonance condition �E�kn�=E2�k�-E1�k�
=n��. Here, kn corresponds to “primary” peaks and n is the
peak order. We introduce a “threshold” In for n-photon tran-
sition intensity as the intensity at which the second branch

population exceeds 0.5 �as a matter of fact this threshold
depends on the crystal and on the laser wavelength, which is
supposed to be fixed here�. Thus, we find I1�5
�1010 W/cm2, I2�1012 W/cm2, I3�5�1012 W/cm2, and
I4�1013 W/cm2. At laser intensities I�1011 W/cm2 the
main peak �at the position k1� starts to shift and other sub-
structures appear on its right side. This is due to ac Stark
shift, which depends linearly on the intensity; its effect is to
increase the gap between the branches 1 and 2 at the edge of
the Brillouin zone. One-photon resonances appear at differ-
ent positions of the wave-vector k during the raise and fall of
the pulse intensity. Besides the ac Stark shift effects, which
also appear for k2, k3, and k4 at higher intensities, interbranch
Rabi oscillations occur at high intensity. This explains that
the peak height and positions vary with the pulse duration in
Fig. 3. Therefore, at high intensity, the dynamics of the popu-
lations cannot be described in terms of an ionization rate, as
in perturbation theory.14 In this context the peak width is
roughly connected to the laser bandwidth �� ���=2	 /T�,
we see in Fig. 3 that the peak structures broaden when the
pulse duration decreases. It is worth to mention that the
breakdown threshold for CsI corresponds to �5
�1013 W/cm2, therefore we have not performed calcula-
tions above 1013 W/cm2. In agreement with earlier estima-
tions, for I=0.5–3.0�1012 W/cm2, which are the intensities
measured in the experiments,1–4 one- and two- photon �and
partly three-photon� transitions between the two lowest
branches play a major role in electron heating. These transi-
tions are followed by subsequent photon absorptions to up-
per branches in the spectrum.

FIG. 2. Dependence of the population of the second lowest band
�probability of multi-photon transitions� after the interaction versus
the wave-vector �lattice constant and Ug correspond to CsI crystal�,
for excitation intensities of 0.05 TW/cm2, 0.5 TW/cm2,
3 TW/cm2, and 10 TW/cm2 and for a pulse duration of T=40 fs,
the photon energy is ��=1.55 eV.

FIG. 3. Dependence of the population of the second lowest band
�probability of direct multiphoton transitions� after the interaction
versus the wave vector �lattice constant and Ug correspond to CsI
crystal�, for pulse durations of 20 fs, 40 fs, and 70 fs. The peak
laser intensity is I0=3 TW/cm2 and the photon energy is ��
=1.55 eV.
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We investigate now the effect of the crystal parameters
�Ug and the lattice period a�. On one hand, increasing Ug
leads to the modification of the band structure, thus the one-
�multi-� photon resonances between bands shift their position
in k space. On the other hand the dipole matrix elements
increase as well. It is well known that, in terms of nearly free
electron model,15 one has to distinguish between regions of
nondegenerated dispersion curves �regions 1� and the regions
of intersection of these curves �regions 2�. In regions 1 the
points correspond to arbitrary values of k which are located
far from the points of the intersection of energy dispersion
curves. In the model of free electrons the energy difference

�E0,k
G�G= 
E0,k

G� −E0,k
G 
 between two branches of free electron

dispersion curves E0,k
G =�2�k−G�2 /2m is greater than


UG−G�
, UG being the Fourier transformation of the potential
energy �see Eq. �2.2� and below� and G=2	n /a. The energy
shift at the points of the first type is proportional to


UG−G�

2 /�E0,k

G�G �second order of the perturbation theory�,
whereas the dipole matrix elements are proportional to

UG−G�
. The energy shift in region 2 is proportional to

UG−G�
 �perturbation theory in degenerated case�, whereas
matrix elements are saturated and do not depend on

UG−G�
�Ug. Note that the width of region 2 in k space is
proportional to Ug. Therefore the trend in both regions re-
sults in the increase of the mean probability of interbranch
transitions in the conduction band with the increase of Ug.

Increasing the lattice period a without changing of Ug �in
terms of Kronig-Penny model this means that the b /a ratio
and U0 remain unchanged� leads to a significant decrease of
the gap between two branches �but the gap at the edge of the
first Brillouin zone remains unchanged�, thus, the one—
�multi-� photon resonances �see Fig. 1� shift towards � point.
Besides, the maximal order of primary peaks

nmax = int�max��E21�
��

�
decreases ��E12 is the energy gap between branches 1 and 2
at � point�. Therefore, electron heating should be more ef-
fective in crystals with higher values of the lattice constant a
because one- and two-photon transitions should be more ef-
fective near the bottom of the conduction band, where the
concentration of electrons is expected to be large after the
initial ionization stage.

IV. RESOLUTION OF THE TDSE IN THREE-DIMENSIONS

As noticed above, the one-dimensional model underesti-
mates the efficiency of electron heating since the density of
states in the conduction band has not the proper behavior. We
have performed 3D calculations for the case of the excitation
of a crystal with parameters corresponding to CsI by femto-
second Ti: Sapphire laser pulses at peak intensities of
1–10 TW/cm2 and different pulse duration with polarization
along �001� direction. In our simulation we assumed that
initially �i.e., after the first ionization stage from defects� all
electrons are located on the lowest branch of the dispersion
curve of the conduction band. The transition probability to
upper levels is obtained by solving the TDSE in three dimen-

sions. We used the number of plane waves Nmax=23 in Eq.
�2.3�, we have verified that the results are unchanged when
this number is increased. The probabilities, versus the initial
electron energy, are presented in Fig. 4. Calculations are per-
formed for various Ug �top panel�, pulse durations T �middle
panel�, and intensities �bottom panel�. We clearly see that, in
all cases, the transition probability to the upper bands de-
pends dramatically on the initial electron energy. Our find-
ings are consistent with TDSE calculations performed in 1D
but, in general the structures are more pronounced in the 3D
case because, at contrast with the 1D case, there are multiple
points corresponding to each resonance. The two upper pan-
els show that, overall, the order of magnitude of the transi-
tion probability does not dramatically depend on Ug and T.
The role of the pulse duration is twofold. On the one hand,
the enlargement of T increases the interaction time. On the
other hand, the radiation spectrum becomes narrower and
therefore the fraction of “favorable to heating” points in the
Brillouin zone decreases. The role of the variation of Ug is
more straightforward, since in frames of perturbation theory
transition matrix elements are proportional to Ug, therefore
the heating is weaker for small Ug. The bottom panel shows

FIG. 4. Dependence of the transition probability to the upper
bands �probability of escape� for an electron, initially located on the
lowest band, after the interaction with the laser pulse. Top panel:
Influence of Ug :Ug equals to one half of Ug corresponding to CsI
crystal �1�, Ug corresponds to CsI crystal �2�, and twice of this Ug

�3�; intensity of 3 TW/cm2, pulse duration is of 40 fs; Middle
panel: Influence on pulse duration: 20 fs �1�, 40 fs �2�, and 80 fs
�3�; intensity of 3 TW/cm2, Ug corresponds to CsI crystal; Bottom
panel: Influence on pulse intensity: intensities of 1 TW/cm2 �1�,
3 TW/cm2 �2� and 10 TW/cm2 �3�; pulse duration is 40 fs and Ug

corresponds to CsI crystal. For all curves the photon energy is
1.55 eV and the lattice constant corresponds to CsI crystal.
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that there is an energy threshold for direct transitions from
the lowest branch, i.e., electrons having a lower energy than
a minimum required do not leave the lowest branch. As ex-
pected, the value of this threshold decreases as the peak laser
intensity increases. For laser intensity of 10 TW/cm2 it lies
near the energy zero �i.e., near � point� while, at 1 TW/cm2,
it is about 0.6 eV. Therefore, at low intensity, the heating
process, to be efficient, requires that the initial ionization
process populates the lower branch above the mentioned
minimum energy.

The electron spectrum in the conduction band of CsI, after
interaction with the laser pulse, is presented in Fig. 5. As in
Fig. 4 we show the influence of Ug, T, and I, the laser inten-
sity �bottom panel�. Here we assumed that the initial distri-
bution of electrons is uniform from the bottom of the con-
duction band up to the photon energy �� and zero for higher
energies. Such a model for the initial distribution is based on
the hypothesis that the initial ionization process is dominated
by a one-photon absorption from defects. Therefore �� is an
upper limit for the energy of electrons in the lower conduc-

tion band. We take into account neither the energy distribu-
tion of defect levels nor the density of electron states near the
bottom of the conduction band. As in Fig. 4, the upper panels
show that the overall behavior of the electron spectrum is not
strongly influenced by Ug and T. The role of these param-
eters is discussed above. The role of pulse duration is more
evident from these spectra. For 80 fs pulses the resonant fea-
tures in electron spectra become more prominent. The peak
at 4 eV is lower for 80 fs since the increasing pulse duration
allows cascade photon absorption with transition of electrons
to states with higher energies. The bottom panel clearly
shows the plateau structure at the higher intensity. The spec-
tra calculated at lower intensities �1 and 3 TW/cm2� clearly
exhibit the characteristics of the perturbative regime with �i�
peaks associated to the absorption of photons and �ii� with a
linear decrease of the density of probability �in logarithm
scale�. The structure of the electron spectra results mainly
from resonant transitions, Rabi oscillations and nonperturba-
tive effects. The role of numerical noise is low �the dotted
curve �2� in the bottom panel of Fig. 5 shows a calculation
resulting from doubling the number of sampling points
within the Brillouin zone�. The first peak in the electron
spectrum, just above 2.5 eV, corresponds to the electron
spectrum resulting from one-photon absorption. Figure 5
does not show the population of the lowest branch, corre-
sponding to energies less than 1.5 eV. The sharp minimum at
about 3.5 eV in the electron spectrum is connected with ini-
tial distribution of electrons when only a definite part of the
Brillouin zone �with energies from 0 to ��� is populated.
Figure 4 shows that for low laser intensities electrons from
0 to 0.5 eV are not heated by the laser field. Due to momen-
tum conservation the energies corresponding to one- and
two-photon absorption from this latter region cannot be ob-
served in the spectrum. At higher intensities Stark shift in the
alternate field can partially remove this restriction. As the
intensity increases, the plateau becomes flatter and its width
also increases. These findings are in qualitative agreement
with the observed spectra.1–4

V. CONCLUSIONS

We have investigated the irradiation of wide band-gap
insulators with a femtosecond Ti:Sapphire laser pulse by us-
ing a quantum mechanical approach based on the resolution
of the TDSE. We used a spectral method with a basis set of
one-electron Bloch functions, calculated in a pseudopotential
approximation. This approach greatly improves the prece-
dent models where equidistant levels where used.2,3,7,8 A one-
dimensional model shows that the electron transfer from the
lower conduction band to the higher one is already effective
at intensity of 3�1012 W/cm2. The model also shows that
the perturbation theory is not valid at this intensity since ac
Stark shifts and Rabi oscillations influence the photoexcita-
tion. The three-dimensional model confirms these findings;
the transfer of electrons to higher levels in the conduction
band is even more effective since the density of states in the
conduction band increases with energy in the 3D

FIG. 5. Spectra of electrons in the conduction band after inter-
action with laser pulse. Top panel: Influence of Ug :Ug equals to one
half of Ug corresponding to CsI crystal �1�, Ug corresponds to CsI
crystal �2�, and twice of this Ug �3�; intensity of 3 TW/cm2, pulse
duration is of 40 fs; Middle panel: Influence on pulse duration:
20 fs �1�, 40 fs �2�, and 80 fs �3�; intensity of 3 TW/cm2, Ug cor-
responds to CsI crystal; Bottom panel: Influence on pulse intensity:
intensities of 1 TW/cm2 �1�, 3 TW/cm2 �2� and 10 TW/cm2 �3�;
pulse duration is 40 fs and Ug corresponds to CsI crystal. For all
curves the photon energy is 1.55 eV and the lattice constant corre-
spond to CsI crystal. Dotted and solid curves �2� correspond to
calculations with different numbers of sampling points �doubled
number in the case of dotted line�. Vertical grid has step equal to
photon energy �1.55 eV�.
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case whereas it decreases in the 1D case. Regarding the elec-
tron spectrum, we have reproduced the wide plateau ob-
served in the experiments at intensities of few terawatts per
square centimeter. In order to explain the cutoff of the ex-
perimental spectrum we plan to include inelastic scattering
due to electron-electron interactions in our treatment.
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