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Using the variational cluster approach, we study the transition from the antiferromagnetic to the supercon-
ducting phase of the two-dimensional Hubbard model at zero temperature. Our calculations are based on a
method to evaluate the VCA grand potential which employs a modified Lanczos algorithm and avoids inte-
grations over the real or imaginary frequency axis. Thereby, very accurate results are possible for cluster sizes
not accessible to full diagonalization. This is important for an improved treatment of short-range correlations,
including correlations between Cooper pairs in particular. We apply this improved method in order to inves-
tigate the cluster-size dependence of the phase-separation tendency that has been proposed recently on the basis
of calculations for smaller clusters. While the energy barrier associated with phase separation rapidly decreases
with increasing cluster size for both hole and electron doping, the extension of the phase-separation region
behaves differently in the two cases. More specifically, our results suggest that phase separation remains
persistent in the hole-doped case and disappears in the electron-doped case. We also study the evolution of the
single-particle spectrum as a function of doping and point out the relevance of our results for experimental

findings in electron and hole-doped materials.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity in copper-based transition-metal oxides, a tremendous ef-
fort has been devoted to establish a convincing theory that
covers the general aspects of their unusual and fascinating
physics. The attempts are complicated by the fact that strong
electron correlations play a key role in the physics of the
cuprates. A central question in this context concerns the
emergence of small energy scales, much smaller than the
bare (Coulomb) interactions between the electrons, which
govern the existence and the competition of different phases
at low temperatures. This can be studied by considering pro-
totypical lattice models of strongly correlated electrons.
Some agreement has been achieved that the relevant physics
of the cuprate high-temperature superconductors is covered
by the two-dimensional one-band Hubbard model (Ref. 1)

H=Y, tijcj'-o-cja"' > nnnu—ME n;. (1)
; i

i.j,o

Here #;; denote the hopping matrix elements, n;; is the den-
sity at site i with spin “1”, n;=n;;+n;), u the chemical po-
tential, and U the local Coulomb repulsion.

In recent years there has been substantial progress in the
understanding of the ground-state properties of the Hubbard
model due to the development of quantum-cluster theories,”
such as cluster extensions of the dynamical mean-field
theory (DMFT), i.e., the dynamical cluster approximation’
and the cellular DMFT,*3 or the variational cluster approach
(VCA).%7 These cluster calculations confirm the fact that the
ground state away from half-filling has a nonvanishing su-
perconducting order parameter®®!'!-13 with a pairing interac-
tion of predominantly d-wave character.'* Recent VCA
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PACS number(s): 71.10.—w, 74.20.—z, 75.10.—b, 71.30.+h

calculations®%12 suggest that at low electron and hole doping

the two-dimensional Hubbard model is in a symmetry-
broken mixed AF+SC state where both the antiferromag-
netic (AF) and the superconducting (SC) order parameters
are finite. This is consistent with recent cellular DMFT
calculations.'> When going to higher dopings, the system
displays a tendency to phase separate into an AF+SC phase
at lower doping and a pure SC phase at higher doping.

The VCA accesses the physics of a lattice model in the
thermodynamic limit by optimizing trial self-energies gener-
ated by a reference system. The above-mentioned VCA cal-
culations are based on a reference system consisting of small
(2% ?2) isolated clusters tiling the infinite lattice. This gener-
ates trial self-energies which are very short ranged spatially.
Hence, there is the obvious question for the robustness of the
results as a function of the size of the individual clusters. Up
to now, it was not possible to consider larger cluster sizes
and, at the same time, reach a sufficient accuracy to resolve
the tiny energy scale driving phase separation, especially in
the electron-doped case. The reason is that an accurate evalu-
ation of the VCA grand potential has required a full diago-
nalization of the cluster Hamiltonian (see Ref. 9 for details)
which has severely restricted the available cluster sizes.

The purpose of this paper is to present a method for the
evaluation of the VCA grand potential based on the Lanczos
method which leads to sufficiently accurate results even for
larger clusters where full diagonalization is no longer pos-
sible. Using this method we investigate the competing phases
in the two-dimensional Hubbard model at zero temperature
for clusters up to ten sites. This implies a substantial quali-
tative step forward as short-range correlations between dif-
ferent Cooper pairs can be included—opposed to calcula-
tions based on 2 X 2 clusters.
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II. VARTIATIONAL CLUSTER APPROACH

The variational cluster approach is one of the possible
approximation schemes that can be constructed within the
self-energy-functional theory (SFT).!> The SFT provides a
variational scheme to use dynamical information from an
exactly solvable “reference system” (for example an isolated
cluster) to approximate the physics of a system in the ther-
modynamic limit. For a system with Hamiltonian H=H(f)
+H,(U) and one-particle and interaction parameters ¢ and U,
the grand potential is written as a functional of the self-
energy 3, as follows:

Q[2]=F2]+Trin(Gy' -2)7!, 2)

with the stationary property SQ[,,;]=0 for the physical
self-energy. Here, Go=(w+u—t)~! is the free Green’s func-
tion of the original model in the thermodynamic limit at
frequency w, and F[X] is the Legendre transform of the uni-
versal Luttinger-Ward functional. Due to its universality it is
the same as the functional for a “simpler” problem with the
same interaction but a modified one-particle part ¢'. The sta-
tionary solutions are obtained within the subspace of self-
energies X =3(¢') of the simpler problem that is spanned by
varying ¢'. This restriction constitutes the approximation.
Details of the approach are described in Refs. 15 and 16.

The VCA (Ref. 6) is generated within the SFT by choos-
ing as a reference system a set of isolated clusters which tile
up the original infinite lattice. By construction, the VCA cor-
rectly incorporates correlation effects in the electron self-
energy up to the length scale given by the cluster size. Be-
yond this scale it acts like a mean-field approximation. One
of the main advantages of the VCA, as compared to the
simpler cluster perturbation theory,!” consists in its ability to
describe (normal and off-diagonal) long-range order by in-
cluding suitably chosen fictitious symmetry-breaking Weiss
fields in the set of variational parameters. Microscopically
coexisting phases can be obtained using several Weiss fields.
The method links in a consistent way the static thermody-
namics with the frequency-dependent one-particle excitation
spectra (photoemission). Details of the approach have been
described elsewhere.”™

The VCA grand potential to be calculated in practice
reads

Q=0Q'+Trin(Gy' -2)™' - TrIn(G). (3)

Here, G is the free Green’s function of the model given by
Eq. (1), Q', 3, and G’ are the grand potential, the self-
energy, and the Green’s function of the cluster reference sys-
tem which depend on the one-particle parameters ¢'. In the
present study we consider clusters with L.=4, 8§, and 10 sites
to search for the stationary solution characterized by the con-
dition 9Q)/ g’ =0.1° This stationary point provides a good ap-
proximation to the exact solution for the system in the ther-
modynamical limit if the self-energy is sufficiently “short
ranged,” i.e., sufficiently localized within the cluster.

As discussed in Refs. 8 and 9, it is important to evaluate
) with high accuracy in order to resolve the relevant energy
scales of the competing phases, especially in the electron-
doped case. Here, we present a method in which this evalu-
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ation can be done without a numerical integration over fre-
quencies [note that frequency integration is implicit in the
Trln--- terms in Eq. (3)]. We start from the expression de-
rived in Ref. 15 which expresses the Tr In- -+ terms as a sum
over the single-particle excitation energies:

Tr ln(G(_)] - 2)_1 =— E Tln(l + e_IB“)m) - R

7=0

= 0,0(-w,)-R (4)

and

=0
TrinG' =- >, Tln(1 + e Pm) =R =, ,0(-w,)-R.

(5)

Here ©(w) is the Heaviside step function, 8=1/T the inverse
temperature. w, are the one-particle excitation energies of
the reference system, i.e., the poles of G’, and w,, are the
poles of the VCA Green’s function (G;'-3)~'. R represents
a contribution due to the poles of the self-energy (see Ref.
15) which cancels out in Eq. (3) and can thus be ignored. The
excitation energies w, =E,—E; of the reference system (i.e.,
of the cluster) can be readily obtained with the help of the
Lanczos algorithm from the eigenenergies E, of the reference
system. Here, we introduce the notation m=(r,s), to indicate
an excitation between two states s and r. The major difficulty
consists in finding the poles w,, of the VCA Green’s function.

This can be done in the following way: Consider the
Lehmann representation'® of G’ which can be cast into the
form (Ref. 19)

1
G;ﬁ(w) = 2 Qamw—Qj;l’B, (6)

_ !
wm

where « refers to the one-particle orbitals of the cluster [typi-
cally a=(site i,spin o) but it can also include an orbital in-
dex]. The “Q-matrix” is defined:

QD[I’H = <r|ca|s> Jexp(_ ﬂEr)

=0
= 8,0(0leals) + 8 o{rle,|0). (7)

The spectral weight (residue) of G;B(w) at a pole w=w,, is
given by QmQLB. Z'=3,e PEr is the grand-canonical parti-
tion function at finite temperature, and |0) denotes the
(grand-canonical) ground state of the reference system. In-
troducing the diagonal matrix g,,,(w)=3,,/(0-w,), we

have:

+exp(- BE,)
Z/

G'(0) = Qg(w)Q". (8)

Defining V=¢-¢', which in case of the VCA typically
includes the intercluster hopping terms, the “subtraction” of
the fictitious Weiss fields, as well as shifts of the one-particle
energies (see below),’ the VCA expression for the lattice
Green’s function can be written:
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Gal _2 - (G!)—l _ V

G= )

This expression can be transformed with the help of the
Q-matrix Eq. (7) and Eq. (8):

1 o
szzggQquQ' V-Qg0t+ -

(10)

Note that Q is not a square matrix and that QQ"=1+ Q'Q.
Since g7'=w—A with A,,,=3,,,@,, the poles of G are now
simply given by the eigenvalues of the (frequency indepen-
dent) matrix M=A+Q"VQ and can be easily found by di-
agonalization. The dimension of M is given by the number of
poles of G' with nonvanishing spectral weight.® Hence, the
above scheme requires the knowledge of all excited states of
the reference system. In Refs. 8 and 9, these states have been
obtained by a full diagonalization of a rather small (2X2)
cluster.

For larger clusters, where a full diagonalization is not pos-
sible, the Lanczos algorithm should, in principle, provide
precisely the required poles and matrix elements Eq. (7). In
practice, however, there are some difficulties, as we discuss
below. Within the Lanczos method the matrix elements
Gaﬁ(w)z«ca;c;))w of a cluster Green’s function at 7=0 are
determined in 2L, separate Lanczos procedures.”! In each
procedure, one takes as a Lanczos initial vector one element
of the sets {C}L,U|0>, ,c,:’(r|0>}, {c;r’u_|0), ,CTLC,(,|0>}
where |0) is the cluster ground state. In principle the poles
should be the same for all matrix elements of the Green’s
function. In practice, however, the poles obtained by the 2L,
runs are slightly different from each other due to the limited
numerical accuracy of the Lanczos method. Therefore, this
kind of Lanczos algorithm is not suited for the Q-matrix
evaluation of the grand potential described above, since
merging all matrix elements of G’ into the compact form Eq.
(8) would results in a too large matrix M that cannot be
diagonalized.

Fortunately, the problem can be overcome by means of
the so-called band Lanczos method.?> The difference with
respect to the standard algorithm is that the sets of initial
vectors given above are used simultaneously within one
single Lanczos run. This yields the same set of poles for all
index pairs («, B) as well as the corresponding weights. The
dimension of the matrix M is given by the number of itera-
tion steps 25; in the Lanczos procedure. In this case, one
only needs two Lanczos procedures instead of 2L.. Using
this method, one introduces an error due to the limited set
(28;) of the excited states in the reference system that are
kept in the Lanczos calculation. Generally, however, this er-
ror is extremely small since excitations with large weight
result from states which converge very fast with increasing
S;. These excitations with large weight, on the other hand,
are just those which are dominant in Eq. (3) compared to
excitations with small weight.'3
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FIG. 1. The SFT grand potential Q) of the half-filled (n=1)
Hubbard model with nearest-neighbor hopping t=—1 and U=8¢ as a
function of the variational parameter & ,p (staggered magnetic Weiss
field). Reference system (inset): L,=10 clusters. We compare re-
sults obtained by integration over real frequencies with Lorentzian
broadenings 7=0.1 (dotted lines) and 7=0.05 (dashed lines), as
well as for the Q-matrix evaluation (see text, solid lines). S; =100
Lanczos iteration steps have been performed.

We have checked the accuracy of our method by consid-
ering the symmetry-broken antiferromagnetic phase of the
Hubbard model at half-filling (Fig. 1). One can clearly see
that the Q-matrix evaluation perfectly gives the extrapolation
of results obtained by numerical frequency integration with
finite but small Lorentzian broadenings 7. We also verified
that the results converge very fast with §;, i.e., typically S,
~100 is fully sufficient. Last but not least, this improved
method substantially reduces the computational time. For ex-
ample, a factor of approximately 15 is gained for the L,
=10 cluster.

III. RESULTS FOR COMPETING PHASES

On the basis of this improved evaluation, we investigate
the finite-size behavior of the phase-separation tendency ob-
served for small clusters in Ref. 8. As variational parameters
we use the Weiss fields /i,p and hge to allow for antiferro-
magnetic (AF) and d-wave superconducting (SC) orders,
respectively,”® as well as an overall shift & of the one-
particle energies in the cluster to ensure a consistent treat-
ment of the particle density.” Figure 2 shows our results for
the two-dimensional Hubbard model with U=8¢ and next-
nearest-neighbor hopping ¢’ =-0.3¢ for the case of hole dop-
ing. The calculations have been performed for L.=4 (top),
L.=8 (middle), and L.=10 clusters (bottom).

We consider the case of hole-doping first. One can imme-
diately see that the phase-separation tendency, found for the
L.=4 cluster, weakens progressively when increasing the
cluster size. In particular, the corresponding ‘“energy scale”
Apu=p"—p, diminishes very rapidly with increasing L,
(Au=0.050 for L,=4, Au=0.027 for L,=8, and Au=0.003
for L,=10), and appears to vanish in the L,— o limit. Here,
w" is the point where the slope of u(x) changes sign and u,
the chemical potential at the transition point. However, this
fact does not necessarily imply the absence of macroscopic
phase separation in the exact ground state of the model under
study. As a matter of fact, the exact function w(x) must have
a nonpositive slope. Therefore, in the phase-separated case
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FIG. 2. (Color online) Chemical potential w as function of hole
doping x. Results for L.=4 (2X?2), L.=8 (4X2), and L.=10 clus-
ters. The horizontal dashed lines mark the critical w., and the ver-
tical dotted lines mark the boundaries x; and x, of the phase sepa-
ration region in between.

u(x) becomes a straight line between the two boundaries of
the phase-separation region x; and x,.2* Whether the exact
ground state supports phase separation can be derived from
the finite-size scaling of the doping discontinuity Ax=x,
—x;, see Table I. Unfortunately, no regular finite-size behav-
ior can be inferred from Fig. 2 and Table I for hole doping,
probably due to the fact that the clusters are still too small.
Opposed to the clear trend visible for the electron-doped case
(see Table I), there is a much weaker L. dependence of the
discontinuities Ax, AM, and AD, which we rather interpret
as being irregular. However, our results do not exclude mi-
croscopic phase separation to persist for L.— . The inclu-
sion of long-range Coulomb interaction would then be nec-
essary in order to “frustrate” the phase separation occurring
in the plain Hubbard model and produce microscopic inho-
mogeneous phases, such as stripes.>»?7-?8 We stress that at
this point only qualitative estimates for L.— o rather than a
convincing finite-size scaling are possible. For a discussion
on these issues see, e.g., Refs. 24-26.

The situation is quite different in the electron-doped case
(see Fig. 3). Here, not only the phase-separation energy A,

TABLE 1. Discontinuities Ax, AM, and AD across the PS region
for hole and electron doping.

h-Doping Ax AM AD

L.=4 0.115 0.717 0.055
L.=8 0.094 0.699 0.043
L.=10 0.056 0.568 0.032
e-Doping Ax AM AD

L.=4 0.079 0.476 0.016
L.=8 0.020 0.316 0.004
L.=10 0.000 0.000 0.000

C
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FIG. 3. (Color online) Same as Fig. 2 but for electron doping.
Note that there is no phase separation for L.=10; the dotted line
marks the quantum critical point.

but also the doping discontinuity Ax appears to vanish for
L.— . In fact, Au is already an order of magnitude smaller
than for hole doping in the L.=4 cluster.’ In addition, already
for L.=10 the transition from the AF+SC to the pure SC
phase has become continuous at least within numerical accu-
racy. In this case, the weak phase separation observed at the
mean-field level for small clusters was simply a signal of a
tendency of the system to produce microscopically inhomo-
geneous phases (such as stripes), as conjectured in Ref. 8.
The fact that the corresponding energy scale is already very
small for a small cluster could explain why there is no clear
sign of stripes in electron-doped materials and could possibly
be related to the much smaller pseudogap energy scale, as
discussed in Refs. 8 and 9.

Contrary to the phase-separation energy, the AF and SC
order parameters M and D plotted in Fig. 4 only display a
rather weak cluster-size dependence. This shows that already
a small 2 X2 cluster describes the static ground-state quan-

0.12

0.08

0.04

1.2

electron

FIG. 4. (Color online) Magnetization M and d-wave order
parameter D as functions of hole and electron doping for L.=4, 8,
and 10.

235117-4



VARIATIONAL CLUSTER APPROACH TO THE HUBBARD...

3
Or —
4+ |
12
x=0.15
T h "
s 4
0; —
AF 1
12
e=10125
87_ h b
s 4 ]

0 f.'r —
4
0,0 (m,m) (m,0) 0,0)

FIG. 5. Evolution of the spectral function upon hole doping
(L.=8). Top panel: doping x=0.025, mixed SC+ AF phase. Middle
panel: x=0.15, SC phase. Bottom panel: x=0.25, SC phase. A
Lorentzian broadening of 7=0.2¢r has been used to display the
results.

tities with a rather good accuracy, except for cases close to a
phase transition. Finite-size effects are more pronounced for
D because the SC order parameter is a nonlocal quantity
which converges slower with increasing cluster size as com-
pared to M. Nevertheless, from our results we can argue that
for both, hole and electron doping, at least substantial SC
fluctuations remain in the thermodynamic limit even in the
AF phase. A more precise finite-size scaling to identify as to
whether one really has long-range SC order is not possible
since that would involve larger constant cluster shapes (2
X2,4X4,...) which are not accessible by the present VCA.

The comparison of Fig. 4 with previous calculations'?
shows that the inclusion of the energy shift € as a variational
parameter provides results which depend only weakly on the
cluster size L.. For example, we find a mixed AF+SC phase
for small doping for all cluster sizes considered. This can be
understood by the fact that the inclusion of additional varia-
tional parameters “optimize” the ground state of the refer-
ence system toward the exact solution of the infinite lattice.

Figure 5 shows the evolution of the single-particle spec-
tral function upon hole doping calculated with the L.=8 ref-
erence system. In the upper plot for doping x=0.025, the
system is still in the mixed AF+SC phase. This is the reason
for the “back-turning” of the quasi-particle-like band around
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FIG. 6. Spectral function for x=0.25 (L.=8), SC phase, as in
Fig. 5 but for a different stationary point with a particle density
n'=0.75-+ in the cluster.

(7/2,7/2) although the chemical potential already
“touches” the band at this wave vector. For higher doping
(middle and lower panel), we clearly see a transition to a
dispersion crossing the chemical potential in the nodal direc-
tion, in agreement with angle-resolved photoemission experi-
ments. The low-energy coherent quasiparticle band with a
width of the order of a few times J has been replaced by a
band of width of a few times ¢. The qualitative trend is well
known from QMC calculations.*® This represents a clear im-
provement as compared to our previous results for L.=4
clusters, where the dispersion in the nodal direction showed
back-turning signals also for higher dopings.

In spite of the improvement for the nodal direction, the
d-wave SC gap appears to be too large for the slightly over-
doped case x=0.25. Furthermore, for higher dopings one ex-
pects a decrease of the weight of the upper Hubbard band
which is much stronger than visible in the x=0.25 spectrum.
The reason for these shortcomings is probably too strong an
admixture of the half-filled cluster ground state: In the ab-
sence of superconductivity and for not too high doping, the
particle density of the reference system (the isolated cluster)
is n’=1. In our case, deviations from cluster half-filling are
introduced due to a nonvanishing SC Weiss field only. For
L.=8 we find n' =0.92 at x=0.25 which is still close to half-
filling.

A physically better description of the spectral density at
higher dopings can only be achieved when (in the absence of
superconductivity) starting from a cluster ground state with
n'<1. This yields a corresponding SFT grand potential
which has to be compared with the SFT grand potential for
the n'=1 stationary point. Note that for a vanishing SC
Weiss field, the VCA cannot give a grand potential that is
continuous in the entire doping range. This is an artifact of
the VCA which levels off and eventually becomes irrelevant
in the large-cluster limit.

In fact, there is a second stationary point for x=0.250 with
a particle density in the cluster n' =0.755. Due to the nonva-
nishing SC Weiss field, this is close but not equal to the
commensurate cluster filling n’=0.75. This stationary point,
however, exhibits an SFT grand potential which is higher as
compared to that of the n'=0.92 solution and, consequently,
should be disregarded. It is nevertheless interesting to dis-
cuss the spectral density of this (metastable) state which is
shown in Fig. 6. As could have been expected, the SC gap is
much smaller (and actually not visible on the scale of the
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figure) and, as compared to the corresponding spectrum in
Fig. 5, the weight of the upper Hubbard band is clearly re-
duced. Moreover, signatures of magnetic order are no longer
visible in this spectrum.

IV. CONCLUSIONS

We have developed a method to evaluate the VCA grand
potential which avoids numerical integrations over real or
Matsubara frequencies, even for large clusters, for which a
complete diagonalization is not feasible. This provides a suf-
ficient accuracy to study the cluster-size dependence of the
phase-separation tendency obtained in previous works. The
results of the present paper suggest that in the hole-doped
case phase separation observed for small clusters persists for
L.—, ie., in the exact ground state, while it eventually

PHYSICAL REVIEW B 74, 235117 (2006)

disappears in case of electron doping. This would explain
why there is no clear sign of stripes in electron-doped mate-
rials, and could possibly be related to the much smaller (or
even absent) pseudogap energy scale with respect to hole-
doped materials.32°
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