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We study the behavior of several physical properties of the Haldane model as the system undergoes its
transition from the normal-insulator to the Chern-insulator phase. We find that the density matrix has expo-
nential decay in both insulating phases, while having a power-law decay, more characteristic of a metallic
system, precisely at the phase boundary. The total spread of the maximally localized Wannier functions is
found to diverge in the Chern-insulator phase. However, its gauge-invariant part, related to the localization
length of Resta and Sorella, is finite in both insulating phases and diverges as the phase boundary is ap-
proached. We also clarify how the usual algorithms for constructing Wannier functions break down as one
crosses into the Chern-insulator region of the phase diagram.
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I. INTRODUCTION

The band structure of any insulator is characterized by a
certain discrete topological index known as the Chern
invariant! which encodes information about the phase evolu-
tion of the Bloch functions around the boundary of the Bril-
louin zone (see Sec. II). Insulators can thus be classified as
“normal insulators” or “Chern insulators” depending on
whether or not the Chern invariant vanishes. The latter case
requires breaking of time-reversal symmetry, so insulating
ferromagnets and ferrimagnets could be candidates for Chern
insulators. While models for Chern insulators can be con-
structed theoretically,”> no experimental realizations are yet
known to occur in nature. A Chern insulator, if found to
exist, would have the remarkable feature of showing a quan-
tum Hall effect in the absence of a macroscopic magnetic
field. Hence, Chern insulators may also be referred to as
“quantum Hall insulators.”

Although the basic theory of Chern insulators was formu-
lated in the 1980s, not much is known theoretically about the
general features of the electronic band structure of such in-
sulators. In the last 15 years or so, the theory of normal
insulators has been greatly enriched by a deeper understand-
ing of electric polarization,? orbital magnetization,*® linear-
scaling theory, methods for constructing Wannier functions,’
the spatial decay of Wannier functions and of the one-particle
density matrix,® and related measures of localization.”!!
However, all of this work implicitly assumed the presence of
time-reversal symmetry and thus was limited to the case of
normal insulators. It is therefore of considerable interest to
revisit many of these same issues and to reconsider whether,
or how, the previous conclusions generalize to the case of
Chern insulators. For example, what are the decay properties
of the one-particle density matrix in a Chern insulator? Can
Wannier functions be constructed, and if not, in what way do
the usual construction procedures fail? If one inspects closely
related measures of localization such as the gauge-invariant
part of the Wannier spread functional,” the localization
length of Resta and Sorella,’ or the second-cumulant moment
of the electron distribution,'®!! does the localization remain
finite in a Chern insulator or does it diverge?

Furthermore, an intriguing feature of Chern-insulating
systems is that a phase boundary separating the Chern insu-
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lator from a normal insulator may occur. Such a normal-
insulator/Chern-insulator (NI/CI) transition is an example of
a class of topological transitions that have become of consid-
erable current interest, at which a topological invariant
changes discontinuously across a phase boundary.'? Such
transitions normally appear within the theory of correlated
states.!>1* The NI/CI transition, on the other hand, occurs in
a noninteracting context and can therefore be studied at a
level of detail, and tested with numerical calculations, in a
way that is difficult for correlated models. In addition, Chern
insulators are closely related to so-called “spin Hall insula-
tors,” which have also been the subject of a recent surge of
interest.'> Thus, there is a special opportunity associated with
the study of this particular topological insulator/insulator
transition.

In this paper, we investigate several aspects of the elec-
tronic structure near the NI/CI transition in the two-
dimensional Haldane model.> We choose the Haldane model
because it is one of the simplest models that exhibits a
quantum-Hall-insulator state. The underlying idea of this
model is to break time reversal symmetry so that the trans-
verse conductivity o, which is odd under time reversal, can
become nonzero. Usually, the quantum Hall effect is associ-
ated with a gap at the Fermi level resulting from a splitting
of the spectrum into Landau levels by a macroscopic mag-
netic field. In the Haldane model, however, there is a degen-
eracy between the valence and conduction bands at certain
high-symmetry k points when both inversion and time-
reversal symmetry are present. If a gap is opened by the
breaking of inversion symmetry, the system becomes a nor-
mal insulator. However, if the gap opens as a result of break-
ing time-reversal symmetry, the system turns into a Chern
insulator.

We have organized this paper as follows. In Sec. II we
introduce the Chern invariant, which will henceforth be used
to classify the state of our system. The basics of the Haldane
model are reviewed in Sec. III. Thereafter, we focus on the
problems occurring when constructing Wannier functions for
Chern insulators (Sec. IV), the behavior of the spread func-
tional (Sec. V), and the decay of the density matrix (Sec. VI)
as the system transitions from the normal insulator phase into
the Chern-insulator phase. We conclude and give an outlook
in Sec. VIL
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II. CHERN INVARIANT

We restrict ourselves to the case of a one-particle Hamil-
tonian H having Bloch eigenvalues €, and eigenstates |i,).
The cell-periodic part of the Bloch function u,(r)
=e Ty (r) is then an eigenfunction of the effective Hamil-
tonian H(k)=e *THe*T. We consider electrons to be spin-
less, but factors of 2 can easily be inserted for noninteracting
spin channels.

We can now define the Chern invariant! for an insulator,
defined here as a system with a gap in the single-particle
density of states separating occupied and unoccupied states,
to be

. occ
i

=5 Ak 2, (it X |t (1)
TJBZ n

where BZ denotes an integral over the Brillouin zone and
=39/ k. The cross-product notation in Eq. (1) implies that
C, is proportional to 5a57<8kﬁu,1k|&k7unk) in the contracted
Levi-Civita notation. For noninteracting electrons,'®!” the
Chern invariant is quantized in units of reciprocal-lattice
vectors G. For the case of a two-dimensional (2D) system
with only a single occupied band, Eq. (1) becomes

I
=5 di( ]| X | ). (2)
TJBZ

In two dimensions the Chern invariant is a pseudoscalar
called the Chern number which can only take integer values.
Alternatively, we can write the Chern number in terms of the
Berry connection A(K)=i{u|d|u,) and the Berry curvature
Q(k)=V, X A(k) as

1 1
C=— dkQ(K) = —
27 ) gy 27 ) gy

dk - A(k). (3)

A Chern insulator is now simply defined as an insulator with
a nonzero Chern invariant. Conversely, we define a normal
insulator to be an insulator with zero Chern invariant. Hence,
the NI/CI transition is characterized by a change of the Chern
invariant from zero to a nonzero value.

The Chern invariant of Egs. (1) and (2) is gauge
invariant®—i.e., invariant with respect to the choice of
phases of the |u,) or, in the more general multiband case, to
the choice of unitary rotations applied to transform the occu-
pied states among themselves at a given k. It can be shown
that in normal insulators it is always possible to make a
gauge choice such that the Bloch orbitals are periodic in k
space (i.e., |u+G)=|¥u)) and smooth in k (i.e., continuous
and differentiable), whereas no such choice is possible for a
Chern insulator. '8

III. HALDANE MODEL

Here we provide a brief review of Haldane’s model and
its properties, as discussed in detail in Ref. 2. As illustrated
in Fig. 1, the Haldane model is comprised of a honeycomb
lattice having two tight-binding sites per cell with site ener-
gies =A, a real first-neighbor hopping #;, and a complex
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FIG. 1. (a) Four unit cells of the Haldane model. Solid (open)
circles have site energy —A (+A). The first-nearest-neighbor hop-
ping 7, is real, while the second-nearest-neighbor hopping #,¢’¢ has
a complex phase. Arrows indicate the direction of positive phase
hopping. The Wigner-Seitz unit cell corresponds to the hexagon in
the center of the plot. (b) First Brillouin zone of the Haldane model
with high-symmetry points marked.

second-neighbor hopping ,e*¢. The model can also be
thought of as consisting of two sublattices A and B corre-
sponding to the sites with energies +A and —A, respectively.
Note that the macroscopic magnetic flux through the unit cell
is indeed zero, resulting in a vanishing macroscopic mag-
netic field. This follows directly from the fact that the first-
nearest-neighbor hopping is real and no phase is picked up
when hopping around the Wigner-Seitz unit cell. This, how-
ever, does not rule out a microscopic magnetic field that
averages to zero over the unit cell. Note that the wave vector
k is still a good quantum number under these conditions.

Let a,, a,, and a5 be the vectors pointing from a site of the
B sublattice to its three nearest A neighbors, such that Z-a,
Xa,>0 and X-a; >0. If we furthermore define the vectors
b,=a,-as, b,=a3;—a,, and by;=a,—a,, then the Hamiltonian
of the Haldane model can be written as

H(K) =121, cos ¢, cos(k - b)) + o1, >, cos(k - a;)
+ 0'21‘12 sin(k - a;)

+ 0'3<A ~ 21, sin ¢ sin(k - b,»)), (4)

where o; are the Pauli matrices and I is the identity matrix.

The Chern number can now be calculated analytically or
numerically according to Eq. (2) or (3). For our tests, we
have chosen a lattice constant equal to unity, #,=1 and t,
=1/3. If the Chern number of the bottom band is mapped out
as a function of the remaining model parameters ¢ and A/1,,
we obtain the Haldane phase diagram shown in Fig. 2. Since
we are interested in studying the transition from a normal
insulator to a Chern insulator, we choose for all our calcula-
tions below a path in the phase diagram that crosses the
phase boundary. Specifically, we traverse the vertical line in
Fig. 2 where the phase ¢ is fixed at /4 and A/t is reduced
from 6 to 2. At the critical value (A/f,), =33 sin(/4)
~3.67, the phase boundary is crossed.

The band structure of the Haldane model is plotted in Fig.
3 along some high-symmetry lines in the Brillouin zone [see
Fig. 1(b)]. It shows a remarkable feature as the system passes
through (A/t;),. In the normal-insulator region, the two
bands are separated by a finite gap. As the critical value is
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FIG. 2. Chern number of the bottom band of the Haldane model
as a function of the parameters ¢ and A/t, (1,=1, r,=1/3). The
vertical line shows the range of parameters that we have chosen for
all our calculations.

approached, the gap at K gets smaller and smaller. Finally,
exactly at (A/1,),, the bands touch at K in such a way that the
dispersion relation is linear. Such points are also referred to
as Dirac points. When going further into the Chern-insulator
region, the bands separate again. Note that our specific
choice of #;=1 and #,=1/3 prevents the bands from overlap-
ping. If A and 1, sin ¢ are both chosen to be zero, two Dirac
points form at K and K’ and the Haldane model then be-
comes an appropriate model for a graphene sheet.?’

In the normal-insulator region of the Haldane model the
Chern number of each band is zero, so that the total Chern
number (the sum of the Chern numbers of the upper and
lower bands) is obviously also zero. When the phase bound-
ary is crossed, the Chern numbers of the upper and lower
bands become *1, but their sum still remains zero. The clo-
sure and reopening of the gap as the NI/CI boundary is
crossed corresponds to the “donation” of a Chern unit from
one band to another through the temporarily formed Dirac
point. In the present case, the total Chern number must al-
ways remain zero because the model, having a tight-binding
form, assumes Wannier representability of the overall band
space and a nonzero Chern number is inconsistent with such
an assumption. More generally, the total Chern number of a
group of bands should not change when a gap closure and

FIG. 3. Band structure of the Haldane model along some high-
symmetry lines for several values of A/z, along the path marked in
Fig. 2. The inset shows a magnification of the bands at K. Note that
at (A/1,)., the dispersion is linear.
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FIG. 4. Energy vs wave vector k, for the Haldane model in a
strip geometry 30 cells wide along the b; direction and extending
infinitely along b, direction. For A/t,<(A/t,)., (bottom panel),
chiral edge states are visible.

reopening occurs among the bands of the group, as long as
the gaps between this group and any lower or higher bands
remains open.

It is possible to argue on very general grounds that a finite
sample cut from a Chern insulator must have conductive
channels, otherwise known as chiral edge states, that circu-
late around the perimeter of the sample?! in much the same
way as for the quantum Hall effect.”>?3 It is therefore of
interest to investigate the electronic structure of the Haldane
model from the point of view of the surface band structure.
We consider a sample that is finite in the b direction (spe-
cifically, 30 cells wide) and has periodic boundary conditions
along the b, direction [the b; are defined above Eq. (4)]; its
states can be labeled by a wave vector k, running from —m/a
to +7/a, where a is the repeat unit in the y direction. The
energy eigenvalues are plotted versus k, for several values of
A/t, in Fig. 4. At first sight, the surface band structure shows
qualitatively the same information as the bulk band structure
in Fig. 3. For A/t,=6, the valence and conduction bands are
separated by a finite gap. At the Chern transition a Dirac
point forms, showing the characteristic linear dispersion ex-
pected around such a point. However, when we go deeper
into the Chern insulator, the surface band structure reveals a
new behavior: one surface band now crosses from the lower
manifold to the upper one with increasing k,, and another
crosses in the opposite direction. Further inspection shows
that the upgoing and downgoing states are localized to the
right and left surfaces of the strip, respectively. Thus, if the
Fermi level lies in the bulk gap, there will be metallic states
with Fermi velocities parallel to the surfaces and with oppo-
site orientation—i.e., a chiral (counterclockwise) circulation
of edge states around the perimeter of the sample, as ex-
pected.
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IV. BREAKDOWN OF WANNIER-FUNCTION
CONSTRUCTION AT THE CHERN TRANSITION

We now study aspects of the NI/CI transition that are
related to Wannier functions (WF’s) and electron localiza-
tion. We expect that in the normal-insulator phase, it should
be straightforward to construct Wannier functions via a
k-space construction. The term “Wannier function” is usually
applied only in the case of periodic systems, but for finite
samples one can construct well localized Boys orbitals**
which play the same role and which map onto the WF’s in
the thermodynamic limit n— . Thus, if we cut a finite
sample from a normal-insulator realization of the Haldane
model, we also expect it to be straightforward to construct
such Boys orbitals. The question then arises as to what, pre-
cisely, will “go wrong” with these procedures if one tries to
do the same on the Chern-insulator side of the transition. In
particular, for a finite sample cut from the Haldane model, it
is unclear how the system would “know” whether the finite
sample corresponds to the normal-insulator or Chern-
insulator side of the transition and how the construction
would break down in the latter case. In this section, we in-
vestigate these issues, first in the context of the real-space
construction and then later from the k-space point of view.

We start, then, by considering finite n X n samples of the
Haldane model. We can interpret Fig. 1 as showing a picture
of a finite sample of size n=2; we study similarly con-
structed samples of size n=10, 20, 30, and 40. For each
sample, the Boys orbitals are constructed as follows. We de-
fine the projection operator onto the occupied states as

occ

P=2 [y Xt,

, ()

and we choose a set of well-localized “trial” orbitals |ta>,
equal in number to the number of occupied states, which we
want the Boys orbitals to be roughly modeled after. We then
construct the projected trial functions |y,)=Plt,). Since
p(r,r")=(r|P|r') is expected to decay exponentially in
[r—r’| for an insulator (see Sec. VI), we expect the |y,) to be
localized as well, and as long as they are not overcomplete
they will span the occupied space of interest. However, they
are not orthonormal, so the last step is to carry out a sym-
metric orthonormalization.?> This is done by computing the
overlap matrix

Saﬁ = <ya|yﬁ> (6)
and then constructing the final Boys orbitals |w,) as
We) = 2 (S_I/Z)Ba|yﬂ>' (7)
B

In the context of the Haldane model, it is natural to
choose the trial functions to be a set of J functions located on
the sites of the lower-energy sublattice. With this choice, we
can now study the lowest and highest eigenvalue of S,z as
the parameter A/, traverses the path shown in Fig. 2. While
the highest eigenvalue remains very close to 1, the lowest
eigenvalue drops and rapidly approaches zero in the Chern-
insulator region—i.e., for A/f, values below the critical
value of (A/t,).,~3.67—as shown in Fig. 5. The slope of
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FIG. 5. Lowest eigenvalue of the overlap matrix S a;;:()’a| y ﬁ> as
a function of the parameter A/t, for different sample sizes n X n.
Note the logarithmic scale.

the “drop” depends on the size of the sample and becomes
steeper as the sample size gets larger. For any given value of
A/ty<(A/t,).., the lowest eigenvalue appears to approach
zero exponentially with sample size. When the eigenvalue
becomes too small, the inversion to obtain S~'2 becomes ill
conditioned and the symmetric orthonormalization in Eq. (7)
can no longer be carried out. More generally, it indicates that
the set of projected trial functions has become linearly de-
pendent, so that no orthonormalization procedure can suc-
ceed. It follows that Boys orbitals cannot be constructed in
the Chern-insulator phase, at least not using this approach.
We now change perspective and look at the problem from
the k-space point of view, where we find that something
similar happens. WF’s for periodic samples are defined by

QO .
|Rn) = an? f . dke ™ R| i, (8)

where the inverse relation is

Y0 = 2 ¢ F[Rn). )
R

In this notation |Rn) refers to the nth WF in cell R.

As mentioned previously, for systems with zero Chern
invariant, the Bloch orbitals can always be chosen to obey a
smooth and periodic gauge |,x.c)=|¥x). However, if the
Chern invariant becomes nonzero, this choice is no longer
possible.!®1? In this case it is possible to make a periodic
gauge choice that is smooth almost everywhere, but there
must be singularities (“vortices”) somewhere in the interior
of the BZ. For example, in two dimensions, assume a gauge
choice that is periodic and also smoothly defined everywhere
in the BZ except in a small disk located somewhere in the
interior of the BZ. The periodic gauge choice implies that
$dk - A(K) around the perimeter of the BZ must vanish. Ap-
plying Stoke’s theorem as in Eq. (3), but now to the region
excluding the small disk, implies that $dk-A(k) around the
circumference of the small disk must approach —C in the
limit that the disk becomes small. For the Chern phase (C
#0), this implies that there must be a vortex singularity in
the phase choice inside the disk. If one attempts to construct
WF’s naively using Eq. (8), one then finds that the disconti-
nuity in the phase choice of |u,) at the vortex in k space
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FIG. 6. Plot of s(k) of Eq. (12) along some high-symmetry lines
for several values of A/t,.

leads to the destruction of exponential localization of the
WPF’s in real space.

We have investigated how this problem manifests itself if
one attempts to construct WF’s using standard k-space meth-
ods. Similar to the approach described in Ref. 7, we again
adopt a projection method in which one chooses trial Bloch-
like functions |f,) that are smooth and periodic in k space.
This can be done by constructing the |#) from a set of real-
space trial functions |t,)—i.e., f(r)=2ge™ Rt (r—R). Then
one can construct projected states |y,) via

v = Plty = 2 [ Xt [0 = [ (acl ) (10)

kl
and orthonormalized projected states

[wiey = s(K) ™|y, (11)

where

s(k) = (yilyw) = |<fk|yk>|2~ (12)

The WF’s are then constructed by Fourier transforming to
real space using Eq. (8) with |wy) substituted for |i).
Clearly, if s(k) should vanish at some k, this procedure
would fail.

We can now study what happens if this construction pro-
cedure is applied to the Haldane model. We again use trial
functions that are & functions located on the lower-energy
sites. We study the behavior of s(k) as a function of k
throughout the BZ, while varying A/#, along the line in Fig.
2. Results for s(k) are plotted along some high-symmetry
lines in Fig. 6. In the normal-insulator region, we find O
<s(k)<1 for all k. After the phase boundary has been
crossed at (A/t,).,, we find that there is one point k, in the
BZ for which s(k,)=0. There is also one point k,, for which
s(k,)=1 exactly. In our numerical calculations, the locations
of k, and k,, coincide with the points K and K', respectively.
By experimenting with different trial functions, we have
found that the precise locations of the minimum and maxi-
mum may deviate from K and K’ and the value at the maxi-
mum may be less than unity. However, we always find a
point k, at which s(k,)=0. This is the point at which
(i |ty =0; the robustness of such a zero crossing can be
understood heuristically by realizing that by adjusting the
two parameters k, and k,, the real and imaginary parts of the
complex scalar (¢4 |#,) can generically both be made to van-
ish. From Egs. (10)—(12) it follows that the phase of |y,)
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FIG. 7. Density of s(k) values as a function of A/, obtained for
periodic samples with a 300X 300 k mesh.

evolves by 27 as one circles around k,, so that a vortexlike
singularity is generated in the phase of |wy) about k,, with
|wy) becoming ill defined precisely at k. Thus, the construc-
tion of well-localized WF’s is no longer possible.

Instead of focusing only on the lowest eigenvalue, we plot
in Fig. 7 the “density of overlap values” s(k). In the normal-
insulator region of A/t,, one sees typical 2D van Hove sin-
gularities, and, in particular, a well-defined minimum above
zero. In the Chern-insulator region of A/t#,, on the other
hand, the density of overlap values shows a tail extending all
the way to zero.

In summary, when the system is in its normal-insulator
phase, the construction of Boys orbitals for finite samples, or
of WF’s for periodic samples, can be carried out in the usual
way using a projection method. However, once the NI/CI
phase boundary has been crossed, such a construction is
bound to fail because of singularities that appear in the over-
lap matrices in both the real-space finite-sample and k-space
extended-sample approaches.

V. SPREAD FUNCTIONAL

Another quantity that shows interesting behavior as the
phase boundary is crossed is the spread functional () in real
space, defined by Marzari and Vanderbilt’” (MV) to be

Q= > [(0n|r?|0n) - (On|r|0n)?], (13)

where |0n) refers to the WF |Rn) for band 7 in the home unit
cell R=0 and the sum is over occupied bands of the insula-
tor. The spread functional is a measure of how “spread out”
or delocalized the WF’s are. In the remainder of this section,
we specialize for simplicity to the case of a single band in
two dimensions, so that Q=(0|r?|0)—(0[r|0)>. MV showed

that the spread functional can be decomposed as Q=)+ Q,
where

Q,=(0[%0) - X [(0[r|R)|? (14)
R

and
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Q=2 [o|r/R)]? (15)

R#0

are gauge-invariant and gauge-dependent contributions, re-
spectively. The gauge-invariant part has been shown to be a
useful measure for characterizing the system: (); is finite in
insulators and diverges in metals.” As for Chern insulators,
Resta’s recent argument that (); should remain finite in a
quantum Hall fluid?® may hint that this could be the case in a
crystalline Chern insulator as well.

MYV also gave corresponding k-space expressions for the
two parts of the functional. Defining the metric tensor g,,,,
=Re(d,,uy| Okl d ) where Qy=1-|uy)(uy| (and 9, =/ ok )
these two quantities can be rewritten as

O,= o fBZ dkTr[g(k)] (16)

and

ﬁ—if 17
=i, (17)

where A is the unit cell area, Tr{g]=g,,+g,,, and A is the
BZ average of A(Kk) defined just above Eq. (3).

In the case of a Chern insulator, the use of the real-space
expressions (14) and (15) becomes problematic, since well-
localized WF’s cannot be constructed. Nevertheless, the
reciprocal-space expressions (16) and (17) remain well de-
fined. It is interesting, then, to see how these quantities be-
have in a Chern insulator. Do each of these quantities remain
finite, or does one or both of them diverge? Also, what is the
behavior of these quantities as one approaches the NI/CI
phase boundary?

To answer these questions, we have computed the quan-
tities in Eqs. (16) and (17) using the finite-difference ver-
sions of these equations given in Egs. (34) and (36) of Ref. 7.

For the calculation of the gauge-dependent part Q, we have
fixed our gauge such that |¢4) is real for all k on the lower-
energy site in the home unit cell. The results are plotted in
Fig. 8 for different densities of the k mesh. We confirm that
), is indeed finite inside the Chern-insulator region, as well
as in the normal-insulator region. At the critical value of
(A/ty),=3.67, however, (); diverges logarithmically with

the number of k points. Furthermore, Q) is finite in the nor-
mal insulator region, but diverges logarithmically with the
number of k points for Chern insulators. This latter behavior
is consistent with the presence of a vortex in the phases of
the |wy) around point k,, which causes A to diverge as |k
-k, and imparts a logarithmic divergence to Eq. (17). It
follows that the total spread () is finite in normal insulators
and divergent in Chern insulators. Heuristically, it is tempt-
ing to associate this divergence with the presence of the me-
tallic chiral edge states that are required to exist in Chern
insulators (see Sec. III), but it is unclear precisely how these
features are related.
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FIG. 8. Gauge-independent part (); and gauge-dependent part Q
of the spread functional for the Haldane model as a function of the
k-mesh density.

VI. DECAY OF THE DENSITY MATRIX

The decay of the density matrix is a fundamental property
of a system, and it is closely connected to the electron local-
ization. It was first studied by Kohn for one-dimensional
insulators,?” and many others have investigated this topic
thereafter.8-10.26.28.29

For periodic samples the density matrix is defined as

occ

p(r,r")

dklﬂk r) ('), (18)

nl

where we assume that the wave functions i, are normalized
to one unit cell of area A. If the wave functions are written in
terms of some basis functions ¢l;(r),

Y1) = 2 Gl (), (19)
this becomes
occ
prr’)=——> > | dkCy Crzdl (NP
Q2m) o aB JBZ
(20)
The C';a are the eigenvectors obtained by diagonalizing the

model Hamiltonian—in our case Eq. (4). In a tight-binding
model, the basis functions d)];(r) are made up of localized
orbitals ¢ at sites r

plr) = 2 MR G(r — (R +1,)). (21
R
Inserting Eq. (21) into Eq. (20) gives

p(r,r’)= X E4R -R)p (r-R-r,)h(r —-R' —rp),
RR’
ap
(22)

where
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FIG. 9. Logarithm of the density-matrix kernel [£,5(RX)| of the
Haldane model for several values of A/f,. The linear asymptotic
behavior indicates exponential decay except at (A/t,).,.= 3.67 (solid
curves) where the decay is power law instead.

occ

A X K
éap(R) = W% dec‘;ac';ﬁe k(Rirgre) — (23)
The density matrix cannot be evaluated explicitly without
knowledge of the orbitals ¢, but we can study instead the
decay of £,5(R), which essentially has the interpretation of
being a density matrix expressed in a tight-binding represen-
tation.

Calculating the decay of &,4(R) in Eq. (23) numerically is
very demanding, and the corresponding results are to be in-
terpreted with caution. To ensure high accuracy, we used a
very dense k mesh of 2000 X 2000 points and 128-bit arith-
metic. Results for &,5(R%) (i.e., along the x direction) for the
Haldane model are collected in Fig. 9. In normal insulators
the density matrix decays exponentially with a power-law
prefactor.® We therefore choose to fit our results according to
&,p~ R "R, where R=|R|=|R%| and a and b are fit param-
eters. More specifically, we performed least-squares fits of
In|£,4| for distances up to 100 unit cells. For the decay be-
havior at the NI/CI boundary, we even went as far as 500
unit cells.

Within fitting error, the best-fit values for the parameter b
are the same for all £, Numerical results corresponding to
A/t, values of 6, 5, 4, 3.67, 3, and 2 are 0.69+1, 0.43+1,
0.118+5, 0.0001+1, 0.282+1, and 0.75%1, respectively. In
general, when approaching the phase boundary from either
side, the best-fit value of the parameter b decreases and takes
its minimum of zero at (A/1,).,. In other words, in the normal
and Chern-insulator regions the decay is dominated by the
exponential behavior. However, exactly at the phase bound-
ary the exponential decay vanishes (b=0) and a pure power-
law behavior remains, similar to metals. At (A/t,), the
power-law decay is then characterized by a=3.01+3 for &,
and &, and @=2.00%2 for &, and &, which suggests that
the “true” values are the integers 3 and 2. Note that the
results depicted in Fig. 9 correspond to a particular direction
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in real space (R=RX). While the decay parameters inside the
normal and Chern-insulator phase depend slightly on the di-
rection, they become universal at (A/t,),. Again, this is a
signature of the metallic character.

It is interesting that the power of the power-law decay at
the phase boundary seems to be exactly an integer and that it
differs by 1 for different &,5. This behavior can be under-
stood in the following way: &,4(R) of Eq (23) is essentially
the Fourier transform of the kernel Can , and it is well
known that discontinuities in the kernel determine the decay
behavior of the resulting quantity. In one dimension the dis-
continuities are related to the decay like R‘(l”), where [ is the
number of continuous derivatives of the kernel.3*3! Unfortu-
nately, in two dimensions the situation is more complex and
the resulting BZ integrals cannot easily be solved analyti-
cally. Nevertheless, we give heuristic arguments that a simi-
lar expression holds for higher dimensions.

To this end, we solve for analytic expressions of Cta by
diagonalizing the Hamiltonian H(K) in Eq. (4). In turn, we
find analytic expressions for the kernel C¥ C*, Next, we
switch to polar coordmates k=(k,,k,) —k=(k, ), replace
A/t, by (A/t,),=33 sin ¢, and expand the kernel around

the Dirac point in orders of k:

5t, cos 3¢ sin qo

" 1 3t,si
il = -2 + 0,
4t1 16\3t1
(24)
. 1-i\3)e™®  (3+i\3)e ¥ sin3
o 11(2_( iv3)e +( iV3)e ¢ sin ¢k+0(k2).
4 48
(25)

From the above expansions it is apparent that Cll‘TC'fl has its
first discontinuity in first order in k. Hence, there are /=1
continuous derivatives. On the other hand, due to the ¢¢
term, C¥/CX, has already a discontinuity in zeroth order in k
and thus /=0. This is consistent with the numerical results
for &,5(R) in Fig. 9 if we assume that the decay in two
dimensions is according to R~(*?. Equat10ns (25) and (24)
are thus consistent with a decay of R2 and R, respectively.

In summary, the numerical and analytical arguments are
consistent in supporting the conclusion that the diagonal and
off-diagonal elements of &,5(R) decay as R~ and R™?, re-
spectively. An arbitrary pair of coordinates r and r’ in Eq.
(22) will involve a linear combination of contributions com-
ing from diagonal and off-diagonal terms, so the final con-
clusion is that the decay of the density matrix will be as R
exactly on the NI/CI boundary and exponential for any point
lying within the normal-insulator or Chern-insulator phase.

Above, we have evaluated the density matrix p(r,r’) for
periodic samples. For finite samples, we expect a parallel
behavior to hold for points r and r’ deep inside the bulk.
However, if both points are chosen to be near the surface of
a Chern-insulator sample, one may expect that the presence
of metallic chiral edge states will induce a power-law decay
with the distance between r and r’ as measured along the
perimeter. Preliminary calculations on finite samples appear
consistent with this picture.
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VII. CONCLUSIONS

We have performed numerical and analytical calculations
to study the behavior of several properties of the Haldane
model as the system undergoes a transition from the normal-
insulator phase to the Chern-insulator phase. We first showed
how the usual methods of constructing Wannier functions
break down for Chern insulators. We then investigated sev-
eral quantities related to electron localization. We found that
the total spread functional, which is finite in normal insula-
tors, diverges in the case of a Chern insulator. However,
when the spread functional is decomposed into its gauge-
independent and gauge-dependent parts, the former is found
to remain finite in a Chern insulator, while only the latter
diverges. The localization length of Resta and Sorella,’
which is related to the gauge-independent part of the spread
functional, thus remains finite, a result that was foreshad-
owed by the results of Ref. 26 on quantum Hall fluids. How-
ever, the localization length increases and diverges logarith-
mically as one approaches the NI/CI transition. Similarly,
when inspecting the density matrix, we find that it decays
exponentially inside both the normal and Chern-insulator
phases, but that the decay length increases as the phase
boundary is approached, and the behavior crosses over to a
power-law decay exactly at the phase boundary.

PHYSICAL REVIEW B 74, 235111 (2006)

We thus find that a system that is sitting right on the NI/CI
boundary has a kind of semimetallic character similar to that
of graphene, in which the valence and conduction bands
touch at one (for the Haldane model) or two (for graphene)
Dirac points in the BZ. When the system is in the Chern-
insulator phase, it still has remnants of metallic behavior in
the presence of metallic edge states, the divergence of the
total spread functional, and the difficulty of constructing
Wannier functions.

Our results were obtained here for a specific realization of
a Chern insulator: namely, the Haldane model. While it
seems very likely that the localization properties found here
will apply to other Chern-insulator systems, it remains to test
this hypothesis by carrying out similar studies on other sys-
tems. It would also be of considerable interest to extend the
current study to three-dimensional Chern-insulator crystals
and to continuum, as opposed to tight-binding, models.
These could be fruitful avenues for future investigations.
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