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We contrast the numerical solution of the transport theory published by Calecki �D. Calecki, Phys. Rev. B
42, 6906 �1990��, with transport data published recently �R. C. Munoz et al., J. Phys.: Condens. Matter 18,
3401 �2006�; Phys. Rev. Lett. 96, 206803 �2006��. We use the resistivity, transverse magnetoresistance, and
Hall voltage data of thin gold films deposited on mica substrates measured under high magnetic fields B
�1.5 T�B�9 T� at low temperatures T �4 K�T�50 K�, as well as the surface roughness measured on each
sample with a scanning tunneling microscope. The surprising result is that theory does provide an accurate
description of the temperature dependence of the resistivity, a less accurate description of the Hall voltage
observed at 4 K, but predicts a magnetoresistance at 4 K that turns out to be several orders of magnitude
smaller than observed.
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The problem of “size effects” refers to the question of
how does the roughness of the surface that limits a metallic
structure affect its electrical transport properties, when one
or more of the dimensions of the structure are comparable to
or smaller than the mean free path � of the charge carriers in
the bulk. Despite over a century of research on size effects,1

the effect of electron-surface scattering on charge transport
is a fundamental problem in solid state physics that still
remains open.

We recently published the first simultaneous measure-
ments of resistivity, transverse magnetoresistance, and Hall
voltage arising primarily from electron-surface scattering on
a family of gold films of different thickness evaporated onto
preheated mica substrates under high vacuum.2 There are
two theories available to explain magnetomorphic effects
arising from electron-surface scattering on metallic films im-
mersed in a magnetic field B perpendicular to the surface of
the film. The first was published by Sondheimer.3 The other
theory was published by Calecki.4

Calecki used a Boltzmann transport equation �BTE� to
describe electron transport, and estimated the effect of
electron-surface scattering by calculating the perturbation in-
duced by the presence of the two rough surfaces limiting the
film, over and above the Hamiltonian describing an electron
gas confined within two parallel flat surfaces. The author
introduced an electron distribution function f��k�= f0��vk�
+���k� �Eq. �11� in Ref. 4� for electrons occupying each
subband with an energy �vk=�2�k2+k�

2� /2m, where k
= �kx ,ky� represents the in-plane momentum, k�=�� / t repre-
sents the quantized momentum along z �where z is the direc-
tion perpendicular to the film, t is the thickness of the film,
���k� represents a linear function in the electric field E, and
f0��vk� represents the equilibrium Fermi-Dirac distribution
function�. In this work, Calecki set up a BTE for f��k� and
proved that electron-rough surface scattering induces sub-
band mixing. Consequently the Boltzmann collision operator
describing electron-surface scattering cannot be character-
ized by a relaxation time � �unless there is only one occupied

subband�. To circumvent such difficulty the author intro-
duced the “collision time” matrix T������ defined by Eq. �22�
from Ref. 4.

Presently Calecki’s formalism is the only theory describ-
ing magnetomorphic effects arising from electron-surface
scattering in metallic films immersed in a magnetic field or-
thogonal to the film, that contains no adjustable parameters.
The transport coefficients predicted by theory are univocally
determined by the rms roughness amplitude 	 and the lateral
correlation length 
 characterizing the rough surface. How-
ever, a comparison between theory and experiment that takes
advantage of the fact that theory contains no adjustable pa-
rameters has never been published, because of the lack of
experimental work reporting measurements of both the mag-
netic transport coefficients as well as the surface roughness
measured in the appropriate scale of length. Recent publica-
tion of surface roughness data measured in the scale of
length set by the Fermi wave length �which for Au is
0.52 nm�, as well as resistivity, transverse magnetoresis-
tance, and Hall voltage data measured on each member of a
family of thin gold films,2 permits a reversal of this trend. It
makes possible the first cross check between theory and ex-
periment involving several transport coefficients, a compari-
son that was already performed in the case of the other for-
malism available, the theory of Sondheimer.3 In this paper
we report the first comparison between Calecki’s theory and
experimental data involving resistivity, transverse magne-
toresistance, and Hall voltage measured on a family of gold
films of different thickness.

It seems appropriate to point out that Calecki used in his
work, the small correlation length approximation k
�1
�where k stands for the electron wave vector� to deduce a
diagonal form for the “collision time” matrix T������. As will
be shown below, the resistivity predicted under the approxi-
mation k
�1, turns out to be about 2 orders of magnitude
larger than observed. To understand why such discrepancy
arises it seems appropriate to recall that, for many metals, the
Fermi wave length �F is of the order of a few atomic diam-
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eters. In such metals the approximation kF
=2�
 /�F�1
used by the author is severely violated, for 
 is also expected
to be of the order of, or larger than, a few atomic diameters.
In gold kF=12.1 nm−1, and in our gold films 
 ranges from
7.6 to 12.2 nm �Table I from Ref. 2�, hence 90�kF
�145.
For such values of kF
, replacing the Fourier transform of the
height-height autocorrelation function F�kF
� for its value at
the origin F�0�=� �appropriate for a Gaussian autocorrela-
tion function�, leads to an overestimation of F�kF
� by as
much as two orders of magnitude. This approximation gives
rise to an underestimation of the elements of the collision
time matrix T������ �that are inversely proportional to
F�kF
��, hence to an overestimation of the resistivity induced
by electron-surface scattering.

To avoid the “tour de force” implied by the small corre-
lation length approximation k
�1, and to perform a mean-
ingful comparison between theory and experiment, we use
the full nondiagonal form for the matrix T������ contained in
Ref. 4. The goal is to elucidate, for the first time, whether or
not theory is capable of describing the experimental data
involving several transport coefficients, once the transport
equations contained in the theory are solved numerically,
using as input the surface roughness measured on each
sample. We abandon the small correlation length approxima-
tion k
�1, an approximation that would render questionable
any comparison between theory and experiment.

Details of the sample preparation, of the morphology and
structure of the gold films, of the measurement of resistivity,
magnetoresistance, Hall voltage, and the surface roughness
parameters appropriate to each sample, can be found in Ref.
2. The resistivity, transverse magnetoresistance and Hall tan-
gent predicted by theory can be calculated from = ��o�−1,
�
 =

��0−�2��0

��0−�2�2+�1
2 −1, and tan���=

EH

EL
=−

�1

�0−�2
, where EH stands

for the transverse �Hall� field, EL stands for the longitudinal
field, �0, �1, and �2 are given by

�0 = �
�

n�q2

m �
��

�T��������,

�1 = �C�
�

n�q2

m �
��

���1 + �C
2T2����−1T2���������,

�2 = �C
2�

�

n�q2

m �
��

���1 + �C
2T2����−1T3���������,

which are Eqs. �32�–�34� from Ref. 4, where �C=qB /m
stands for the cyclotron frequency, q is the electron charge, B
is the magnetic field, m is the electron effective mass, n� is
the electron density in subband �, T������ is the collision
time matrix and the symbol ���� stands for the average of the
quantity � over subband � �given by Eq. �29� in Ref. 4�. In
the limit of small correlation lengths �e.g., k
�1�, T������
becomes diagonal, for in this case electron-surface scattering
causes the distribution function f��k� to relax towards the
Fermi-Dirac distribution function f0��vk� with a “relaxation
time” �� associated with subband �. �� is given by

T�����F� =
m

�5�

6t6

�F��F + 1��2�F + 1�
1

	2
2�2	��� = ����F�	���

�1�

�Eq. �64� from Ref. 4� for the case of a Gaussian auto-
correlation function f�x ,y�= 1

S /h�x+u ,y+v�h�u ,v�dudv
=	2 exp�− x2+y2


2 �, where h�x ,y� is the height of the random
rough surface �measured with a scanning tunneling micro-
scope� at a point designated by the in-plane coordinates
�x ,y�, S is the surface of the sample, and �F is the number of
occupied subbands.

To compare theory and experiment, we must compute the
coefficients �0, �1, and �2 when T������ is not diagonal. To
do so it becomes necessary to calculate numerically the ma-
trix C������ �defined by Eq. �19� of Ref. 4� that describes
electron-surface scattering taking place at the exposed gold
surface. The gold-mica interface is atomically flat except for
cleavage steps that are separated by distances which are long
compared to �, hence the gold-mica interface is considered a
specular surface.2 The matrix elements C������ are given by

C��F���� =
S�2

4�t6	2
2�	����
2k2

��
�=1

�F

�2I�� − k�k���
2��2J���	

�2�

that corresponds to Eq. �58� in Ref. 4, with k�

=
�kF
2− � ��

t
�2� �Eq. �59� in Ref. 4�, where kF is the Fermi

wave vector. The symbols I�� and J�� stand for the integrals
of the Fourier transform F�kx ,ky� of the height-height auto-
correlation function f�x ,y�

I�� = �
0

2�

F�

k2
� + k2

� − 2k�k� cos ��d�

= 2�2 exp�−
1

4

2�k2

� + k2
��	I0�1

2

2k�k� , �3�

J�� = �
0

2�

F�

k2
� + k2

� − 2k�k� cos ��cos �d�

= 2�2 exp�−
1

4

2�k2

� + k2
��	I1�1

2

2k�k� , �4�

where I0 and I1 are the modified Bessel function of order 0
and 1, respectively5 �Eq. �2� has been used by Calecki to
establish a limiting law governing the dependence of the
conductivity of a thin metallic film on film thickness, see Eq.
�15� in Ref. 6�. Rather than inverting the matrix C and the
matrix �1+�C

2T2����, we used instead the approach of nu-
merically solving the linear system of equations CX=Y and
�1+�C

2T2����X=Y. This method is significantly faster and
reduces considerably the numerical error.

In order to compare theory and experiment, we must in-
clude in the computation of the matrix elements C������, the
effect of other electron scattering mechanisms acting in the
bulk. As discussed in Refs. 2 and 4, electron scattering in the
bulk does not induce subband mixing. Consequently, the cor-
responding matrix T is diagonal, for it reduces to T=�BULK,
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where �BULK represents the collision time describing electron
scattering in the bulk common to all subbands. The matrix T
is defined by C���T���=F��� �Eq. �22� in Ref. 4�. Matrix
C��� depends upon the scattering rate characterizing each
electron scattering mechanism, but matrix F��� �defined by
Eq. �20� from Ref. 4� is a diagonal matrix independent of the
scattering mechanism. When two electron scattering mecha-
nisms are present �for example mechanism 1—electron scat-
tering in the bulk, and mechanism 2—electron-surface scat-
tering�, we have C1T1=C2T2=F, hence C1+C2=F�T1

−1

+T2
−1�. Since the scattering rates due to electron-surface scat-

tering and electron scattering in the bulk are additive, to
compute the matrix C describing both mechanisms acting
simultaneously, the product of F����� times 1/�BULK ought to
be added to the diagonal elements C����� arising from
electron-rough surface scattering given by Eq. �2�.

Two of the electron scattering mechanisms that are rel-
evant to the present discussion, are electron-phonon scatter-
ing and electron-impurity scattering. The inverse of the re-
laxation time describing these processes, can be computed
according to 1/�BULK= �1/��IMP+ �1/��PHON, where the first
�temperature independent� term accounts for electron scatter-
ing by impurities, and the second �temperature dependent�
term accounts for electron-phonon scattering.7 At 4 K the
phonons are frozen out, hence electron-phonon scattering
can be neglected. To determine 1/�BULK describing electron
scattering in the bulk at T�4 K, we added to �1/��IMP the
corresponding �1/��PHON computed from the Bloch-
Grüneisen intrinsic resistivity listed in page 1209 of Ref. 7.

Following the procedure outlined, we adjusted �1/��IMP to
describe �4� for each sample. The temperature dependence
of the resistivity predicted by theory, computed using the
numerical solution of the transport equations contained in the
theory, incorporating electron-scattering in the bulk in the
manner described, is displayed in Fig. 1. The magnetoresis-
tance predicted at 4 K is displayed in Fig. 2. The Hall volt-
age predicted a 4 K is displayed in Fig. 3.

The resistivity arising from electron-surface scattering
predicted using the diagonal form of T������ �Eq. �1�� ex-
ceeds by about 2 orders of magnitude the observed resistiv-
ity, as displayed in Fig. 1�a�. Nevertheless, it seems remark-
able that, when the transport equations are solved
numerically without approximations using the method de-
scribed, a set of collision times �i can be found, that leads to
an accurate description of the temperature dependence of the
resistivity, as shown in Fig. 1�b�. Consequently, the discrep-
ancy between the predicted resistivity displayed in Fig. 1�a�
and the observed resistivity displayed in Fig. 1�b� is a con-
sequence of the small correlation length approximation k

�1 used to derive Eq. �1�, a condition that is severely vio-
lated in our samples. Equally remarkable and surprising, is
the fact that the transverse magnetoresistance predicted at
4 K computed using the parameter �i listed in Fig. 1�b� turns
out to be several orders of magnitude smaller than observed,
as displayed in Fig. 2. The predicted magnetoresistance vio-
lates Kohler’s rule, and is no longer monotonically increas-
ing with increasing film thickness, a fact that seems also re-
markable. The violation of Kohler’s rule is not surprising, for
it can be regarded simply as a consequence of the fact that

FIG. 1. �a� Solid line: Temperature dependence of the resistivity of 4 films of different thickness, predicted by Calecki’s theory �with a
“subband relaxation time” given by Eq. �1��, for the films having the thickness �in nm� indicated. �b� Temperature dependence of the
resistivity measured on different films: Squares, film 185 nm; Circles: film 150 nm; Triangles: film 93 nm; Inverted triangles: film 69 nm.
Solid lines represent the resistivity predicted on the basis of the numerical solution of the transport equations contained in Calecki’s theory.
The collision times �i �indicated in the figure in units of 10−13 sec� have been adjusted to describe �4� observed on each sample.

FIG. 2. �a� Transverse magnetoresistance pre-
dicted by theory at 4 K, for the 69 nm, 93 nm,
and 150 nm thick, using the full nondiagonal
scattering time matrix T������. Inset: Transverse
magnetoresistance predicted by theory at 4 K, for
the film 185 nm thick. �b� Transverse magnetore-
sistance measured at 4 K on films of different
thickness, symbols as in Fig. 1�b�; data from
Ref. 2.
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within Calecki’s theory, the Boltzmann collision operator
cannot be represented by a relaxation time �. Regarding the
Hall tangent, displayed in Fig. 3, theory predicts at 4 K a
Hall tangent that coincides roughly with the experimental
data for the 150 and 185 nm film, but overestimates the Hall
tangent for the 69 and 93 nm films. Such performance is
strongly reminiscent of that regarding Sondheimer’s theory, a
model that was found to provide an accurate description of
the temperature dependence of the resistivity, to provide a
less accurate description of the Hall voltage observed at 4 K,
but that leads to a magnetoresistance predicted at 4 K that is
one order of magnitude smaller than observed.2

Another remarkable result of this comparison between
theory and experiment, is the fact that the scattering times �i
displayed in Fig. 1�b� turn out to increase roughly linearly
with film thickness, and that the corresponding mobility �i
=q�i /m agrees �to within 35% or better� with the observed
Hall mobility.2 This suggests that either the concentration of
impurities/defects is inversely proportional to the film thick-
ness, or else the mobility observed in our samples at 4 K is

primarily determined by electron-surface scattering rather
than electron-impurity scattering. The latter interpretation
would imply that electron-surface scattering can no longer
be considered a perturbation when compared to other
electron-scattering mechanisms acting in the bulk at low
temperatures.

Summarizing, we have performed the first comparison be-
tween the numerical solution of the transport equations con-
tained in Calecki’s theory, and experimental data involving
resistivity, transverse magnetoresistance and Hall voltage ob-
served on a family of thin gold films evaporated onto mica
substrates measured at temperatures T such that 4 K�T
�50 K, under high magnetic fields B �1.5 T�B�9 T�. The
surprising result is that the theory does provide an accurate
description of the temperature dependence of the resistivity,
it provides a less accurate description of the Hall voltage
observed at 4 K, but leads to a magnetoresistance predicted
at 4 K that is several orders of magnitude smaller than ob-
served. These results indicate that the discrepancy between
theory and experiment reported in Ref. 2, does not arise from
the small correlation length approximation k
�1. It reflects
instead, a shortcoming of the theory. Such agreement in the
resistivity and Hall voltage, and such sharp discrepancy in
the transverse magnetoresistance, are reminiscent of the pre-
dictions based upon Sondheimer’s theory.

The foregoing analysis confirms the suggestion that none
of the theories currently available provide a coherent descrip-
tion of the complete set of transport data.2 The failure of both
models, Calecki’s and Sondheimer’s, may be considered the
first strong, compelling evidence pointing to the need for a
new, fresh theory to describe size effects arising from
electron-surface scattering in metallic films in the presence
of a magnetic field.
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FIG. 3. Hall tangent tan���=EH/EL measured as a function of
magnetic field B at 4 K, symbols as in Fig. 1�b�; data from Ref. 2.
Solid lines represent tan��� predicted using the numerical solution
of the transport equations contained in Calecki’s theory.
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