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In dissipative media it appears as if there are distinct normal modes with complex valued energies. The
summation of the zero-point energies of these modes render a complex valued result. Using the contour
integration, resulting from the use of the generalized argument principle, gives a real valued and different
result. This paper resolves this contradiction and shows that the true normal modes form a continuum with real
frequencies. Furthermore, it suggests a way to obtain an approximate result from a summation of the zero-point
energy of modes.
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The interaction energy in a system may be expressed in
terms of the energy shifts of the electromagnetic normal
modes of the system;1 the longitudinal bulk modes can be
used to find, e.g., the polaron energy in a polar semiconduc-
tor or the exchange-correlation energy in a metal; the trans-
verse modes to find the Lamb shift;2 the surface modes to
find the van der Waals interaction between objects; the
vacuum modes to find the Casimir3 interaction. In all these
cases the energy, or frequency, of a normal mode is found as
a solution to an equation of the type

f��� = 0, �1�

the condition for having a mode. The function f���, which
involves the dielectric properties of the system, is often ob-
tained as a determinant of a matrix. The solution to Eq. �1�
approaches a pole of the function f��� when the interaction
in the system is gradually turned off. When the interaction is
turned on the zeros move away from the poles and � /2 times
this shift in frequency is the contribution to the interaction
energy of this particular mode; the interaction energy is the
change in total zero-point energy when the interaction in the
system is turned on.

It is often straightforward to use this sum-over-modes ap-
proach, or mode-summation method, to obtain the interaction
energy as the following sum over zeros and poles of the
function f���:

E =
�

2 �
i

��0,i − ��,i� . �2�

However, sometimes it is not possible to find an explicit
solution to Eq. �1� and sometimes the poles and zeros form a
continuum. In those cases the result may be obtained with
the so-called generalized argument principle,1
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1

2�i
� dz

�

2
z

d

dz
ln f�z� , �3�

where the integration is performed along a contour including
the poles and zeros in the right half of the complex frequency
plane. The integration should be performed in the positive
sense, i.e., in the counterclockwise direction.

The specific problem of the force between two semi-
infinite dielectric slabs separated by a dielectric layer has
been solved with different approaches; in the Lifshitz4 very
complicated theory the dielectrics are characterized by ran-
domly fluctuating sources as demanded by the fluctuation-

dissipation theorem; Schwinger et al.5 derived the force us-
ing Schwinger’s source theory, where “the vacuum is
regarded as truly a state with all physical properties equal to
zero;” van Kampen et al.6 applied Eqs. �2� and �3� to the
surface modes of the geometry to find the interaction energy
and force.

All these approaches, that appear to be quite different,
give one and the same result. Milonni and Shih7 made a
study, on how these theories are related, based on conven-
tional QED. The result in Eq. �3� is consistent with what one
arrives at from many-particle theory where the focus is put
on the interacting particles in the system, not the electromag-
netic normal modes; there is no explicit reference to zero-
point energies. This is demonstrated in detail in Ref. 1 in the
case of the exchange-correlation energy of a metal. In Ref. 8
the van der Waals and Casimir forces between two quantum
wells were derived both in terms of the zero-point energy of
the normal modes and as the result from correlation energy;
both approaches produced the same result. Thus, there are
different complementary approaches to the interactions in a
system. The present work is concerned with the sum-over-
modes approach in presence of dissipation in the system.

van Kampen et al.6 considered nondissipative materials,
only, with real-valued dielectric functions. In the case of dis-
sipative materials the sum-over-modes approach runs into
yet another problem. The straightforward solution of Eq. �1�
produces complex-valued frequencies or energies, signalling
that the normal modes are no longer stable—the modes de-
cay. If this were the case they would no longer be true nor-
mal modes. The interaction energy in Eq. �2� becomes com-
plex valued. Using instead Eq. �3� produces a real-valued
interaction energy. This situation has made many researchers
confused and led to believe that there is something funda-
mentally wrong with the mode-summation method. This
work tries to resolve this confusion.

The result of Eq. �3� is the correct result in the case of
dissipation; the complex-valued result of Eq. �2� is not cor-
rect. Let us choose to study a simple example, a longitudinal
bulk mode in a metal represented by a dielectric function of
the Drude type,

���� = 1 − �pl
2 /��� + i�� . �4�

We let the parameter � be a positive real-valued constant; �,
which is the result of electron scattering against impurities or
other defects, is really � dependent and complex valued; the
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approximation we use is good for a metal in the low momen-
tum limit, for frequencies below the plasma frequency, �pl.
To find a longitudinal bulk mode we let f��� be ����. Equa-
tion �1� then gives us two zeros,

� = − i�/2 ± ��pl
2 − �2/4. �5�

We are interested in the zero in the right half-plane,

� = ��pl
2 − �2/4 − i�/2. �6�

Thus, the zero is below the real frequency axis. The problem
is that the expression in Eq. �4� for the dielectric function is
only valid above the real axis. Below the real axis � has the
opposite sign. The zero is very illusive. If one approaches the
zero from the upper half-plane and crosses the real axis it
makes a jump to the upper half-plane. This clearly shows
that we cannot use Eq. �2�, directly.

Before we continue let us discuss the general analytical
properties of a dielectric function. The physical dielectric
function, the one that can be measured in experiments, exists
on the real frequency axis, only. It is retarded, which means
that it obeys causality. In theoretical treatments one obtains a
function that is analytical in the whole complex frequency
plane except on the real axis, where all the poles are situated.
To obtain the retarded version one either shifts all the poles
downwards to an infinitesimal distance below the real axis
and perform the calculation on the real axis. Alternatively
one lets the poles stay put and perform the calculation just
above the axis. For the discussion in this work it is better to
use this last method. There are other versions of the function,
advanced, time ordered and antitime ordered. The time or-
dered is often used in many-body calculations since it allows
some very useful theorems to be used. With this version one

calculates the function just above the positive real axis and
below the negative real axis. All different versions are iden-
tical everywhere except at the real frequency axis. From now
on, if not stated otherwise, when we discuss the dielectric
function we mean the function with its poles on the real axis.
The function has the following properties:

��− �� = ���� ,
���*� = ����*. �7�

From these equations follows that the relation between the
different forms of the function in the lower and upper half-
plane is

�l��� = �u��*�*. �8�

For the full dielectric function with frequency dependent �
these two analytical expressions are the same but not when �
is treated as a constant. Then we have �u���=1−�pl

2 /���
+ i�� and �l���=1−�pl

2 /���− i��, respectively. In the full
treatment we have

i���*� = �i�����* = − i������* = − i Re������ − Im������ ,

�9�
and we may identify

Re����*�� = − Re������, Im����*�� = Im������ . �10�

We see that the dominating real part changes sign when we
cross the real axis while the imaginary part does not.

As an illustration, let us look at the expression for the
dielectric function of an impure metal in the so-called gen-
eralized Drude approach.9 Let ni, n, S�q�, and �0�q� be the
density of impurities, electron density, structure factor for the
impurities and impurity potential, respectively. Then the di-
electric function in the small momentum limit is

���� = 1 +
4�i	���

�
= 1 +

4�i

�
���
= 1 −

�pl
2

��� +
1

24�e2me�
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n

1

�
�
q

S�q�q4	�0�q�	2
 1

��q,��
−

1

��q,0���
, �11�

where 	���, 
���, and � are the dynamical conductivity, the
dynamical resistivity and volume of the system, respectively.
The second term within the parentheses in the denominator is
i�. For a large system the summation over momentum use to
be replaced by an integral over a continuous momentum
variable. Let us now keep the discrete summation. The deri-
vation of the dielectric function of the pure metal at finite
momentum also contains a discrete summation, now over the
electron momentum. The function in RPA �random phase
approximation� is

��q,�� = 1 +
vq

�
�
k,	

n�k��1 − n�k + q��
 1

�� + ��k+q − �k�

−
1

�� − ��k+q − �k�� , �12�

where n�k� is the Fermi-Dirac occupation number. We see
that, if we make the calculation just off the real frequency

axis, the imaginary part consists of a sum of �-functions,
infinitesimally spaced when the volume of the system goes to
infinity. These form the single particle continuum in the �q
plane. The real part passes through zero between each neigh-
boring pairs of � functions. When the volume goes to infinity
one can replace the summation by an integral. The imaginary
part then turns into a smooth continuous function and the
real part no longer passes through zero inside the continuum.
When one wants to find the zeros and poles of the function
����, in Eq. �11�, one should keep the discrete summations
everywhere. Then one realizes that this function, also, has its
poles and zeros on the real axis and that they are in the form
of a continuum. So in principle Eq. �2� may be used even in
presence of dissipation. It is however impractical.

Thus, the actual poles and zeros of the physical dielectric
function of the system are situated on the real frequency axis,
not at a finite distance above or below the axis. The poles
and zeros form a continuum of points on the axis. This has
some resemblance with the case of mirror charges at an in-

BRIEF REPORTS PHYSICAL REVIEW B 74, 233103 �2006�

233103-2



terface in electromagnetism in the presence of an actual point
charge. On the side with actual charge the resulting field can
be viewed as the field from the actual charge plus a mirror
charge on the other side; the resulting field on the opposite
side can be viewed as the field from the actual charge plus
the field from another mirror charge; the actual induced
charge is in the form of an induced surface-charge density on
the interface. Here, in the present problem, the dielectric
function on one side of the real axis looks as if there were a
pole on the opposite side of the axis; on the other side it
looks as if there were a pole on the first side; the actual poles
form a continuum on the axis itself.

If we now instead let all summations turn into integrals
the parameter � is a smooth complex valued function of
frequency. However its real part dominates and is almost
constant for frequencies below the plasma frequency. From
the expression in Eq. �11� we can easily verify that the real
part of � changes sign when one crosses the real axis. For
higher frequencies the contribution to the interaction energy
quickly drops off, as is seen in Fig. 1, so Eq. �4� is good
enough for our purpose here.

Let us now instead use Eq. �3� and choose our contour to
encircle the positive real axis. The contour then consists of
two parts; an integration from minus to plus infinity per-
formed just below the real axis; an integration from plus to
minus infinity performed just above the axis. We may first
perform an integration by parts in both contributions and end
up with

E = −
1

2�i

�

2
� dz ln f�z� . �13�

Then the integration below and above the axis are combined
into one integral

E = −
1

i

�

2


0

� d�

2�
ln

����*

����
=

�

2


0

� d�

2�
2 arg������

=
�

2


0

� d�

2�
2 tan−1�Im������/Re�������

=
�

2


0

� d�

2�
2 tan−1���pl

2 /���2 + �2 − �pl
2 �� , �14�

where the function tan−1 is taken from the branch where 0
 tan−1�. The dielectric function in this equation should
be on retarded form, on the form just above the real fre-
quency axis.

Alternatively, we deform the integration contour into a
semicircle in the right half-plane with the center of the circle
at the origin and the straight part parallel with and just to the
right of the imaginary frequency axis. We let the radius tend
to infinity and end up with an integral that can be solved
analytically,

E =
�

2


0

� d�

2�
2 ln ����� =

�

2


0

� d�

2�
2 ln ��i��

=
�

2


0

� d�

2�
2 ln�1 + �pl

2 /��� + ��� =
�

2���pl
2 − ��/2�2

+
2

�

��/2�ln

�

�pl
− ��pl

2 − ��/2�2tan−1 �/2

��pl
2 − ��/2�2�� .

�15�
We have made use of the fact that � is odd on the imaginary
axis which causes the integrand to be an even function. The
integration along the curved part of the contour vanishes
when the radius goes to infinity. Thus, we end up with two
integrals for the same thing; one along the real frequency
axis; one along the imaginary axis. Now, we may simplify
the analytical result by letting x= �� /2� /�pl,

E

��pl/2
= �1 − x2 +

2

�
�x ln�2x� − �1 − x2tan−1
 x

�1 − x2�� .

�16�
The first term is the result one would get if one were to use
Eq. �2� and just neglect the imaginary parts of the zeros and
poles of the function f���. This might seem to be a good and
simple short cut to an approximate result. However, to do
this turns out not to be such a good idea. This is illustrated in
Fig. 2, where the solid curve is the exact result and the
dashed curve shows the short cut. The circles are the result
from another approximation that will be discussed later.

Let us rewrite Eqs. �14� and �15� with the same scaling as
we just used. We find

E

��pl/2
= 

0

� d�

2�
2 tan−1�2x/���2 + 4x2 − 1�� �17�

and

E

��pl/2
= 

0

� d�

2�
2 ln�1 + 1/��� + 2x�� , �18�

respectively. In Fig. 1 the two integrands are shown for the
two parameter choices x=0.1 and 0.01.

The question is now whether the mode-summation
method can be used at all in the case of dissipative materials.
To investigate this we make a Lehmann representation of the
dielectric function,

FIG. 1. The solid and dashed curves are the integrand of Eqs.
�17� and �18�, respectively. The curves with circles are for x=0.1
and the others for x=0.01.
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���� = 1 + 
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1
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= 1 − 8x
0

� d��

2�

1

���/�pl�2 − ��2����2 + 4x2�
. �19�

The dielectric function in the first appearing integral should
be on retarded form or calculated just above the axis. The
integral over frequency can be viewed as a limit of discrete
frequency summations where the step size goes towards
zero. In each summation the dielectric function has its poles
and zeros on the axis. These points come closer and closer
when we take the limit. The integrations over frequency and
momentum should always be viewed as limits of discrete
summations since the system is always finite in size and
possible energy and momentum transfers are discrete.

The derivation with an example is illustrated. In approxi-
mating the dielectric function with

���� � 1 −
8x

2�

�max

imax
�
i=1

imax 1

���/�pl�2 − �i
2���i

2 + 4x2�
, �20�

�i =
�max

imax
�i − 1/2� ,

finding the zeros and poles and using Eq. �2� we find an
approximate result which asymptotically becomes the exact

result when we let �max� and imax go towards infinity. In Fig.
2 the circles indicate the result when we have included 50
equidistant poles in the region below 5�pl, i.e., �max� =5 and
imax=50. Thus, we must find the frequency of 50 poles and
50 zeros. This is feasible and the result is in much better
agreement with the exact result than what one obtains when
just neglecting the imaginary part of the zeros and poles. Of
course, it is always better to use Eq. �3� instead and then
preferably use a contour that partly is made up by the imagi-
nary axis. If we do not have the analytic expression of the
dielectric functions but experimental values, these are valid
on the real axis, or rather just above the real axis. Then we
may obtain the functions on the imaginary axis through a
type of Kramers-Kronig dispersion relation,1

��i�� = 1 +
2

�


0

�

d�
��2���

���2 + �2 , �21�

or

��i�� = 1 +
2

�


0

�

d�
���1��� − 1�

���2 + �2 . �22�

One chooses one or the other of the above equations depend-
ing on which of the real or imaginary parts on the real axis
one knows or has greatest confidence in. The obtained results
are used in Eq. �15�.

In summary, this paper has demonstrated that the energy
of the electromagnetic normal modes in dissipative media
are real valued and lead to real-valued interaction energies
and forces. The modes appear to be distinct with complex
valued energies, but they are not. The modes form a con-
tinuum on the real frequency axis and the direct use of the
mode summation method is no longer feasible. The functions
appearing in the condition for modes contain integrals over
momentum or frequency. Since the system is finite in size
these integrals should be considered as discrete summations;
the possible momentum and energy transfers in a finite sys-
tem is discrete. In doing so all zeros and poles end up on the
real axis. When one takes the limit when the volume goes to
infinity the zeros and poles form a continuum of points on
the real axis. One may use an approximation in which this
continuum of modes is replaced by a finite number of dis-
tinct modes and obtain reasonably good results. This gives a
great improvement compared to the result from just neglect-
ing the imaginary parts of the complex valued energies of the
apparent modes.
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FIG. 2. The contribution to the interaction energy from a bulk
mode. The solid curve is the exact result. The dashed curve is from
neglecting the imaginary parts of the poles and zeros. The circles
are the result from using Eq. �20� and the parameters given in the
text.
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